

Maximizing Virtual Machine Pair Placement in Data Center Networks

A project

Presented

to the Faculty of

California State University Dominguez Hills

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

In

Computer Science

By

Jeffrey Lutz

Summer 2019

ii

ACKNOWLEDGEMENTS

The author of this paper would like to thank Dr. Bin Tang for his invaluable guidance

without which the creation of this paper would not be possible. The author would also

like to thank Eliza Roño for her helpful feedback on earlier drafts of this paper.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS …………………………………………………………………………………………………. ii

Table of Contents ... iii
List of Tables .. iv
List of Fig.s .. v

ABSTRACT .. 1

CHAPTER 1. INTRODUCTION ... 2

2. RELATED WORK AND SYSTEM MODEL ... 4

Related Work ... 4

System Model ... 6

3. VM PAIR PLACEMENT PROBLEM ... 10

4. ALGORITHMIC SOLUTIONS .. 11

5. PERFORMANCE EVALUATION .. 21

6. CONCLUSION AND FUTURE WORK .. 32

REFERENCES ... 33

APPENDICES.. 34
The SP_LF algorithm Code .. 35
The SP_MBF algorithm Code ... 36
The Approximation Algorithm Code ... 37

 The BlockingIsland Algorithm Code……………………………………………………………………..46
k-ary Tree Construction Code ..40
Pathfinding Code .. 44

iv

LIST OF TABLES

Table 1 Summary of Notation .. 9

v

LIST OF FIGURES

Fig. 1 k-ary fat tree where k = 4 which contains 16 physical machines showing examples
of different routing paths ... 5

Fig. 2 Probabilities of Path Lengths vs. Value of k ... 8
Fig. 3 Distance between Any Two Physical Machines [7] .. 12
Fig. 4 Pseudocode for SP_LF Algorithm.. 16
Fig. 5 Pseudocode for SP_MBF Algorithm .. 17
Fig. 6 Pseudocode for Approximation Algorithm .. 18
Fig. 7 Pseudocode for BlockingIsland Algorithm .. 19
Fig. 8 VM pair placement vs k for a 500 Mbps bandwidth per pair 22
Fig. 9 Energy Consumption for VM pair placement vs k for a 500 Mbps bandwidth per

pair ... 22
Fig. 10 VM pair placement vs. value of k with a random bandwidth ranging from 1 Mbps

to 500 Mbps ... 23
Fig. 11 Energy Consumption for VM pair placement vs. value of k with a random

bandwidth ranging from 1 Mbps to 500 Mbps ... 24
Fig. 12 VM pair placement vs. Bandwidth per Pair (Constant) 25
Fig. 13 Energy Consumption for VM pair placement vs. Bandwidth per Pair (Constant) 25
Fig. 14 VM pair placement vs. Bandwidth per Pair (Random between 1 and value in

Mbps) ... 26
Fig. 15 Energy Consumption for VM pair placement vs. Bandwidth per Pair (Random

between 1 and value in Mbps) .. 27
Fig. 16 Placement vs. Number of VM Pairs (Constant Bandwidth 400 Mbps) 28
Fig. 17 Energy Consumption for Placement vs. Number of VM Pairs (Constant

Bandwidth 400 Mbps) .. 28
Fig. 18 VM pair placement vs Number of VM pairs (Random Bandwidth between 1-800

Mbps) ... 30
Fig. 19 Energy Consumption for VM pair placement vs Number of VM pairs (Random

Bandwidth between 1-800 Mbps) ... 30

1

ABSTRACT

The overall purpose of this study was to attempt to maximize concurrent cloud user

requests inside of a data center. The way this was done was to produce different algorithms

to accommodate as many Virtual Machine pairs as possible into a k-ary fat tree with

bandwidth constraints and to evaluate their effectiveness using multiple simulations. These

Virtual Machine pairs are assigned a random bandwidth demand within a given range and

are placed within the network. The basic setup for our study was to split these algorithms

into two different parts, the first part being the algorithm that determines the order of VM

pair placement, and the second part being the path finding algorithm. These two algorithms

combine to create a method that accommodates varying amounts of VM pairs into our tree

given different constraints. Three different pathfinding algorithms were used to decide

which VM pair path was taken, one Dijkstra algorithm, one greedy algorithm, and one that

simply chooses the first available edge that can accommodate the necessary bandwidth.

One of these path finding algorithms is an approximation algorithm which has a provable

performance guarantee, thus its performance is near optimal. There are two different VM

pair order placement algorithms. The first sorts the VM Pairs by shortest path first, which

is determined by which physical machines they are placed in, and the other is by lowest

total weight first. There were many different simulations done varying all of the relevant

parameters and the Shortest Path First Most Available Bandwidth(SP_MBF) and

Approximation Algorithm performed similarly for some cases with the Approximation

Algorithm performing consistently better for all cases.

2

CHAPTER 1

INTRODUCTION

Every two years the amount of total data that has been created is expected to double and

is projected to reach 45,000 exabytes by 2020 [10]. This presents quite a few challenges

for large companies that have to move large amounts of data around quickly, efficiently,

and perhaps most importantly securely. Some of the data centers that store and process this

incredibly large amount of data can support physical machines that number in the tens of

thousands. Many of the processing tasks that these data centers undertake can be quite large

and access tremendous amounts of data. All of this data clearly can’t be stored on the same

machine, so data has to be accessed across many machines and the processing required has

to be distributed among many machines as well. For certain requests or tasks this can create

quite large bandwidth demands across many links inside of their own network.

These processing tasks can be very complex for data centers because they are serving

clients that have a wide range of requirements than can be quite different from one to the

next. This makes it difficult to optimize all of the internal routing protocols because they

have to be handled very dynamically. Due to the fact that these requests may require many

different physical machines in different locations inside of this large data center the

networking path becomes very important. It is important because data centers want to

accommodate as many simultaneous user requests as possible while also providing its

clients with an exceptionally expedient user experience.

In addition to all of the routing difficulties for accomplishing complex user tasks there

is also the problem of energy consumption. Energy itself costs money of course, but as the

energy consumption of the data center increases so does its demand for cooling. Properly

3

cooling a data center can be extremely expensive. Typically, this is done by air-

conditioning where all the servers and network equipment lie and recently there have been

some new suggestions such as water cooling or even submerging the equipment in non-

conducting fluids. Regardless it is important to minimize the length of the networking path

that the data flows through such that the equipment necessary to successfully route the data

is kept to a minimum.

Data centers have many different factors to consider. They want to minimize running

costs by minimizing the power consumption of their hardware while serving as many

concurrent users as they can. To accomplish this, they must efficiently use the resources

that are available to them i.e. bandwidth, storage, memory, and power. Thus, they will

want to accommodate as many virtual machine pairs or traffic as possible while

minimizing the consumption of bandwidth given certain bandwidth constraints. This is

the problem that we will attempt to aid in solving.

4

CHAPTER 2

RELATED WORK AND SYSTEM MODEL

RELATED WORK

Power consumption is becoming more and more relevant as data centers grow due to

the fact that cooling represents a significant amount of the data centers running costs. Also,

the size of these user requests can be so large that the necessary number of physical

machines required to complete it are in the tens of thousands [2]. In addition to incredibly

large number of physical machines involved the sheer size of the data sets can be almost

unimaginable and in the order of magnitude of petabytes [3]. Many of these tasks aren’t

necessarily bottlenecked by the resources on the physical machines actually doing the

computations, but rather on the actual networking distribution [4]. Therefore, where data

needs to be routed and the actual path that it takes becomes increasingly important as the

size of these data centers and the complexity of the tasks that they are required to perform

continues to grow.

Most data centers use hierarchical trees with small cheap edge switches simply

connected to the end hosts [5]. Since these topologies are so simple to overcome the

limitation in port densities for commercial switches they have to be placed in multiple

layers of switches on the order of maybe two or three. As the data centers grow this no

longer remains a viable option and it is suggested that the best way to allow them to grow

is horizontally rather than vertically [6]. Instead of using expensive switches with

incredibly high speeds and port densities they will be interconnected via multiple redundant

parallel paths between any source and destination (Fig. 1).

5

How to place virtual machines inside of these physical machines that reside inside of

these networks is an area that is very actively being researched. Meng et al. proposed using

traffic-aware virtual machine placement to improve network scalability, by assigning

virtual machines with large mutual bandwidth usage to machines in close proximity [7].

Alicherry et al. considered the problem of optimal placement of computational nodes and

presented algorithms for assigning virtual machines to nodes that minimize various latency

metrics under different constraints [8].

Fig. 1 k-ary fat tree where k = 4 which contains 16 physical machines showing
examples of different routing paths

6

SYSTEM MODEL

We chose to represent our data centers network as a fat tree as it has been proven to be

an incredibly efficient topology in terms of the number of physical machines it can allocate

while maintaining a relatively short path between them. The structure of the tree with basic

pathing examples is given in Fig. 1. Specifically, we will be using a k-ary fat tree. Where

k is a special parameter that defines many different relationships inside the tree, such as:

how many pods the tree has, how many aggregation switches the tree has, how many edge

switches the tree has, how many core switches the tree has, and how many physical

machines the tree has.

A k-ary fat-tree has some important relationships that are worth noting and were

involved for many different calculations and essential to building the simulation. There are

three layers of switches. The switches in the top row are Core switches, the switches in the

second row are Aggregation switches, the switches in the third row are Edge switches, and

finally at the bottom are the physical machines. Core switches handle most of the data so

in a fat-tree they have the largest bandwidth capacity of any other links. The bandwidth

capacity of the links decreases as one moves down the tree until you reach the physical

machines at the bottom which are connected to edge switches. These links have the lowest

bandwidth capacity. The Aggregation and Edge switches are separated into k pods. Each

pod contains k/2 aggregation switches and k/2 edge switches. Each edge switch is

connected to all other Aggregation switches in its pod. There are
௞మ

ସ
 core switches all of

which are connected to each pod. There are
௞య

ସ
 physical machines in the bottom layer [1].

In the example tree, there only 16 physical machines, but ask grows the number of physical

machines supported by the tree increases exponentially.

7

In terms of the connecting physical machines via the shortest path there are only four

different possibilities. The physical machine is connecting to itself, the physical machine

is connecting to another machine on the same edge switch, the physical machine is

connecting to another physical machine on a different edge switch, but on the same pod,

and finally that the physical machine is connecting to another physical machine in a

different pod. These are denoted as 0 hop, 2 hops, 4 hops, and 6 hop cases respectively.

The probability of each of these outcomes changes as a function of k and is given by the

following relationships. A simple explanation for the derivation of each is as follows.

0 hop: If one virtual machine is placed the second virtual machine can be placed in

any one of the
௞య

ସ
 physical machines. The chance that it is placed in the same physical

machine is simply 1 divided by the total number of physical machines or
ସ

௞య
.

2 hops: The chances of the second virtual machine being placed on the same edge

switch as the first is given by the number of physical machines per edge switch (
௞

ଶ
), while

not going into the same physical machine(1) divided by the total number of physical

machines(
௞య

ସ
). This reduces to

ଶ

௞మ
−

ସ

௞య
.

4 hops: Given by the number of physical machines per pod (
௞మ

ସ
) minus the number of

physical machines per edge switch (
௞

ଶ
) divided by the total number of physical machines

(
௞య

ସ
). This reduces to

ଵ

௞
−

ଶ

௞మ
.

8

6 hops: The probability of a 5-hop case is given by the probability that the virtual

machine doesn’t spawn in the same pod. This is given by the total number of physical

machines (
௞య

ସ
) minus the number of physical machines in a pod (

௞మ

ସ
) divided by the total

number of physical machines (
௞య

ସ
). This reduces to 1 -

ଵ

௞
.

 0 hop Case:
ସ

௞య

 2 hop Case:
ଶ

௞మ
−

ସ

௞య

 4 hop Case:
ଵ

௞
−

ଶ

௞మ

 6 hop Case: 1 -
ଵ

௞

These relationships are illustrated graphically via Fig. 2.

Fig. 2 Probabilities of Path Lengths vs. Value of k

9

Notice that all four values added together at any value of k is equal to 1. Also notice as

the tree grows the probability that two physical machines taken at random are in different

pods approaches 1. This may not have been obvious since every part of the tree grows as a

function of k. As a consequence of this, the probability that they are in the same pod is

reduced.

To better understand why the 6 hop case becomes more probable as the value of k grows

large it makes sense to look at what makes the 6 hop case different than the 4,2, and 0 hop

cases. What makes the 6 hop case different is that the pairs must reside in different pods,

whereas with all other cases the pairs reside in the same pod. So, when trying to determine

the probability of a random pair being a 6 hop pair it is necessary to find the ratio of physical

machines in the same pod compared to physical machines in a different pod. Ultimately,

this is given by the aforementioned relationship 1 -
ଵ

௞
. The number of physical machines in

each pod is given by
௞మ

ସ
 and the total number of physical machines in the whole tree is given

by
௞య

ସ
. So, the odds that a pair will be selected that reside in different pods is simply 1 −

௞మ

ସ
∗

ସ

௞య
 which reduces to 1 -

ଵ

௞
.

Table 1 Summary of Notation
Notation Meaning
E Set of all edges
k Number of ports on each switch
n Parameter describing the number of VM

pairs allocated into the tree
𝑏௠௜௡ Parameter describing the minimum value

for bandwidth range per VM pair
𝑏௠௔௫ Parameter describing the maximum value

for bandwidth range per VM pair
B Parameter describing the maximum

allowed bandwidth per edge

10

CHAPTER 3

VM PAIR PLACEMENT PROBLEM

 We formulate the max placement problem as follows: There are a set of n routing

requests 𝑅 = {𝑟ଵ, 𝑟ଶ, … , 𝑟௡} in the network where each request 𝑟௜ = (𝑠௜, 𝑡௜) represents that

message 𝑚௜ is sent from the source node 𝑠௜ to destination node 𝑡௜ , 1 ≤ 𝑖 ≤ 𝑝.

Let 𝑁௜ = {𝑟ଵ, 𝑟ଶ, … , 𝑟௡} (1 ≤ 𝑖 ≤ 𝑛) be the routing path of message 𝑚௜, denoting the

sequence of distinct edges along which 𝑚௜ is routed from 𝑠௜ to 𝑡௜. Let 𝑋௜௝ be the bandwidth

cost incurred by edge E in routing the message 𝑚௝, and let εா
ᇱ denote E’s remaining

bandwidth after all the messages are routed. Then,

 εᇱ
ா = εா − ∑ 𝑋ா௝

௡
௝ୀଵ , ∀E ∈ 𝑉௘ௗ௚௘௦

Where 𝑋ா௝ = 1 if E ∈ 𝑁௝ and 𝑋ா௝ = 0 otherwise.

The objective of max placement is to find a subset 𝑁௦௔௧ of the set of routing paths

𝑁 = {𝑁ଵ, 𝑁ଶ, … , 𝑁ே }, such that the number of messages routed in 𝑁௦௔௧ is maximized. i.e.,

𝑚𝑎𝑥 |𝑁௦௔௧| ,

Under the bandwidth constraint that , εᇱ
ா ≥ 0, ∀E ∈ 𝑉௘ௗ௚௘௦.

11

CHAPTER 4

ALGORITHMIC SOLUTIONS

To solve this problem two different sets of algorithms are needed, one set of algorithms

that determine in which order the virtual machine pairs are placed and one set of

algorithms to find the path that each pair will take. So, one selects from a set of virtual

machine pairs waiting to be placed, runs that pair through a path finding algorithm and

then that pair has been allocated.

 There are many different ways the order of the virtual machine pairs can be

placed. For example, they could be sorted so that the lowest bandwidth pairs are placed

first, they could be sorted so that the pairs with the fewest number of hops are placed

first, conversely, they could be sorted so the pairs with the largest number of hops are

placed first. Examples of potential path decision making algorithms include greedy

algorithms, Dijkstra algorithms, and A* algorithms with different heuristics just to name

a few.

 The pair placement algorithms that are being used in this paper are shortest path

first and random. For example, imagine four pairs are to be placed inside of Fig. 1. These

pairs have path lengths of 4 hops, 6 hops, 6 hops, and 2 hops. These pairs will be sorted in

the order of 2 hops, 4 hops, 6 hops, and 6 hops. Now that they have been sorted, the 2 hops

pair will be processed and placed by one of the three pathfinding algorithms, then the 4

hop pair, and so on.

12

Fig. 3 Distance between Any Two Physical Machines [7]

C in Fig. 3 represents the cost, or distance, of two physical machines labeled with

indexes i and j. In a k = 4 fat tree there are 16 physical machines labeled with i,j ranging

from 1 – 16. If for example, i = j then the cost is 0 because those two physical machines

are the same physical machine and thus there is no distance between them.

If, i not equal j and ⌊ଶ௜

௞
⌋= ⌊ଶ௝

௞
⌋ it means that i and j are different PMs but under the same

edge switch, because each edge switch connects to
௞

ଶ
 PMs. If, ⌊ଶ௜

௞
⌋ not equal ⌊ଶ௝

௞
⌋ and ⌊ସ௜

௞మ
⌋ =

⌊ସ௝

௞మ
⌋ it means that i and j are not under the same edge switch, but they are under the same

pod. This is because each pod has
௞

ଶ
 edge switch and each edge switch has

௞

ଶ
 PMs, therefore

each pod connects to
௞మ

ସ
PMs. Thus, if

௜

ೖమ

ర

 =
௝

ೖమ

ర

, i and j must be under the same pod.

Finally, ⌊ସ௜

௞మ
⌋ not equal ⌊ସ௝

௞మ
⌋ means i and j are under a different pod.

 There are three different pathfinding algorithms that are being used. The first

pathfinding algorithm is to find the shortest path between any two physical machines.

Once this path is found the algorithm examines all connected edges at each hop that

could potentially connect the two physical machines. It considers the potential edge with

the lowest index value first and will choose it unless this edge does not have enough

available bandwidth. It continues with this process until there are no more available edges

13

and then fails. For example, if this algorithm was finding a path for a 6 hop pair, it would

choose the edge switch that one of the VMs is connected to. Next, it would examine all of

the edges that connect that edge switch to aggregation switches above it and choose the

first edge that it encounters that has enough bandwidth accommodate the bandwidth

required for that pair. Next, it would examine all of the edges that connect that

aggregation switch to core switches and choose the first edge that has enough available

bandwidth to accommodate that VM pair. It then continues this process down the other

side of the tree with the constraint that it must connect to the edge switch that is

connected to the physical machine that the other VM of the pair resides in.

 The second pathfinding algorithm is a greedy algorithm. When presented with

choices between a set of edges, this algorithm will choose the edge that has the maximum

available bandwidth. It continues this process until there are no more available edges and

then fails. For example, if this algorithm was finding a path for a 6 hop pair, it would

choose the edge switch that one of the VMs is connected to. Next, it would examine all of

the edges that connect that edge switch to aggregation switches above it and choose the

edge that has the maximum available bandwidth for that pair. Next, it would examine all

of the edges that connect that aggregation switch to core switches and choose the edge

that currently has the lowest utilized bandwidth on it and enough available bandwidth to

accommodate that VM pair. It then continues this process down the other side of the tree

with the constraint that it must connect to the edge switch that is connected to the

physical machine that the other VM of the pair resides in.

 The third pathfinding algorithm is an approximation algorithm with a provable

performance guarantee. This algorithm works differently than the aforementioned

14

algorithms by how it determines the order in which the VM pairs are placed and how the

paths for these VM pairs are found. Instead of examining the available bandwidth on

each edge in the graph it instead examines a more abstract value which we call the

weight. After an edge has had bandwidth allocated to it the weight on the edge is

increased. The weight on an edge is multiplied by the weighting factor

𝑊௙ = 𝑀
ଵ

஻ାଵ

Where B represents the maximum bandwidth capacity of the edge and M represents the

total number of edges in the graph, which is given by the relationship
ଷ௞య

ସ
. To calculate the

total number of edges in the graph one approach is to count all the edges connected to core

switches, aggregation switches, and edge switches then add them together. Each pod

consists of
௞మ

ସ
 servers and 2 layers of

௞

ଶ
 switches, Aggregation and Edge. Each edge switch

connects to
௞

ଶ
 servers and

௞

ଶ
 aggregation switches. Each Aggregation switch connects to

௞

ଶ

edge and
௞

ଶ
 core switches. Each Core switch

௞మ

ସ
 connects to k pods. Each of these 3 switch

sets contributes
௞య

ସ
 edges for a grand edge total of

ଷ௞య

ସ
. As each edge is used the same edge

is disincentivized from being used again.

The method of operation for the Approximation Algorithm is as follows: First it assigns

an edge weight of one to each edge. Then all VM pairs are sorted by lowest total weighted

path first. It does this by running a Dijkstra algorithm on all VM pairs while examining the

weight on every edge. It places all of these pairs into a priority queue with the VM pair that

has the lowest overall weight being on top. It then places the lowest overall weight VM

pair into the graph. After checking that all of necessary edges can support the bandwidth

15

required by the pair, it places the pair into the network. All of the used edges have their

bandwidths and weights updated. This process continues until all VM pairs are placed or

until there is no possible path that can accommodate the bandwidth of a VM pair.

The significance of the Approximation Algorithm is that it is an approximation

algorithm, but more importantly that it has a performance guarantee. The total number of

satisfiable requests by this approximation algorithm is at least 𝐵 ∗ 𝑀
భ

ಳశభ times the

maximum number of satisfiable requests in the optimal solution. This is provable and is

proved in great detail in “Algorithm Design” by J. Kleinberg [9].

In addition to the previous three algorithms a fourth algorithm will analyzed that was

created by other authors. This algorithm is called the BlockingIsland algorithm and works

similarly to the most bandwidth first algorithm. The way this algorithm works is as follows:

it sorts all the VM pairs by maximum minimum-available bandwidth edge in descending

order. If there are ties, shortest path first. If there are still ties, highest bandwidth demand

first. It then places each VM pair along its shortest path, choose one randomly if there are

multiple.

To calculate the algorithmic complexity, it is useful to break up the possible shortest

paths into 3 different cases. That is how many shortest paths between two PMs i and j if

they are under the same edge switch, the same pod, and different pod. When two PMs are

under the same edge switch, it has only one shortest path. Otherwise, when two PMs are

under the same POD, it has
௞మ

ସ
 shortest paths, as there are

௞

ଶ
 edge switches and

௞

ଶ
 aggregation

switches, and every edge switch connects to every aggregation switch in a POD. Otherwise,

16

when two PMs are under different PODs, it has
௞మ

ସ
 shortest paths, as there are

௞మ

ସ
 core

switches and each one sits on a shortest path connecting two PMs from different PODs.

Using a combination of the methods mentioned above. The first algorithm will place

VM pairs by the Shortest Path First Left Most Edge First. The pseudocode is given below:

Algorithm: SP_LF: Shortest Path, Left Most Edge First
Input: all virtual machine pairs
Output: places all virtual machine pairs

1. sort all vm pairs by shortest path O(nlogn)
2. for (all virtual machine pairs)
3. if (edge can accommodate bandwidth)
4. Place current VM pair on edge
5. Update bandwidth on current edge
6. end if;
7. end for;

Fig. 4 Pseudocode for SP_LF Algorithm

When finding the path for each VM pair, it just finds the first available shortest path

maintained for this pair. As there are n VM pairs, and each pair will look for at most

௞మ

ସ
 shortest paths, then the time complexity of Fig. 4 is

௡௞మ

ସ
.

17

The second algorithm will place vm pairs by the Shortest Path First on the edge that has

the most available bandwidth. The pseudocode is given below:

Algorithm: SP_MBF: Shortest Path, Most Available Bandwidth First
Input: all virtual machine pairs
Output: places all virtual machine pairs

1. sort all vm pairs by shortest path O(nlogn)
2. for (all virtual machine pairs)
3. if (edge can accommodate bandwidth and edge has most available bandwidth

of any available edge)
4. Place current VM pair on edge
5. Update bandwidth on current edge
6. end if;
7. end for;

Fig. 5 Pseudocode for SP_MBF Algorithm

Similarly, to the previous algorithm. When finding the path for each VM pair, it just finds

the first available shortest path maintained for this pair. As there are n VM pairs, and

each pair will look for at most
௞మ

ସ
 shortest paths, then the time complexity of Fig. 5 is

௡௞మ

ସ
.

 For each VM pair to be satisfied, if they are located under different edge switches

(either in the same POD or not), then there are
௞మ

ସ
 shortest paths between those two PMs

they are located in. It then checks all of these
௞మ

ସ
 shortest paths and chooses one whose

minimum-available-bandwidth edge has the maximum available bandwidth among all the

௞మ

ସ
 shortest paths. The time complexity again is

௡௞మ

ସ
.

 The third algorithm will place the lowest total weighted pairs first where every utilized

edge has weight that is updated every cycle by the relationship

𝑊௙ = 𝑀
ଵ

஻ାଵ

18

The pseudocode is given below:

Algorithm: Approximation Algorithm
Input: all virtual machine pairs
Output: places all virtual machine pairs

Notations: 𝑊௙ = 𝑀
భ

ಳశభ

1. for (all virtual machine pairs)
2. search for lowest weight pair
3. if (all edges can accommodate required bandwidth)
4. place lowest total weight pair
5. update all used edges with current VM pairs bandwidth
6. update all used edges with 𝑊௙ of current VM pair
7. end if;
8. end for;

Fig. 6 Pseudocode for Approximation Algorithm

Theorem: The Approximation Algorithm is a 2𝐵𝑀
భ

ಳశభ approximation algorithm. That is,

the total number of satisfiable requests by GDP is at least 2𝐵𝑀
భ

ಳశభ times of the maximum

number of satisfiable requests in optimal solution. A proof of this is given in detail in

Maximizing Number of Satisfiable Routing Requests in Static Ad Hoc Networks [11].

 Assume you will n as number of VM pairs. As there are at most n rounds (each round

it satisfies one VM pair). In each round it finds among at most n VM pairs one minimum

weighted VM pair that can be satisfied. To calculate minimum weight for each VM pair,

it takes O(|E| + |V| log |V|). Thus, total time complexity is 𝑛ଶ(|E| + |V| log |V|). Next let's

find |E|, number of edges in the network and |V|, number of nodes in the network.

Edges between PMs and edge switches:
௞య

ସ

Edges between edge and aggregation switches:
௞య

ସ

Edges between core and aggregation switches:
௞మ

ସ
∗ 𝑘 =

௞య

ସ

19

Total edges =
ଷ௞య

ସ

Number of nodes |V| is
௞మ

ସ
 core switches +

௞మ

ସ
 aggregation switches +

௞మ

ସ
edge switches +

௞య

ସ

PMs =
ଷ௞మ

ସ
 +

௞య

ସ

Therefore the total time complexity is 𝑛ଶ*(
ଷ௞య

ସ
 *

ଷ௞మ

ସ
 +

ଷ௞య

ସ
 log (

ଷ௞మ

ସ
 +

௞య

ସ
))= O(𝑛ଶ * (𝑘ଷ+

𝑘ଷ log 𝑘ଷ)

= O(𝑛ଶ * (𝑘ଷ * log(𝑘ଷ))

The Pseudocode for the BlockingIsland algorithm is given below:

Algorithm: BI: BlockingIsland
Input: all virtual machine pairs
Output: places all virtual machine pairs

1. Sorts all the VM pairs by maximum minimum-available bandwidth edge in
descending order. If there are ties, shortest path first. If there are still ties, highest
bandwidth demand first. O(nlogn)

2. for (all virtual machine pairs)
3. if (path is shortest path)
4. Place current VM pair on edge
5. Update bandwidth on current edge
6. end if;
7. else if (multiple paths choose path randomly)
8. Place current VM pair on edge
9. Update bandwidth on current edge
10. end if;
11. end for;

Fig. 7 Pseudocode for BlockingIsland Algorithm

When finding the path for each VM pair Sorts all the VM pairs by maximum minimum-

available bandwidth edge in descending order. If there are ties, shortest path first. If there

are still ties, highest bandwidth demand first. As there are n VM pairs, and each pair will

look for at most
௞మ

ସ
 paths, then the time complexity of Fig. 7 is

௡௞మ

ସ
.

20

For each VM pair to be satisfied, if they are located under different edge switches (either

in the same POD or not), then there are
௞మ

ସ
 shortest paths between those two PMs they are

located in. It then checks all of these
௞మ

ସ
 shortest paths and chooses one whose minimum-

available-bandwidth edge has the maximum available bandwidth among all the
௞మ

ସ

shortest paths. The time complexity again is
௡௞మ

ସ
.

21

CHAPTER 5

PERFORMANCE EVALUATION

When evaluating the performance of the three different algorithms a number of different

situations were examined. The simulation has five different parameters, k, the number of

VM pairs, the minimum bandwidth per pair, the maximum bandwidth per pair, and the

bandwidth capacity for each edge; These parameters are denoted by k, n, 𝑏௠௜௡, 𝑏௠௔௫, and

b, respectively. To examine the effectiveness of each algorithm the amount of VM pairs

that are accommodated into the network will be evaluated with different sets of

parameters.

As well as the ability of each algorithm to place VM pairs inside of the network the

algorithms energy consumption will also be tested. The energy consumption is defined as

the number of hops needed to facilitate the connection between the virtual machine pair.

This amount will vary based on how many pairs are placed and the length of the path

needed to connect the virtual machine pair.

For the first simulation the independent parameter will be k and the dependent variable is

the percentage of VM pairs that can be accommodated by each algorithm. The capacity

per edge in this simulation is 10 Gbps and the bandwidth per VM pair is 500 Mbps. The

number of physical machines depends on the value of k for the tree and is given by the

expression
௞య

ସ
. To properly load the network structure the number of VM pairs spawned

depends on the number of physical machines and is given by the expression
ଵ଴௞య

ସ
. So, for

each physical machine there are ten VM pairs.

22

Fig. 8 VM pair placement vs k for a 500 Mbps bandwidth per pair

Fig. 9 Energy Consumption for VM pair placement vs k for a 500 Mbps bandwidth
per pair

The first simulation is described via Fig. 8. The number of VM pairs in this simulation

depends on the value of k. The relationship
ଵ଴ య

ସ
 describes how many VM pairs are

attempted to be placed by each algorithm. As one would expect has the value of k goes

23

up and the number of VM pairs increases each algorithms ability to accommodate pairs

into the network is reduced significantly. What is interesting to note however is that the

SP_LF algorithm consistently cannot accommodate as many pairs as the other two

algorithms. Due to the increased complexity of the Approximation algorithm it makes

sense that it out performs all other algorithms at every value of k. The Blocking Island

algorithm performs better than the most bandwidth first algorithm, but less than the

approximation algorithm.

The energy consumption for these simulation conditions performs as expected due to the

fact that the number of virtual machine pairs placed scales exponentially with the size of

k. However, in spite of this the approximation algorithm consumes the most amount of

energy as it consistently places the largest number of virtual machine pairs and each of

these pairs as a longer than average path length.

Fig. 10 VM pair placement vs. value of k with a random bandwidth ranging from 1
Mbps to 500 Mbps

24

Fig. 11 Energy Consumption for VM pair placement vs. value of k with a random
bandwidth ranging from 1 Mbps to 500 Mbps

Examine Fig. 10. Similar to Fig. 8, except the difference here is that the bandwidth per

VM pair is varied randomly between 1 Mbps and 500 Mbps. Again, the SP_LF algorithm

consistently performs the worst. Again, the Approximation algorithm seems to out

performs the other two. The difference between the algorithms appears to be very linear

in this situation and evolves as one would expect as the value of k increases.

Similarly, to the last simulation the approximation algorithm consumes the most amount

of energy as it consistently places the most amount of virtual machine pairs and for the

pairs that it places the average path length is longer. Again the Blocking Island algorithm

performs better than the most bandwidth first algorithm, but less effectively than the

approximation algorithm.

For the next set of simulations, it makes sense to observe how the algorithms

behave when different parameters are modulated. Next the case where the bandwidth per

25

pair, will be modulated with the value of k being 12, the bandwidth capacity being 10

Gbps, and the number of VM pairs given by
ଵ଴௞య

ସ

Fig. 12 VM pair placement vs. Bandwidth per Pair (Constant)

Fig. 13 Energy Consumption for VM pair placement vs. Bandwidth per Pair
(Constant)

26

Examine Fig. 12. For this simulation the value of k is 12 and the value of n is
ଵ଴௞య

ସ
 =

4320. Similarly, the SP_LF algorithm performs significantly worse than the other two

algorithms. The SP_MBF appears to perform better when the bandwidth per pair is held

constant and worse when the bandwidth per pair is modulated randomly. In a similar

fashion the bandwidth per pair will be modulated except it will now be random within a

range as opposed to simply being constant. All algorithms perform similarly, with the

approximation algorithm consistently performing the best.

The energy consumption behaves similarly to the placement. Due to the fact that the

number of virtual machine pairs is fixed it follows closely to the number of pairs placed

by each algorithm with the exception of the approximation algorithm with a slightly

higher than expected energy consumption due to its larger than average path length and

higher number of placed pairs.

Fig. 14 VM pair placement vs. Bandwidth per Pair (Random between 1 and value in
Mbps)

27

Fig. 15 Energy Consumption for VM pair placement vs. Bandwidth per Pair
(Random between 1 and value in Mbps)

Examine Fig. 14. For this simulation the value of k is 12 and the value of n is
ଵ଴௞య

ସ
 =

4320. Again, the SP_LF algorithm performs consistently worse than the other two and all

algorithms perform worse as the average bandwidth per pair increases. What is

interesting however, is that the Approximation Algorithm consistently performs better

than the SP_MBF algorithm. In fact, when the value of bandwidths is random within a

range the effectiveness of the two algorithms is linear but diverge. That is as the random

bandwidth per pair increase the increased effectiveness of the Approximation Algorithm

is proportionate to the increased bandwidth. Like in the previous simulation the

placement of all the algorithms is fairly close, but the Approximation Algorithm performs

consistently better.

Again, the approximation algorithm consumes the most amount of energy because it

places the largest number of pairs as well as having a slightly than higher average path

length.

28

Next the number of VM pairs will be modulated and the effectiveness of the three

algorithms will be evaluated in similar fashion. The value of k will be set to 12 and the

bandwidth will be set to 400 Mbps with the capacity for each edge being held at 10 Gbps.

With constant bandwidth being examined before a random bandwidth range.

Fig. 16 Placement vs. Number of VM Pairs (Constant Bandwidth 400 Mbps)

Fig. 17 Energy Consumption for Placement vs. Number of VM Pairs (Constant
Bandwidth 400 Mbps)

29

Examine Fig. 16. The SP_LF algorithm performs significantly worse than the other two

and similarly all algorithms perform worse as the number of attempted accommodated

VM Pairs increases. Like in the other simulations with constant bandwidth the SP_MBF

and Approximation algorithm perform similarly with the Approximation Algorithm

performing marginally better. The situation where each pair is randomly assigned

bandwidth within a certain range will be examined next.

The energy consumption of this plot is more interesting because as percentage of placed

pairs decreases the number placed pairs increases. What is most interesting is as the

number of potential pairs increases the average energy consumption increases. Perhaps

this is due to the fact that each algorithm can place more desirable pairs.

In the next simulation the parameters will be similar to the previous with the

exception that the bandwidth range will be distributed randomly between 1 and 800

Mbps.

30

Fig. 18 VM pair placement vs Number of VM pairs (Random Bandwidth between 1-
800 Mbps)

Fig. 19 Energy Consumption for VM pair placement vs Number of VM pairs
(Random Bandwidth between 1-800 Mbps)

Examine Fig. 18. Again, the SP_LF algorithm consistently performs the worst. The other

two algorithms perform similarly at the lower end of the scale, but as the number of VM

pairs increases the effectiveness of algorithms two and three start to diverge. The

31

magnitude of the divergence increases as the number of VM pairs increases, which seems

to be similar to the other simulated parameter sets involving random bandwidth per VM

pair.

Similarly, to the previous simulation the approximation algorithm has the highest energy

consumption, but as the percentage of placed pairs goes down the energy consumption

goes up. This may be due to the fact that having more pairs allows the more desirable

pairs to be placed on average increases the total effectiveness and energy consumption of

the network.

32

CHAPTER 6

CONCLUSION AND FUTURE WORK

We have explored different methods of accommodating virtual machine pairs inside

physical machines in a k-ary fat tree topology and have found that there are many

algorithms that solve this problem, however the Approximation Algorithm performed the

best on average. This algorithm seemed to be less optimum when the bandwidth allocated

per pair was constant. It is important to note however that the algorithmic complexity of

the Approximation Algorithm is given by 𝑂(𝑛ହ) where the complexity of the other two

algorithms is given by 𝑂(𝑛
ఴ

య).

It is also worth noting that as the size of k-ary tree grows the number of 6 hop cases

increases. This relationship is illustrated via Fig. 2. Sorting by the path length becomes less

and less significant as the tree grows larger. This is shown through our analysis of different

simulation parameters with the Approximation Algorithm outperforming the SP_MBF

algorithm more significantly as the size of the tree grows.

For the future, we would like to examine the same structure, but with more realistic

conditions. Perhaps limiting the computation capacity of the physical machines or applying

additional restrictions in our network for example, having to visit different dedicated

middle boxes at different locations in the network.

33

REFERENCES

[1] P. Khani, B. Tang, J. Han and M. Beheshti, "Power-efficient virtual machine replication in data
centers," 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, 2016, pp. 1-7.

[2] Al-Fares, Mohammad & Radhakrishnan, Sivasankar & Raghavan, Barath & Huang, Nelson & Vahdat,
Amin. (2010). Hedera: Dynamic Flow Scheduling for Data Center Networks.. 281-296.

[3] Ghemawat, Sanjay & Gobioff, Howard & Leung, Shun-Tak. (2003). The Google File System. ACM
SIGOPS Operating Systems Review. 37. 29-43.

[4] Benson, Theophilus & Anand, Ashok & Akella, Aditya & Zhang, Ming. (2009). Understanding Data
Center Traffic Characteristics. Computer Communication Review - CCR. 40. 65-72.

[5] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der Merwe. 2005. Design and
implementation of a routing control platform. In Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation - Volume 2(NSDI'05), Vol. 2. USENIX Association,
Berkeley, CA, USA, 15-28.

[6] M. Al-Fares, A. Loukissas, and A. Vahdat. 2008. A scalable, commodity data center network
architecture. SIGCOMM Comput. Commun. Rev. 38, 4 (August 2008), 63-74. DOI:
https://doi.org/10.1145/1402946.1402967

 [7] X. Meng, V. Pappas, and L. Zhang. 2010. Improving the scalability of data center networks with
traffic-aware virtual machine placement. In Proceedings of the 29th conference on Information
communications (INFOCOM'10). IEEE Press, Piscataway, NJ, USA, 1154-1162.

 [8] Alicherry, Mansoor & Lakshman, T.V.. (2013). Optimizing Data Access Latencies in Cloud Systems
by Intelligent Virtual Machine Placement. Proceedings - IEEE INFOCOM. 647-655.
10.1109/INFCOM.2013.6566850.

[9] J. Kleinberg and E. Tardos, “Algorithm Design”, Addison Wesley, 2005.

[10] https://www.theatlas.com/charts/E1Wxox0c

[11] Z. Sumpter, L. Burson, B. Tang, and X. Chen. 2013. Maximizing Number of Satisfiable Routing
Requests in Static Ad Hoc Networks. IEEE Global Communications Conference (GLOBECOM)

34

APPENDICES

35

THE SP_LF ALGORITHM CODE

36

THE SP_MBF ALGORITHM CODE

37

THE APPROXIMATION ALGORITHM CODE

38

39

THE BLOCKINGISLAND CODE

40

K-ARY TREE CONSTRUCTION CODE

The initializeEdges function creates all of the connections inside of the tree. This is

one of the three functions that creates all the static objects that will be used in the

simulation. This is not a trivial task as there are many specific rules for which objects

(switches and physical machines) are connected to each other. It also creates the edge

objects which have their own class and many internal variables.

 The initializeValue function creates all of the objects that the edges connect to.

This is one of the three functions that creates all the static objects that will be used in the

simulation. These objects include the three different switch types and the physical

machines that hold the virtual machines. These objects all have their own properties and

variables that define their behavior.

 The initializeVirtualMacine function creates all of the virtual machines and places

them inside physical machines and assigns them the bandwidth required per pair. This is

one of the three functions that creates all the static objects that will be used in the

simulation.

41

42

43

44

PATHFINDING CODE

 The findPath functions input is a virtual machine pair and the output is the path

that connects that virtual machine pair through the network. The behavior for this path

finding function is described in detail in the algorithm section, but it an implementation

of the greedy pathfinding algorithm.

45

46

47

48

49

50

51

