Informative Path Planning for Mobile
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A Reinforcement Learning Framework
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Informative Path Planning
Problem
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Goal: Find the best path to collect |
maximum amount of reward from starting on . .|
vector to terminal vector with limited | @ ”"'_""'___ - _‘. Verte
budgets | _

p @
.'-.-' |...
F 4 L

LY i
" J
. s
N .‘
", 4
N f
. [
bS 1)
Y 1
\.. i
' z'
v .

| " . |
L A Available Actions: '

[v3,vd v8 w10}

N4
- r -
Partial Path: | v, v2, v7 |




Reinforcement Learning

Existing approaches (eg. control policy
and heuristic algorithms) suffer from
optimization and complexity

Action .
Reward

Reinforcement learning

* Perform close to optimal with low
execution time

» Utilize Markov Decision Process

» Stochastic policy and deterministic
policy

* Value-based approach and policy-
base approach




Proposed Solution

Target Area with Pilot Vertex Connectivity Mask

Recurrent Neural Network (RNN) as the
Q-value approximator
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Improvement

Introduced state encoding
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Research Result

A2C has a faster convergence speed in
both Areas

Reinforce algorithm shows a similar
trend to Q-learning in Area One

Reinforce algorithm has a competitive
performance compared with A2C

Both reinforce algorithm and A2A
outperform Q-learning

Reinforce algorithm = Policy Gradient

A2A = Actor-Critic
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Research Result
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Non-Tour: the terminal location is different from the start location
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