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ABSTRACT 
 

The overall purpose of this study was to attempt to maximize concurrent cloud user 

requests inside of a data center. The way this was done was to produce different algorithms 

to accommodate as many Virtual Machine pairs as possible into a k-ary fat tree with 

bandwidth constraints and to evaluate their effectiveness using multiple simulations. These 

Virtual Machine pairs are assigned a random bandwidth demand within a given range and 

are placed within the network. The basic setup for our study was to split these algorithms 

into two different parts, the first part being the algorithm that determines the order of VM 

pair placement, and the second part being the path finding algorithm. These two algorithms 

combine to create a method that accommodates varying amounts of VM pairs into our tree 

given different constraints. Three different pathfinding algorithms were used to decide 

which VM pair path was taken, one Dijkstra algorithm, one greedy algorithm, and one that 

simply chooses the first available edge that can accommodate the necessary bandwidth. 

One of these path finding algorithms is an approximation algorithm which has a provable 

performance guarantee, thus its performance is near optimal. There are two different VM 

pair order placement algorithms. The first sorts the VM Pairs by shortest path first, which 

is determined by which physical machines they are placed in, and the other is by lowest 

total weight first. There were many different simulations done varying all of the relevant 

parameters and the Shortest Path First Most Available Bandwidth(SP_MBF) and 

Approximation Algorithm performed similarly for some cases with the Approximation 

Algorithm performing consistently better for all cases. 
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CHAPTER 1 

INTRODUCTION 

 
Every two years the amount of total data that has been created is expected to double and 

is projected to reach 45,000 exabytes by 2020 [10]. This presents quite a few challenges 

for large companies that have to move large amounts of data around quickly, efficiently, 

and perhaps most importantly securely. Some of the data centers that store and process this 

incredibly large amount of data can support physical machines that number in the tens of 

thousands. Many of the processing tasks that these data centers undertake can be quite large 

and access tremendous amounts of data. All of this data clearly can’t be stored on the same 

machine, so data has to be accessed across many machines and the processing required has 

to be distributed among many machines as well. For certain requests or tasks this can create 

quite large bandwidth demands across many links inside of their own network. 

These processing tasks can be very complex for data centers because they are serving 

clients that have a wide range of requirements than can be quite different from one to the 

next. This makes it difficult to optimize all of the internal routing protocols because they 

have to be handled very dynamically. Due to the fact that these requests may require many 

different physical machines in different locations inside of this large data center the 

networking path becomes very important. It is important because data centers want to 

accommodate as many simultaneous user requests as possible while also providing its 

clients with an exceptionally expedient user experience. 

In addition to all of the routing difficulties for accomplishing complex user tasks there 

is also the problem of energy consumption. Energy itself costs money of course, but as the 

energy consumption of the data center increases so does its demand for cooling. Properly 
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cooling a data center can be extremely expensive. Typically, this is done by air-

conditioning where all the servers and network equipment lie and recently there have been 

some new suggestions such as water cooling or even submerging the equipment in non-

conducting fluids. Regardless it is important to minimize the length of the networking path 

that the data flows through such that the equipment necessary to successfully route the data 

is kept to a minimum. 

Data centers have many different factors to consider. They want to minimize running 

costs by minimizing the power consumption of their hardware while serving as many 

concurrent users as they can. To accomplish this, they must efficiently use the resources 

that are available to them i.e. bandwidth, storage, memory, and power. Thus, they will 

want to accommodate as many virtual machine pairs or traffic as possible while 

minimizing the consumption of bandwidth given certain bandwidth constraints. This is 

the problem that we will attempt to aid in solving. 
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CHAPTER 2 

RELATED WORK AND SYSTEM MODEL 

RELATED WORK 

 
Power consumption is becoming more and more relevant as data centers grow due to 

the fact that cooling represents a significant amount of the data centers running costs. Also, 

the size of these user requests can be so large that the necessary number of physical 

machines required to complete it are in the tens of thousands [2]. In addition to incredibly 

large number of physical machines involved the sheer size of the data sets can be almost 

unimaginable and in the order of magnitude of petabytes [3]. Many of these tasks aren’t 

necessarily bottlenecked by the resources on the physical machines actually doing the 

computations, but rather on the actual networking distribution [4]. Therefore, where data 

needs to be routed and the actual path that it takes becomes increasingly important as the 

size of these data centers and the complexity of the tasks that they are required to perform 

continues to grow. 

Most data centers use hierarchical trees with small cheap edge switches simply 

connected to the end hosts [5]. Since these topologies are so simple to overcome the 

limitation in port densities for commercial switches they have to be placed in multiple 

layers of switches on the order of maybe two or three. As the data centers grow this no 

longer remains a viable option and it is suggested that the best way to allow them to grow 

is horizontally rather than vertically [6]. Instead of using expensive switches with 

incredibly high speeds and port densities they will be interconnected via multiple redundant 

parallel paths between any source and destination (Fig. 1). 
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How to place virtual machines inside of these physical machines that reside inside of 

these networks is an area that is very actively being researched. Meng et al. proposed using 

traffic-aware virtual machine placement to improve network scalability, by assigning 

virtual machines with large mutual bandwidth usage to machines in close proximity [7]. 

Alicherry et al. considered the problem of optimal placement of computational nodes and 

presented algorithms for assigning virtual machines to nodes that minimize various latency 

metrics under different constraints [8]. 

 

Fig. 1 k-ary fat tree where k = 4 which contains 16 physical machines showing 
examples of different routing paths 
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SYSTEM MODEL 
 

We chose to represent our data centers network as a fat tree as it has been proven to be 

an incredibly efficient topology in terms of the number of physical machines it can allocate 

while maintaining a relatively short path between them. The structure of the tree with basic 

pathing examples is given in Fig. 1. Specifically, we will be using a k-ary fat tree. Where 

k is a special parameter that defines many different relationships inside the tree, such as: 

how many pods the tree has, how many aggregation switches the tree has, how many edge 

switches the tree has, how many core switches the tree has, and how many physical 

machines the tree has. 

A k-ary fat-tree has some important relationships that are worth noting and were 

involved for many different calculations and essential to building the simulation. There are 

three layers of switches. The switches in the top row are Core switches, the switches in the 

second row are Aggregation switches, the switches in the third row are Edge switches, and 

finally at the bottom are the physical machines. Core switches handle most of the data so 

in a fat-tree they have the largest bandwidth capacity of any other links. The bandwidth 

capacity of the links decreases as one moves down the tree until you reach the physical 

machines at the bottom which are connected to edge switches. These links have the lowest 

bandwidth capacity. The Aggregation and Edge switches are separated into k pods. Each 

pod contains k/2 aggregation switches and k/2 edge switches. Each edge switch is 

connected to all other Aggregation switches in its pod. There are 
௞మ

ସ
 core switches all of 

which are connected to each pod. There are 
௞య

ସ
  physical machines in the bottom layer [1]. 

In the example tree, there only 16 physical machines, but ask grows the number of physical 

machines supported by the tree increases exponentially. 
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In terms of the connecting physical machines via the shortest path there are only four 

different possibilities. The physical machine is connecting to itself, the physical machine 

is connecting to another machine on the same edge switch, the physical machine is 

connecting to another physical machine on a different edge switch, but on the same pod, 

and finally that the physical machine is connecting to another physical machine in a 

different pod. These are denoted as 0 hop, 2 hops, 4 hops, and 6 hop cases respectively. 

The probability of each of these outcomes changes as a function of k and is given by the 

following relationships. A simple explanation for the derivation of each is as follows. 

 

0 hop: If one virtual machine is placed the second virtual machine can be placed in 

any one of the 
௞య

ସ
 physical machines. The chance that it is placed in the same physical 

machine is simply 1 divided by the total number of physical machines or 
ସ

௞య
. 

2 hops: The chances of the second virtual machine being placed on the same edge 

switch as the first is given by the number of physical machines per edge switch (
௞

ଶ
), while 

not going into the same physical machine(1) divided by the total number of physical 

machines(
௞య

ସ
). This reduces to 

ଶ

௞మ
−

ସ

௞య
. 

4 hops: Given by the number of physical machines per pod (
௞మ

ସ
) minus the number of 

physical machines per edge switch ( 
௞

ଶ
) divided by the total number of physical machines 

(
௞య

ସ
). This reduces to 

ଵ

௞
−

ଶ

௞మ
. 
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6 hops: The probability of a 5-hop case is given by the probability that the virtual 

machine doesn’t spawn in the same pod. This is given by the total number of physical 

machines (
௞య

ସ
) minus the number of physical machines in a pod (

௞మ

ସ
) divided by the total 

number of physical machines (
௞య

ସ
). This reduces to 1 - 

ଵ

௞
. 

 0 hop Case: 
ସ

௞య
 

 2 hop Case: 
ଶ

௞మ
−

ସ

௞య
 

 4 hop Case: 
ଵ

௞
−

ଶ

௞మ
 

 6 hop Case: 1 - 
ଵ

௞
 

These relationships are illustrated graphically via Fig. 2. 

 

Fig. 2 Probabilities of Path Lengths vs. Value of k  
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Notice that all four values added together at any value of k is equal to 1. Also notice as 

the tree grows the probability that two physical machines taken at random are in different 

pods approaches 1. This may not have been obvious since every part of the tree grows as a 

function of k. As a consequence of this, the probability that they are in the same pod is 

reduced.  

To better understand why the 6 hop case becomes more probable as the value of k grows 

large it makes sense to look at what makes the 6 hop case different than the 4,2, and 0 hop 

cases. What makes the 6 hop case different is that the pairs must reside in different pods, 

whereas with all other cases the pairs reside in the same pod. So, when trying to determine 

the probability of a random pair being a 6 hop pair it is necessary to find the ratio of physical 

machines in the same pod compared to physical machines in a different pod. Ultimately, 

this is given by the aforementioned relationship 1 - 
ଵ

௞
. The number of physical machines in 

each pod is given by 
௞మ

ସ
 and the total number of physical machines in the whole tree is given 

by 
௞య

ସ
. So, the odds that a pair will be selected that reside in different pods is simply 1 −

 
௞మ

ସ
∗

ସ

௞య
  which reduces to 1 - 

ଵ

௞
. 

Table 1 Summary of Notation 
Notation Meaning 
E Set of all edges 
k Number of ports on each switch 
n Parameter describing the number of VM 

pairs allocated into the tree 
𝑏௠௜௡ Parameter describing the minimum value 

for bandwidth range per VM pair 
𝑏௠௔௫ Parameter describing the maximum value 

for bandwidth range per VM pair 
B Parameter describing the maximum 

allowed bandwidth per edge 
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CHAPTER 3 

VM PAIR PLACEMENT PROBLEM 
 
 We formulate the max placement problem as follows: There are a set of n routing 

requests 𝑅 = {𝑟ଵ, 𝑟ଶ, … , 𝑟௡} in the network where each request 𝑟௜ = (𝑠௜, 𝑡௜) represents that 

message 𝑚௜ is sent from the source node 𝑠௜ to destination node 𝑡௜ , 1 ≤ 𝑖 ≤ 𝑝. 

  

Let 𝑁௜ = {𝑟ଵ, 𝑟ଶ, … , 𝑟௡} (1 ≤ 𝑖 ≤ 𝑛) be the routing path of message 𝑚௜, denoting the 

sequence of distinct edges along which 𝑚௜ is routed from 𝑠௜ to 𝑡௜. Let 𝑋௜௝  be the bandwidth 

cost incurred by edge E in routing the message 𝑚௝, and let εா
ᇱ denote E’s remaining 

bandwidth after all the messages are routed. Then, 

 εᇱ
ா =  εா −  ∑ 𝑋ா௝

௡
௝ୀଵ ,                     ∀E ∈ 𝑉௘ௗ௚௘௦ 

 

Where 𝑋ா௝ = 1 if E ∈ 𝑁௝  and 𝑋ா௝ = 0 otherwise.  

The objective of max placement is to find a subset 𝑁௦௔௧ of the set of routing paths 

𝑁 = {𝑁ଵ, 𝑁ଶ, … , 𝑁ே  }, such that the number of messages routed in 𝑁௦௔௧ is maximized. i.e., 

𝑚𝑎𝑥 |𝑁௦௔௧| , 

Under the bandwidth constraint that , εᇱ
ா  ≥ 0,  ∀E ∈ 𝑉௘ௗ௚௘௦. 
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CHAPTER 4 

ALGORITHMIC SOLUTIONS 
 
To solve this problem two different sets of algorithms are needed, one set of algorithms 

that determine in which order the virtual machine pairs are placed and one set of 

algorithms to find the path that each pair will take. So, one selects from a set of virtual 

machine pairs waiting to be placed, runs that pair through a path finding algorithm and 

then that pair has been allocated.  

 There are many different ways the order of the virtual machine pairs can be 

placed. For example, they could be sorted so that the lowest bandwidth pairs are placed 

first, they could be sorted so that the pairs with the fewest number of hops are placed 

first, conversely, they could be sorted so the pairs with the largest number of hops are 

placed first. Examples of potential path decision making algorithms include greedy 

algorithms, Dijkstra algorithms, and A* algorithms with different heuristics just to name 

a few. 

 The pair placement algorithms that are being used in this paper are shortest path 

first and random. For example, imagine four pairs are to be placed inside of Fig. 1. These 

pairs have path lengths of 4 hops, 6 hops, 6 hops, and 2 hops. These pairs will be sorted in 

the order of 2 hops, 4 hops, 6 hops, and 6 hops. Now that they have been sorted, the 2 hops 

pair will be processed and placed by one of the three pathfinding algorithms, then the 4 

hop pair, and so on.  
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Fig. 3 Distance between Any Two Physical Machines [7] 
 

C in Fig. 3 represents the cost, or distance, of two physical machines labeled with 

indexes i and j. In a k = 4 fat tree there are 16 physical machines labeled with i,j ranging 

from 1 – 16. If for example, i = j then the cost is 0 because those two physical machines 

are the same physical machine and thus there is no distance between them.  

If, i not equal j and ⌊ଶ௜

௞
⌋= ⌊ଶ௝

௞
⌋ it means that i and j are different PMs but under the same 

edge switch, because each edge switch connects to 
௞

ଶ
 PMs. If, ⌊ଶ௜

௞
⌋ not equal ⌊ଶ௝

௞
⌋ and ⌊ସ௜

௞మ
⌋ = 

⌊ସ௝

௞మ
⌋ it means that i and j are not under the same edge switch, but they are under the same 

pod. This is because each pod has 
௞

ଶ
 edge switch and each edge switch has 

௞

ଶ
 PMs, therefore 

each pod connects to 
௞మ

ସ
PMs. Thus, if

௜

ೖమ

ర

 = 
௝

ೖమ

ర

, i and j must be under the same pod. 

Finally, ⌊ସ௜

௞మ
⌋ not equal ⌊ସ௝

௞మ
⌋ means i and j are under a different pod. 

 There are three different pathfinding algorithms that are being used. The first 

pathfinding algorithm is to find the shortest path between any two physical machines. 

Once this path is found the algorithm examines all connected edges at each hop that 

could potentially connect the two physical machines. It considers the potential edge with 

the lowest index value first and will choose it unless this edge does not have enough 

available bandwidth. It continues with this process until there are no more available edges 
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and then fails. For example, if this algorithm was finding a path for a 6 hop pair, it would 

choose the edge switch that one of the VMs is connected to. Next, it would examine all of 

the edges that connect that edge switch to aggregation switches above it and choose the 

first edge that it encounters that has enough bandwidth accommodate the bandwidth 

required for that pair. Next, it would examine all of the edges that connect that 

aggregation switch to core switches and choose the first edge that has enough available 

bandwidth to accommodate that VM pair. It then continues this process down the other 

side of the tree with the constraint that it must connect to the edge switch that is 

connected to the physical machine that the other VM of the pair resides in. 

 The second pathfinding algorithm is a greedy algorithm. When presented with 

choices between a set of edges, this algorithm will choose the edge that has the maximum 

available bandwidth. It continues this process until there are no more available edges and 

then fails. For example, if this algorithm was finding a path for a 6 hop pair, it would 

choose the edge switch that one of the VMs is connected to. Next, it would examine all of 

the edges that connect that edge switch to aggregation switches above it and choose the 

edge that has the maximum available bandwidth for that pair. Next, it would examine all 

of the edges that connect that aggregation switch to core switches and choose the edge 

that currently has the lowest utilized bandwidth on it and enough available bandwidth to 

accommodate that VM pair. It then continues this process down the other side of the tree 

with the constraint that it must connect to the edge switch that is connected to the 

physical machine that the other VM of the pair resides in. 

 The third pathfinding algorithm is an approximation algorithm with a provable 

performance guarantee. This algorithm works differently than the aforementioned 
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algorithms by how it determines the order in which the VM pairs are placed and how the 

paths for these VM pairs are found. Instead of examining the available bandwidth on 

each edge in the graph it instead examines a more abstract value which we call the 

weight. After an edge has had bandwidth allocated to it the weight on the edge is 

increased. The weight on an edge is multiplied by the weighting factor 

𝑊௙ = 𝑀
ଵ

஻ାଵ 

Where B represents the maximum bandwidth capacity of the edge and M represents the 

total number of edges in the graph, which is given by the relationship 
ଷ௞య

ସ
. To calculate the 

total number of edges in the graph one approach is to count all the edges connected to core 

switches, aggregation switches, and edge switches then add them together. Each pod 

consists of 
௞మ

ସ
 servers and 2 layers of 

௞

ଶ
 switches, Aggregation and Edge. Each edge switch 

connects to 
௞

ଶ
 servers and 

௞

ଶ
 aggregation switches. Each Aggregation switch connects to 

௞

ଶ
 

edge and 
௞

ଶ
 core switches. Each Core switch 

௞మ

ସ
 connects to k pods. Each of these 3 switch 

sets contributes 
௞య

ସ
 edges for a grand edge total of 

ଷ௞య

ସ
. As each edge is used the same edge 

is disincentivized from being used again.  

The method of operation for the Approximation Algorithm is as follows: First it assigns 

an edge weight of one to each edge. Then all VM pairs are sorted by lowest total weighted 

path first. It does this by running a Dijkstra algorithm on all VM pairs while examining the 

weight on every edge. It places all of these pairs into a priority queue with the VM pair that 

has the lowest overall weight being on top. It then places the lowest overall weight VM 

pair into the graph. After checking that all of necessary edges can support the bandwidth 
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required by the pair, it places the pair into the network. All of the used edges have their 

bandwidths and weights updated. This process continues until all VM pairs are placed or 

until there is no possible path that can accommodate the bandwidth of a VM pair. 

The significance of the Approximation Algorithm is that it is an approximation 

algorithm, but more importantly that it has a performance guarantee. The total number of 

satisfiable requests by this approximation algorithm is at least 𝐵 ∗ 𝑀
భ

ಳశభ times the 

maximum number of satisfiable requests in the optimal solution. This is provable and is 

proved in great detail in “Algorithm Design” by J. Kleinberg [9]. 

In addition to the previous three algorithms a fourth algorithm will analyzed that was 

created by other authors. This algorithm is called the BlockingIsland algorithm and works 

similarly to the most bandwidth first algorithm. The way this algorithm works is as follows: 

it sorts all the VM pairs by maximum minimum-available bandwidth edge in descending 

order. If there are ties, shortest path first. If there are still ties, highest bandwidth demand 

first. It then places each VM pair along its shortest path, choose one randomly if there are 

multiple. 

To calculate the algorithmic complexity, it is useful to break up the possible shortest 

paths into 3 different cases. That is how many shortest paths between two PMs i and j if 

they are under the same edge switch, the same pod, and different pod. When two PMs are 

under the same edge switch, it has only one shortest path. Otherwise, when two PMs are 

under the same POD, it has 
௞మ

ସ
 shortest paths, as there are 

௞

ଶ
 edge switches and 

௞

ଶ
 aggregation 

switches, and every edge switch connects to every aggregation switch in a POD. Otherwise, 
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when two PMs are under different PODs, it has 
௞మ

ସ
 shortest paths, as there are 

௞మ

ସ
 core 

switches and each one sits on a shortest path connecting two PMs from different PODs. 

Using a combination of the methods mentioned above. The first algorithm will place 

VM  pairs by the Shortest Path First Left Most Edge First. The pseudocode is given below: 

Algorithm: SP_LF: Shortest Path, Left Most Edge First 
Input: all virtual machine pairs 
Output: places all virtual machine pairs 

1. sort all vm pairs by shortest path O(nlogn) 
2. for (all virtual machine pairs) 
3.     if (edge can accommodate bandwidth) 
4.         Place current VM pair on edge 
5.         Update bandwidth on current edge 
6.     end if; 
7. end for; 

 

Fig. 4 Pseudocode for SP_LF Algorithm 
 
When finding the path for each VM pair, it just finds the first available shortest path 

maintained for this pair. As there are n VM pairs, and each pair will look for at most 

௞మ

ସ
 shortest paths, then the time complexity of Fig. 4 is 

௡௞మ

ସ
. 
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The second algorithm will place vm pairs by the Shortest Path First on the edge that has 

the most available bandwidth. The pseudocode is given below: 

Algorithm: SP_MBF: Shortest Path, Most Available Bandwidth First 
Input: all virtual machine pairs 
Output: places all virtual machine pairs 

1. sort all vm pairs by shortest path O(nlogn) 
2. for (all virtual machine pairs) 
3.     if (edge can accommodate bandwidth and edge has most available bandwidth 

of any available edge) 
4.         Place current VM pair on edge 
5.         Update bandwidth on current edge 
6.     end if; 
7. end for; 

 

Fig. 5 Pseudocode for SP_MBF Algorithm  
 
Similarly, to the previous algorithm. When finding the path for each VM pair, it just finds 

the first available shortest path maintained for this pair. As there are n VM pairs, and 

each pair will look for at most 
௞మ

ସ
 shortest paths, then the time complexity of Fig. 5 is 

௡௞మ

ସ
. 

    For each VM pair to be satisfied, if they are located under different edge switches 

(either in the same POD or not), then there are 
௞మ

ସ
 shortest paths between those two PMs 

they are located in. It then checks all of these 
௞మ

ସ
 shortest paths and chooses one whose 

minimum-available-bandwidth edge has the maximum available bandwidth among all the 

௞మ

ସ
 shortest paths. The time complexity again is 

௡௞మ

ସ
. 

 
    The third algorithm will place the lowest total weighted pairs first where every utilized 

edge has weight that is updated every cycle by the relationship 

𝑊௙ = 𝑀
ଵ

஻ାଵ 
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The pseudocode is given below: 
 
Algorithm: Approximation Algorithm 
Input: all virtual machine pairs 
Output: places all virtual machine pairs 

Notations: 𝑊௙ = 𝑀
భ

ಳశభ 

1. for (all virtual machine pairs) 
2.     search for lowest weight pair 
3.     if (all edges can accommodate required bandwidth) 
4.         place lowest total weight pair 
5.         update all used edges with current VM pairs bandwidth 
6.         update all used edges with 𝑊௙ of current VM pair 
7.     end if; 
8. end for; 

 
Fig. 6 Pseudocode for Approximation Algorithm 

 

Theorem: The Approximation Algorithm is a  2𝐵𝑀
భ

ಳశభ approximation algorithm. That is, 

the total number of satisfiable requests by GDP is at least 2𝐵𝑀
భ

ಳశభ times of the maximum 

number of satisfiable requests in optimal solution. A proof of this is given in detail in 

Maximizing Number of Satisfiable Routing Requests in Static Ad Hoc Networks [11]. 

    Assume you will n as number of VM pairs. As there are at most n rounds (each round 

it satisfies one VM pair). In each round it finds among at most n VM pairs one minimum 

weighted VM pair that can be satisfied. To calculate minimum weight for each VM pair, 

it takes O(|E| + |V| log |V|). Thus, total time complexity is 𝑛ଶ(|E| + |V| log |V|). Next let's 

find |E|, number of edges in the network and |V|, number of nodes in the network. 

Edges between PMs and edge switches: 
௞య

ସ
 

Edges between edge and aggregation switches: 
௞య

ସ
 

Edges between core and aggregation switches: 
௞మ

ସ
∗ 𝑘 =  

௞య

ସ
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Total edges = 
ଷ௞య

ସ
 

Number of nodes |V| is 
௞మ

ସ
 core switches + 

௞మ

ସ
 aggregation switches + 

௞మ

ସ
edge switches + 

௞య

ସ
 

PMs = 
ଷ௞మ

ସ
 + 

௞య

ସ
 

Therefore the total time complexity is 𝑛ଶ*(
ଷ௞య

ସ
 * 

ଷ௞మ

ସ
 + 

ଷ௞య

ସ
 log (

ଷ௞మ

ସ
 + 

௞య

ସ
) )= O(𝑛ଶ * (𝑘ଷ+ 

𝑘ଷ log 𝑘ଷ)  
 
=  O(𝑛ଶ * (𝑘ଷ * log(𝑘ଷ)) 
 
 
The Pseudocode for the BlockingIsland algorithm is given below: 
 
Algorithm: BI: BlockingIsland 
Input: all virtual machine pairs 
Output: places all virtual machine pairs 

1. Sorts all the VM pairs by maximum minimum-available bandwidth edge in 
descending order. If there are ties, shortest path first. If there are still ties, highest 
bandwidth demand first. O(nlogn) 

2. for (all virtual machine pairs) 
3.     if (path is shortest path) 
4.         Place current VM pair on edge 
5.         Update bandwidth on current edge 
6.     end if; 
7.     else if (multiple paths choose path randomly) 
8.         Place current VM pair on edge 
9.         Update bandwidth on current edge 
10.     end if; 
11. end for; 

 
 
Fig. 7 Pseudocode for BlockingIsland Algorithm 
 
When finding the path for each VM pair Sorts all the VM pairs by maximum minimum-

available bandwidth edge in descending order. If there are ties, shortest path first. If there 

are still ties, highest bandwidth demand first. As there are n VM pairs, and each pair will 

look for at most 
௞మ

ସ
 paths, then the time complexity of Fig. 7 is 

௡௞మ

ସ
. 
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For each VM pair to be satisfied, if they are located under different edge switches (either 

in the same POD or not), then there are 
௞మ

ସ
 shortest paths between those two PMs they are 

located in. It then checks all of these 
௞మ

ସ
 shortest paths and chooses one whose minimum-

available-bandwidth edge has the maximum available bandwidth among all the 
௞మ

ସ
 

shortest paths. The time complexity again is 
௡௞మ

ସ
. 
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CHAPTER 5 

PERFORMANCE EVALUATION 
 
When evaluating the performance of the three different algorithms a number of different 

situations were examined. The simulation has five different parameters, k, the number of 

VM pairs, the minimum bandwidth per pair, the maximum bandwidth per pair, and the 

bandwidth capacity for each edge; These parameters are denoted by k, n, 𝑏௠௜௡, 𝑏௠௔௫, and 

b, respectively. To examine the effectiveness of each algorithm the amount of VM pairs 

that are accommodated into the network will be evaluated with different sets of 

parameters. 

As well as the ability of each algorithm to place VM pairs inside of the network the 

algorithms energy consumption will also be tested. The energy consumption is defined as 

the number of hops needed to facilitate the connection between the virtual machine pair. 

This amount will vary based on how many pairs are placed and the length of the path 

needed to connect the virtual machine pair. 

For the first simulation the independent parameter will be k and the dependent variable is 

the percentage of VM pairs that can be accommodated by each algorithm. The capacity 

per edge in this simulation is 10 Gbps and the bandwidth per VM pair is 500 Mbps. The 

number of physical machines depends on the value of k for the tree and is given by the 

expression 
௞య

ସ
. To properly load the network structure the number of VM pairs spawned 

depends on the number of physical machines and is given by the expression 
ଵ଴௞య

ସ
. So, for 

each physical machine there are ten VM pairs. 
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Fig. 8 VM pair placement vs k for a 500 Mbps bandwidth per pair 
 

 
Fig. 9 Energy Consumption for VM pair placement vs k for a 500 Mbps bandwidth 
per pair 
 
The first simulation is described via Fig. 8. The number of VM pairs in this simulation 

depends on the value of k. The relationship 
ଵ଴ య

ସ
 describes how many VM pairs are 

attempted to be placed by each algorithm. As one would expect has the value of k goes 
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up and the number of VM pairs increases each algorithms ability to accommodate pairs 

into the network is reduced significantly. What is interesting to note however is that the 

SP_LF algorithm consistently cannot accommodate as many pairs as the other two 

algorithms. Due to the increased complexity of the Approximation algorithm it makes 

sense that it out performs all other algorithms at every value of k. The Blocking Island 

algorithm performs better than the most bandwidth first algorithm, but less than the 

approximation algorithm. 

The energy consumption for these simulation conditions performs as expected due to the 

fact that the number of virtual machine pairs placed scales exponentially with the size of 

k. However, in spite of this the approximation algorithm consumes the most amount of 

energy as it consistently places the largest number of virtual machine pairs and each of 

these pairs as a longer than average path length. 

 

Fig. 10 VM pair placement vs. value of k with a random bandwidth ranging from 1 
Mbps to 500 Mbps 
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Fig. 11 Energy Consumption for VM pair placement vs. value of k with a random 
bandwidth ranging from 1 Mbps to 500 Mbps 
 
Examine Fig. 10. Similar to Fig. 8, except the difference here is that the bandwidth per 

VM pair is varied randomly between 1 Mbps and 500 Mbps. Again, the SP_LF algorithm 

consistently performs the worst. Again, the Approximation algorithm seems to out 

performs the other two. The difference between the algorithms appears to be very linear 

in this situation and evolves as one would expect as the value of k increases. 

Similarly, to the last simulation the approximation algorithm consumes the most amount 

of energy as it consistently places the most amount of virtual machine pairs and for the 

pairs that it places the average path length is longer. Again the Blocking Island algorithm 

performs better than the most bandwidth first algorithm, but less effectively than the 

approximation algorithm. 

For the next set of simulations, it makes sense to observe how the algorithms 

behave when different parameters are modulated. Next the case where the bandwidth per 
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pair, will be modulated with the value of k being 12, the bandwidth capacity being 10 

Gbps, and the number of VM pairs given by  
ଵ଴௞య

ସ
 

 

Fig. 12 VM pair placement vs. Bandwidth per Pair (Constant) 
 

 
Fig. 13 Energy Consumption for VM pair placement vs. Bandwidth per Pair 
(Constant) 
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Examine Fig. 12. For this simulation the value of k is 12 and the value of n is 
ଵ଴௞య

ସ
 = 

4320. Similarly, the SP_LF algorithm performs significantly worse than the other two 

algorithms. The SP_MBF appears to perform better when the bandwidth per pair is held 

constant and worse when the bandwidth per pair is modulated randomly. In a similar 

fashion the bandwidth per pair will be modulated except it will now be random within a 

range as opposed to simply being constant. All algorithms perform similarly, with the 

approximation algorithm consistently performing the best. 

The energy consumption behaves similarly to the placement. Due to the fact that the 

number of virtual machine pairs is fixed it follows closely to the number of pairs placed 

by each algorithm with the exception of the approximation algorithm with a slightly 

higher than expected energy consumption due to its larger than average path length and 

higher number of placed pairs. 

 

Fig. 14 VM pair placement vs. Bandwidth per Pair (Random between 1 and value in 
Mbps) 
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Fig. 15 Energy Consumption for VM pair placement vs. Bandwidth per Pair 
(Random between 1 and value in Mbps) 

Examine Fig. 14. For this simulation the value of k is 12 and the value of n is 
ଵ଴௞య

ସ
 = 

4320. Again, the SP_LF algorithm performs consistently worse than the other two and all 

algorithms perform worse as the average bandwidth per pair increases. What is 

interesting however, is that the Approximation Algorithm consistently performs better 

than the SP_MBF algorithm. In fact, when the value of bandwidths is random within a 

range the effectiveness of the two algorithms is linear but diverge. That is as the random 

bandwidth per pair increase the increased effectiveness of the Approximation Algorithm 

is proportionate to the increased bandwidth. Like in the previous simulation the 

placement of all the algorithms is fairly close, but the Approximation Algorithm performs 

consistently better. 

Again, the approximation algorithm consumes the most amount of energy because it 

places the largest number of pairs as well as having a slightly than higher average path 

length. 
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Next the number of VM pairs will be modulated and the effectiveness of the three 

algorithms will be evaluated in similar fashion. The value of k will be set to 12 and the 

bandwidth will be set to 400 Mbps with the capacity for each edge being held at 10 Gbps. 

With constant bandwidth being examined before a random bandwidth range. 

 

Fig. 16 Placement vs. Number of VM Pairs (Constant Bandwidth 400 Mbps) 
 

 
Fig. 17 Energy Consumption for Placement vs. Number of VM Pairs (Constant 
Bandwidth 400 Mbps) 
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Examine Fig. 16. The SP_LF algorithm performs significantly worse than the other two 

and similarly all algorithms perform worse as the number of attempted accommodated 

VM Pairs increases. Like in the other simulations with constant bandwidth the SP_MBF 

and Approximation algorithm perform similarly with the Approximation Algorithm 

performing marginally better. The situation where each pair is randomly assigned 

bandwidth within a certain range will be examined next. 

The energy consumption of this plot is more interesting because as percentage of placed 

pairs decreases the number placed pairs increases. What is most interesting is as the 

number of potential pairs increases the average energy consumption increases. Perhaps 

this is due to the fact that each algorithm can place more desirable pairs. 

In the next simulation the parameters will be similar to the previous with the 

exception that the bandwidth range will be distributed randomly between 1 and 800 

Mbps. 
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Fig. 18 VM pair placement vs Number of VM pairs (Random Bandwidth between 1-
800 Mbps) 

 

 
Fig. 19 Energy Consumption for VM pair placement vs Number of VM pairs 
(Random Bandwidth between 1-800 Mbps) 
 
Examine Fig. 18. Again, the SP_LF algorithm consistently performs the worst. The other 

two algorithms perform similarly at the lower end of the scale, but as the number of VM 

pairs increases the effectiveness of algorithms two and three start to diverge. The 



 

31 

magnitude of the divergence increases as the number of VM pairs increases, which seems 

to be similar to the other simulated parameter sets involving random bandwidth per VM 

pair. 

Similarly, to the previous simulation the approximation algorithm has the highest energy 

consumption, but as the percentage of placed pairs goes down the energy consumption 

goes up. This may be due to the fact that having more pairs allows the more desirable 

pairs to be placed on average increases the total effectiveness and energy consumption of 

the network. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 
 

We have explored different methods of accommodating virtual machine pairs inside 

physical machines in a k-ary fat tree topology and have found that there are many 

algorithms that solve this problem, however the Approximation Algorithm performed the 

best on average. This algorithm seemed to be less optimum when the bandwidth allocated 

per pair was constant. It is important to note however that the algorithmic complexity of 

the Approximation Algorithm is given by 𝑂(𝑛ହ) where the complexity of the other two 

algorithms is given by 𝑂(𝑛
ఴ

య). 

It is also worth noting that as the size of k-ary tree grows the number of 6 hop cases 

increases. This relationship is illustrated via Fig. 2. Sorting by the path length becomes less 

and less significant as the tree grows larger. This is shown through our analysis of different 

simulation parameters with the Approximation Algorithm outperforming the SP_MBF 

algorithm more significantly as the size of the tree grows. 

For the future, we would like to examine the same structure, but with more realistic 

conditions. Perhaps limiting the computation capacity of the physical machines or applying 

additional restrictions in our network for example, having to visit different dedicated 

middle boxes at different locations in the network. 
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THE SP_LF ALGORITHM CODE 
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THE SP_MBF ALGORITHM CODE 
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THE APPROXIMATION ALGORITHM CODE 
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THE BLOCKINGISLAND CODE 
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K-ARY TREE CONSTRUCTION CODE 
  

The initializeEdges function creates all of the connections inside of the tree. This is 

one of the three functions that creates all the static objects that will be used in the 

simulation. This is not a trivial task as there are many specific rules for which objects 

(switches and physical machines) are connected to each other. It also creates the edge 

objects which have their own class and many internal variables.  

 

 The initializeValue function creates all of the objects that the edges connect to. 

This is one of the three functions that creates all the static objects that will be used in the 

simulation. These objects include the three different switch types and the physical 

machines that hold the virtual machines. These objects all have their own properties and 

variables that define their behavior. 

 

 The initializeVirtualMacine function creates all of the virtual machines and places 

them inside physical machines and assigns them the bandwidth required per pair. This is 

one of the three functions that creates all the static objects that will be used in the 

simulation. 
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PATHFINDING CODE 
 
 The findPath functions input is a virtual machine pair and the output is the path 

that connects that virtual machine pair through the network. The behavior for this path 

finding function is described in detail in the algorithm section, but it an implementation 

of the greedy pathfinding algorithm. 
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