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ABSTRACT 
 

 

Increased internet service usage places increased demand on data centers posing 

new problems such as degrading performance and increased security risks. Middleboxes 

such as load balancers and intrusion detection systems are one way of addressing the 

issues facing data centers. A policy chain is a sequence of middleboxes that traffic must 

traverse in a specified order, policy driven data centers enforce policy chains to insure 

data integrity and improve network performance. In situations where a data center is 

impacted and receives more traffic demand than available bandwidth then a decision 

must be made as to which requests to satisfy. This thesis examines the maximization of 

traffic priority in policy driven data centers using tree topologies, while adhering to 

bandwidth constraints. Three heuristic algorithms are proposed to address the 

maximization problem. A dynamic programming approach that outperforms the heuristic 

algorithms is proposed when the data center is under additional constraints.  
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

The increase of internet activities and data processing has led to an increase of 

data center traffic and usage. This increase in activity has led to increased demand for 

Infrastructure as a Service (IaaS) and cloud data center services to provide the resources 

needed to run online services such as video on demand, social media applications, and 

data processing (Bhardwaj, 2010). The influx of activity has led to new issues within 

cloud data centers such as security, quality assurance, traffic control, and resource 

allocation (Buyya, 2010). Data centers use a variety of techniques and tools to address 

these issues, an example of such tools are network appliances called middleboxes. These 

middleboxes help improve network performance, security, and many other aspects of the 

data center. Middleboxes are computer networking devices that perform specialized tasks 

on data center traffic, examples of such tasks are packet inspection, firewalls, load 

balancing, and intrusion detection (Carpenter, 2002).  

 Network appliances such as middleboxes are highly used in enterprise 

environments as they provide much needed network services. Many data centers rely on 

middleboxes to perform crucial tasks such as ensuring their data is secure and to help in 

data forwarding. Due to the specialization and complexity of the tasks performed by 

middleboxes, they are oftentimes installed in data centers using specialized proprietary 

hardware. The use of proprietary hardware makes installing and managing middleboxes 

time intensive and costly.  
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 The virtualization technologies were introduced to data centers in order to address 

the limitations and inflexibility of traditional network functions. Network function 

virtualization (NFV) and software defined networks (SDN) are two technologies that are 

being introduced into data centers to help optimize their processes (Han, 2015). SDNs 

and their controllers receive information from throughout the data center, allowing for a 

global view of the status of the network, unlike traditional off the shelf network 

components. The global view allows for SDN enabled data centers the opportunity to 

perform optimizations within the network such as improving traffic control, load 

balancing, and network policy enforcement (Markiewicz, 2014). The opportunity for 

optimizations provided by SDNs and NFV has increased interest and improved adoption 

rate of such technologies, it is estimated that 44% of traffic within data centers will be 

supported by SDNs and NFV technology by 2020 (Cisco 2016). 

 The introduction of IaaS and virtualization of hardware resources has led to the 

use of virtual machines (VMs) in data centers. The VMs provide customers with 

computing resources in an isolated environment that the customer can then manipulate to 

perform their desired task (Beloglazov, 2010). The VMs also provide a monetization 

strategy for the datacenter as the VMs and their resources can be rented to customers. 

VM communication within the data center make up the majority of traffic on the data 

center network, by 2020 it is estimated that communication within the data center itself 

will make up 77% of its network traffic (Cisco, 2016). 

In a policy driven data center, traffic flowing through the data center will need to 

adhere to the network’s policy. These policies establish rules that network traffic must 
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follow such as the order of middleboxes traffic must traverse. An example of such a 

policy would be for each VM communication pair generating traffic, that traffic would 

need to pass through a firewall for security then pass through a WAN optimizer. The 

traffic in the example would need to follow the policy and go through the specified 

middleboxes in their assigned order before getting delivered to its destination. The 

ordering of the middleboxes is called a policy chain or service chain, as each packet in 

the traffic flow must follow the chain of middleboxes in the policy (Sallam, 2018). 

Data center topologies describe the structure of the network and how the network 

components are setup. The data center topology can determine how many paths are 

available to transport data flow from server to server. There are many data center 

topologies in use today such as Fat Tree, Bcube, and Elastic Trees each with their own 

advantages and disadvantages (Heller, 2010).  

This paper will discuss how to maximize VM communication traffic priority 

within the data center network that are limited to using a tree topology while adhering to 

network policy. Data center traffic must be processed by every middlebox type in the 

specified order, as well as satisfying bandwidth constraints. We call the problem priority 

maximization problem. A literature review is conducted to show similar work already 

done in this field. The priority maximization problem is formally formulated and special 

cases are addressed. We show that in special cases the priority maximization problem can 

be modeled as the knapsack problem which can be solved using dynamic solving. A few 

heuristic algorithms are proposed they are lowest demand first, highest priority first, and 

highest average priority first. The heuristic algorithms are compared to the dynamic 
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programming solution in the special cases to show the heuristics performance under 

specific restrictions. The heuristics are then run in the general case and compared with 

each other to determine their performance.  

Background Survey 

Many studies have investigated traffic optimization in data center networks such 

as Charikar et al. who have characterized a multicommodity flow problem in a general 

graph, with demand on flows and capacity constraints on edges (Charikar, 2018). They 

also introduce a new constraint where flow must be processed by compute nodes hosting 

middleboxes in a particular order determined by a policy applied to all flow. They 

attempt to optimize middlebox placement among the available compute nodes as well as 

optimize traffic steering, and routing paths. The proposed solution to their 

multicommodity flow problem is the use of linear programming which are used to solve 

the optimization problems.  

Vazirani proposed an approximation algorithm for maximizing flow in a tree 

graph, he accomplished this by solving multi cut and integer multicommodity flow 

(Vazirani, 2003).  They formulate a model with source and sink nodes at the leaves of the 

tree with weighted edges. Their proposed solution is a primal dual algorithm that results 

in a 2 approximation algorithm. This paper however does not consider middleboxes or 

policy in its formulation.  Gouveia also solves the multicommodity flow problem in data 

center networks but adds a new constraint to flows (Gouveia, 1996). The new constraint 

is to limit the amount of hops a flow can take, this is similar to the acceptable amount of 
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delay a flow can have to meet quality of service standards. The solution they propose is a 

linear programming approach that provides a lower bound to the amount of hop 

constraint. They solve the constraint in both directed and undirected graphs, but they do 

not take into consideration middleboxes or policy enforcement.  Nguyen et al. propose an 

optimization framework called OFFICER that is a heuristic algorithm that attempts to 

maximize traffic in a network, keeping into consideration endpoint policy (Nguyen, 

2015). The proposed algorithm performs in polynomial time, however does not take into 

consideration middlebox policy chains.  

 Policy enforcement in data centers has also been a hot topic in research due to the 

amount of optimizations and complexity of the problems that need addressing. Qazi et al. 

propose a SDN based traffic steering model to direct traffic in data centers such that 

network policy is enforced (Qazi, 2013). The model which they call SIMPLE, showed 

that SDNs can be used to not only monitor traffic but to steer it toward ordered 

middleboxes in the policy chain. Fayazbakhsh et al. also propose a solution to policy 

enforcement using what they call FlowTags (Fayazbakhsh,	2013). They recognize that 

network wide policy enforcement with middleboxes can be complex, and without proper 

implementation can be a cause for errors. Their solution is FlowTags, traffic that are 

processed by a middlebox are tagged upon completion. Joseph et al. proposed a policy 

aware switching layer that they called Player (Joseph, 2008). Player is a layer-2 switching 

layer that consist of policy aware switches called pswitches, middleboxes are then 

connected to the pswitches. These pswitches can then forward traffic to each other to 

enforce policy.  
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 Of the works mentioned above, only Charikar et al. addresses policy chain 

enforcement and traffic optimization under constraints of edge capacity and traffic 

demand. However, their work differs from ours as they do not take into consideration 

communication priority and instead focus on flow maximization. They also focus heavily 

on middlebox placement within the compute nodes in the data center, while we assume 

the middleboxes are already installed and will not be moved after installation.  
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CHAPTER 2 
 
 

PROBLEM DESCRIPTION AND METHODOLOGY 
 
  

Data centers may not be able to serve all of the communication request, especially 

during peak hours of internet service usage. It is shown that data flow within the data 

center itself is a major component of all traffic serviced by its network (Mahimkar, 2011). 

When data centers are overloaded a decision must be made as to which VM requests to 

satisfy, and which VMs to move to a different network. VM communication pairs may 

have higher priority than others such as certain services such as VoIP or video streaming 

depending on the network configurations. The problem facing data centers is which 

virtual machine requests should be fulfilled to insure network congestion does not 

interfere with data flow and optimize the value of the VMs being serviced.  

Network Model 

 The data center is modeled as an undirected graph G (V, E). Where V = VP ∪ VS, 

the union of physical machines VP and the network switches VS. E is the set of edges in 

the graph G, each edge representing a connection in the network, connecting a switch to 

another switch or switch to physical machine. Each network component V is connected 

by C connections, where 1 ≤ C. The data center network will contain L communication 

pairs; each communication pair consist of a VM pair. The set of communicating VM 

pairs P = {(vm1, vm1`), (vm2, vm2`), …, (vmi, vmi`)} where each pair vmi and vmi ` (1 ≤ i 

≤ L), are the communication source VM and a destination VM respectively. Each 
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physical machine VP can store multiple VMs, it is possible for the same physical machine 

to host both vmi and vmi`. Middleboxes M can be installed on switches VS within the 

datacenter network. 

VM Pair Model 

 Each VM pair P consist of a source and destination VM, the flow of traffic travels 

from the source VM to its corresponding destination VM. Each VM pair in our model has 

three properties: communication frequency, communication priority, and demand. Pair 

(Vi, Vi`) communicates at frequency Fi, where Fi is a random number from [1, F]. The 

second VM pair property is priority Ti, each pair (Vi, Vi`) is given a priority which is a 

random number from [1, T]. The total value of a VM pair is given by the product of Ti 

and Fi. The last property associated with each VM pair (Vi, Vi`) is demand Di, the 

demand is the amount of bandwidth used by the communicating pair. The demand for a 

given for a pair is a random number from [1, D]. 

Edge Model 

 Each edge E in graph G has a capacity to the available bandwidth, the bandwidth 

capacity determines how much demand an edge can support. Edge (u,v) has capacity 

K(u,v), indicating the bandwidth available at (u,v). The total demand D across an edge 

must not exceed capacity, thus D ≤ K. Total demand supported by a given edge E is the 

sum of demand from all VM communication pairs transmitting over E. Each edge 
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connects at most two network switches vertices VS or one VS to a physical machine 

vertex VP.  

Middlebox Model 

 The data center is modeled such that the set M middleboxes are placed within the 

network, where M = {m1 . . . mx}, x being the total number of middleboxes placed in the 

data center. In this model x ≥ 2 as policy enforcement is one of the factors in this study. 

However, it should be noted that the proposed heuristic algorithms will still perform 

should M < 2 be the case. The middleboxes are placed randomly on a switch VS within 

the data center network, an example is shown in figure 1. The path needed to traverse the 

ordered middleboxes in the policy chain make up what we call the ‘spine’. The spine S is 

S⊆E where Si = E(uq, vq+1), q and q+1 indicate the middlebox in the set M. The term 

spine is used as the VM communication pairs must traverse the predetermined path once 

the flow reaches the first middlebox in the policy chain. Figure 1 shows an example of 

the spine which is colored in orange. In the example below, the policy to be enforced is 

as follows {MB1, MB2, MB3} and the spine consist of the edges E(MB1, MB2) and 

E(MB2, MB3). The switch containing the first middlebox in the policy chain is labeled 

the ingress switch as it is the switch letting flow into the spine. Conversely, the switch 

hosting the last middlebox in the policy is labeled as the egress switch, as flow is leaving 

the spine through said switch.  
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Figure 1. Example tree data center topology with highlighted spine path 

Data Center Topology 

 The data center topology in this study is modeled as a tree, an example of such a 

topology is shown in figure 1. The leaf nodes of the tree represent physical machines with 

capabilities and resources to host VMs. All non-leaf nodes represent OpenFlow enabled 

switches with sufficient resources to install and support middleboxes. OpenFlow is a 

standardized protocol used by SDN controllers to interact with switchs using the protocol 

(McKeown, 2008). The tree data center topology was chosen because of the property of 

having a single path to and from any node. This makes routing flows from a VM in a 

communication pair to its destination simple, allowing us to focus on the VM 

satisfiability and communication priority maximization. Despite the lack of redundancy, 

trees are still used in data center topologies. One common case for tree use in data centers 

is when virtual lans (VLANs) are implemented, they are often structured as spanning 
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trees of the network. An example of this is Cisco’s suggestion of implementing Remote 

Span (RSPAN) VLANs, citing that the redundancy for such usage is unnecessary (Cisco, 

2005). Even a physical 3-layer network can have a logical 2-layer topology forming a 

tree that can be created using a spanning tree algorithm of the network and the use of 

VLANs (Meng, 2010).  
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CHAPTER 3 
 
 

THE PROPOSED SOLUTIONS 
 

 This section of the thesis will discuss the proposed algorithms to maximize 

communication priority given edge capacity and communication demand constraints. 

First a feasibility study is proposed to determine if the pending communication can all be 

satisfied by network. Next, four algorithms are proposed and their functionality are 

shown and explained. 

 
 

Feasibility	Study 

 Before optimizations algorithms are considered, we must first determine if they 

are even necessary. The feasibility study is used to check if the data center has the 

resources necessary to satisfy all of the VM communication pairs. If there is available 

bandwidth to sustain all of the communication flows, then there is no need to decide 

which VMs to choose in order to optimize priority as we can simply choose all of the 

VMs. The tree topology makes the feasibility study simple as there is only one path to 

consider for each pair, thus to determine feasibility we can check the path of each 

allocated communication pair and calculate remaining bandwidth available. Every VM 

pair will subtract its demand T from the edge capacity K of edges along their path to the 

spine, through the spine, and to the destination VM. while checking every 

communication, if any edge no longer has any bandwidth, K < 0, then the feasibility 

study shows that not every VM can be satisfied and a decision must be made to which 

VMs to choose in order to maximize priority.  
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Algorithms 

Lowest Demand First 

The Lowest Demand First algorithm performs the following tasks. First the VM 

communication pairs P are ordered in terms of lowest demand D. VM IDs are stored 

using a list in non-decreasing order, the IDs will be used to keep track of which VM to 

check. Once the list is created, the first VM in the list, will identify all the edges on its 

path toward the ingress switch. The selected edges will then be check to determine their 

bandwidth capacity K, if K < D then the VM is not considered further and the Lowest 

Demand First will move to the next VM. If K ≥ D then the most traveled edge in the 

spine is checked to see its bandwidth availability, if not then the VM is not considered. If 

there is available bandwidth, then the edges from the egress switch of the spine to the 

destination VM is selected and the bandwidth is checked, if not enough bandwidth then 

the VM is not considered. If there is available bandwidth, then the whole path from 

source and destination of the communication pairs can support the demand of the pair. 

When the demand has been shown to have available bandwidth to support the VM, it will 

send the communication over the checked path. The time complexity for sorting the VMs 

would be O(V2) and each VM would need a tree traversal to check bandwidth along its 

path which is O(n), resulting in a time complexity of O(V2 * n). Figure 2 below shows 

the pseudocode of the Lowest Demand First algorithm.  
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Figure 2. Lowest demand first pseudocode 

 

Highest Priority First 

 The Highest Priority First algorithm receives a list of VM communication pairs. 

The communication pairs are sorted by the highest priority, a list of VM ids are stored to 

keep track of order. The algorithm then performs the same bandwidth check described in 

the Lowest Demand First algorithm, checking edges to the ingress switch, the spine, then 
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from the egress switch to the destination VM. If all the edges on the communication path 

have available bandwidth, then the checked VM communication is permitted. If there is 

not enough bandwidth, then the VM is not considered. This algorithm shares the same 

structure of sorting then tree traversal as the lowest demand first algorithm, thus the time 

complexity is O(V2 * n). Figure 3 below shows the pseudocode of Highest Priority First 

algorithm, from line nine onwards refer to the first algorithm as they are identical.  

 
Figure 3. Highest priority first pseudocode 

 

Highest Average Priority First 

 The Highest Average Priority First algorithm receives a list of VM 

communication pairs. The VM pairs each have the attributes of demand D and priority T, 

the average priority is calculated by T / D. Once the average priority is calculated the 

VMs are sorted in order of highest average priority first. The checking and allocating of 

bandwidth used after the ordering is established is the same as the previous algorithms. 
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This algorithm shares the same structure as the previous algorithms, resulting in the same 

time complexity of O(V2 * n). Figure 4 below shows the pseudocode of the Highest 

Average Priority First algorithm, from line nine onwards refer to the first algorithm as 

they are identical. 

 
Figure 4. Highest average priority first pseudocode  

 

Dynamic Programming 

 The tree data center with edges E that have uniform bandwidth capacity and VMs 

are placed under special conditions can be modeled such that dynamic programming can 

be used to select VM communication pairs. The special conditions for the VM 

communication pairs is the source VM in in the pairs must be hosted in a physical 

machine that exist in the subtree G`, where the root of G` is the ingress switch to the 

spine. An example of the subtree G` can be seen in figure 5, in this example MB1 is the 

first middlebox in the policy so the subtree G` is represented in red. Another special 
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condition that must be met to allow for dynamic programming is the destination VMs in 

the communication pairs must exist in the subtree G``, where the root of G`` is the egress 

switch to the spine. The example shown in figure 5 has MB3 as the last middlebox in the 

policy, the subtree with the egress switch as the root is shown by the color green.  

 
Figure 5. Tree topology with highlighted subtree under ingress and egress switch 

 

If the source VMs are located in the subtree with the spine ingress as the root and 

the destination VMs located in the subtree with the spine egress as the root, then the 

maximization of priority in the data center can be modeled as the 1/0 knapsack problem. 

The knapsack problem is an optimization problem where a knapsack with total available 

capacity C is given and we are given [1 . . . n] items i, each item has the two attributes of 

weight W and value V (Khuri, 1994).  Assuming that Wi ＞C and that items 

cannot be split resulting in an all or nothing approach per item selected, then a decision 
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must be made for which items to take in order to maximize the value. The data center can 

be modeled to reflect the description above, the total available capacity in the model is 

calculated by the identifying the most traversed edge in the spine. Once identified, the 

edge capacity divided by the amount of times traversed will result in the total available 

capacity that this network can support. The items to choose from in this model are the 

communication pairs, the weight of each pair is modeled as the demand they require to 

send their flow, the value of each pair is modeled as the communication priority. The 

time complexity of dynamic programming for the knapsack problem is O(V * C) where 

V is the VMs and C is the maximum capacity the network can support. A tree traversal is 

required to determine the max capacity C, which is O(n), resulting in a total time 

complexity of O( V * C + n). 

Dynamic programming example 

 Given the data center shown in figure 5 shown above, assume the following is 

true for this data center:  

1. Edges have K = 2. 

2. VM pair 1 and 2 have D = 1 and T * F = 1. 

3.  VM pair 3 has D = 2 and T * F = 3. 

With the given information we can model the data center to resemble the 1/0 knapsack 

problem. In the example given all the edges in the spine are traversed once, resulting in 

the first edge being selected. Since all edges in this data center have K = 2, the total 

available capacity C for the knapsack problem would be K/traversals which is 2. VM pair 

1 and 2 both are modeled to have weight 1 and value 1, while VM pair 3 has weight 2 
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and value 3. Table 1 below shows the results of the dynamic programming using the 

parameters described.   

 

 

 

Table 1 

Dynamic Programming Table Creation 
Items \ Weight 0 1 2 

0 0 0 0 

1 0 1 1 

2 0 1 2 

3 0 1 3 
 

Using the generated table, the dynamic programming algorithm can determine 

that item three will provide the most value for the weight available, thus selecting VM 

pair 3. When VM pair 3 is selected, using the table we can see that the edge capacity no 

longer has any available capacity, so no other VM pair is selected. After VM pair 3 is 

selected the connection will be made and the edge capacities within the data center would 

be updated. In the provided example we show that the Dynamic Programming approach 

can be used to solve the priority maximization problem effectively.  

 
 
 
 

 



20	
 

 

CHAPTER 4 
 
 

RESULTS AND ANALYSIS  

 This section will first discuss the performance of the heuristic algorithms, Highest 

Priority First, Lowest Demand First, Highest Average Priority First, dynamic 

programming approach, and random VM selection. First the case were VMs are placed in 

the subtree of the egress and ingress MBs to the spine is analyzed. Then the results of the 

heuristic algorithms will be analyzed in the general VM placement case.  

 The parameters used for VM attributes in the simulations are the same across all 

tests. Communication pair priority is randomly assigned upon creation; the range of 

priority is 1 - 100. The frequency of each communication pair is random, the range for 

communication frequency is 1 - 10. The demand cost of a communication pair is also 

random and assigned on creation, the range for demand is also 1 - 10. The topology used 

in the simulation is a tree data center with 84 nodes, each node having four children, 

excluding leaf nodes. This setup results in 21 switches in the data center connecting 64 

physical machines as shown by figure 6. We will now explore the effects of varying 

parameters for the amount of middleboxes, available link capacity, and amount of VMs 

to examine the performance of the proposed algorithms.  
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Figure 6. Data center topology used in simulations 

 

 First the heuristic algorithms and the dynamic programming algorithm are tested 

to see how they perform with varying amounts of middleboxes in the data center policy 

under the special conditions mentioned earlier.  The parameters used for the simulation is 

link capacity equaling to 200. The amount of communication pairs attempting to establish 

data flow is 200, for a total of 200 source VMs and 200 destination VMs. Figure 7 shows 

the performance of the proposed algorithms when the network has three, five, and eight 

middleboxes in the policy. In all three middlebox cases we observe that the Dynamic 

Programming approach performs the best with an average of 3247.82 priority serviced 

when three MBs where placed in the data center. The worst performing heuristic 

algorithm was the Highest Priority First with an average of 1852.98 priority serviced with 

three MBs. We believe a potential reason for this underperformance is the algorithm does 

not take into consideration the demand of the communications, while the other higher 

performing algorithms, all consider demand when choosing communication pairs.  
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Figure 7. Algorithm performance with varying MBs, special case 

 

 Next the heuristic algorithms are tested to observe their performance with varying 

amounts of middleboxes in the data center policy in the general case. The parameters 

used for the simulation are the same as when the varying middleboxes were tested in the 

special case, once again testing three, five, and eight middleboxes. The difference now is 

the VM communication pairs are now be placed randomly on any physical machine in the 

data center instead of limiting to subtrees of the ingress and egress switches. Figure 8 

shows the average priority from the results of the simulations, we observe that the highest 

performing heuristic algorithm is the Highest Average Priority First. The lowest 

performing heuristic, once again being the Highest Priority First. 
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Figure 8. Algorithm performance with varying MBs, general case 

 

 Next we test what effect varying link capacity has on the proposed algorithms, fist 

we test the special case allowing for the Dynamic Programming algorithm to be 

used.  The parameters used for the simulation is the number of middleboxes that are 

placed in the data center amounts to five. The amount of communication pairs attempting 

to establish data flow is 200, for a total of 200 source VMs and 200 destination VMs. The 

varying link capacities, which will determine how much demand they can sustain, used in 

the test is 100, 300, and 500. The results show the Dynamic Programming algorithm 

performs the best in all link capacities. The algorithm that performed the second best is 

the Highest Average Priority First. We can see from the results shown in Figure 9 that as 

the link capacity increases the more demand can be satisfied, and the better all of the 

algorithms perform.  
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Figure 9. Algorithm performance, varying link capacity, special case 

 

 Next we test the heuristic algorithm’s performance with varying link capacities in 

the general case. The parameters of the simulation testing were the same as the special 

case, but with random placement of the VMs from the communication pairs. The Highest 

Average Priority First performs the best out of the heuristic algorithms, with Highest 

Priority First only performing better than Random. The results shown in Figure 10 show 

that as the amount of capacity per edge increased the performance of Highest Average 

Priority First algorithm also increased.  
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Figure 10. Algorithm performance, varying link capacity, general case 

 

 The last group of testing done on the algorithms is with varying amounts of VM 

communication pairs placed within the data center, first the special case is examined 

along with the Dynamic Programming approach.  The parameters used for the simulation 

is the number of middleboxes that are placed in the data center amounts to five. The 

amount of link capacity for every edge is 200. The varying amount of VM 

communication pairs attempting to establish connections for data flow were tested using 

100, 300, and 500 VM pairs. Once again the Dynamic Programming approach 

outperformed the other algorithms as shown in Figure 11, with the Highest Average 

Priority First performing second best. An interesting note is the average priority 

improved for all of the algorithms, with the exception of random, as the number of VM 
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pairs increased as shown by table 2, despite the amount of bandwidth available was static 

at 200.  A possible explanation for this occurrence is that as the amount of VM 

communication pairs increase, the algorithms now have a larger pool of communication 

pairs with preferable demand, frequency, and priority ratios.  

 
Figure 11. Algorithm performance, varying amount of VMs, special case 
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Table 2 

Average Priority Varying Amount of VMs 
Algorithms / Number of VMs 100 300 500 

Random 420 421.2 411.82 

Lowest Demand First 1725.1 2910.58 3649.14 

Highest Avg Priority First 1963.08 3101.92 3853.14 

Highest Demand First 1346.5 1400.76 1439.68 

Dynamic Programming 1970.74 3224.24 3994.22 
  

Lastly, the heuristic algorithms are compared with each other in the general case 

with varying amounts of VM communication pairs. The parameters of the simulation 

testing were the same as the special case, but with random placement of the VMs from 

the communication pairs instead of only in the subtree of the ingress and egress switches. 

The Highest Average Priority First algorithm performs the best of the heuristics with 

Lowest Demand First performing second best. Once again we observe from Figure 12 

that as the amount of VM pairs increases so does the average priority satisfied, excluding 

random. Another interesting note is Highest Priority First algorithm does increase in 

performance with the amount of VM pairs available, but not as much as the other 

heuristic algorithms.  
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Figure 12. Algorithm performance, varying amount of VMs, general case 
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CHAPTER 5 
 
 

CONCLUSION AND FUTURE WORK 
 
 

Future work that could extend the research presented in this study would include 

development and testing of a general solution for the priority maximization in a policy 

enforced tree data center. This thesis looked into multiple middleboxes with only a single 

instance each, further research can be done to propose a solution to the multiple 

middlebox with multiple instances policy enforcement problem. The addition of other 

NFV technologies and techniques, such as VM replication or middlebox placement, can 

be factored into the optimization of the data center in tandem with the algorithms 

proposed in this paper. Further future work includes testing the proposed algorithms in an 

emulated data center environment, the testing was done via simulation in this report, but 

implementation via emulation would improve the validity of the findings.  

 In this thesis we proposed four algorithms to maximize communication priority of 

VM communication pairs in policy aware data centers using tree topology under 

bandwidth capacity constraints. To address the problem, three heuristic algorithms were 

proposed they are highest priority first, lowest demand, and highest average 

priority. Under specific conditions we show the priority maximization problem can be 

modeled as a 1/0 knapsack problem, which can then be solved using dynamic 

programming. Rigorous simulation showed that the dynamic programming out performs 

the three heuristic algorithms under the specific conditions, with the Highest Average 

Priority First performing second best. In the general case with VMs randomly distributed 
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across the physical machines, the Highest Average Priority First performed the best with 

Lowest Demand First performing second best and all heuristics performing better then 

random choice. The proposed algorithms show that there are still many optimizations that 

can be made within data centers that can improve performance and quality of service 

without the need for purchasing new hardware.   
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LOWEST DEMAND FIRST CODE
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class LowCostFirst: 

    def __init__(self, topo, vmPairs): 

        self.topo = topo 

        self.vmPairs = vmPairs 

        self.middleboxes = topo.get_middleboxes() 

        self.cap_flag = 0 

        self.dropped_pairs = 0 

 

    def allocate(self): 

        print("Lowest Freq first start: -running-") 

        # after cost is calc'd for each pair, order: lowest cost first 

        temp_arr = self.vmPairs 

        for index in range(1, len(self.vmPairs)): 

            value = self.vmPairs[index] 

            i = index - 1 

            while i >= 0: 

                if value.comm_frequency() < self.vmPairs[i].comm_frequency(): 

                    temp_arr[i + 1] = self.vmPairs[i] 

                    temp_arr[i] = value 

                    i -= 1 

                else: 

                    break 
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        self.vmPairs = temp_arr 

 

    def cap_check(self, pair): 

        mb_counter = 0 

        path = [] 

 

        vm1, vm2 = pair.get_vms() 

        if len(self.middleboxes) != 0: 

            path.extend(self.topo.get_path( 

                vm1.get_parent().get_name(), 

                self.middleboxes[mb_counter].get_parent_switch().get_name() 

            )) 

        else: 

            path.extend(self.topo.get_path( 

                vm1.get_parent().get_name(), 

                vm2.get_parent().get_name() 

            )) 

 

        if len(self.middleboxes) > 1: 

            mb_counter = mb_counter + 1  # start at 1 

            while mb_counter < len(self.middleboxes): 

                path.extend(self.topo.get_path( 
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                    self.middleboxes[mb_counter - 1].get_parent_switch().get_name(), 

                    self.middleboxes[mb_counter].get_parent_switch().get_name() 

                )[1:]) 

                mb_counter = mb_counter + 1 

            path.extend(self.topo.get_path( 

                self.middleboxes[mb_counter - 1].get_parent_switch().get_name(), 

                vm2.get_parent().get_name() 

            )[1:]) 

        master_edge_seq = self.topo.es 

        path_edges = [] 

        count = 0 

        for l in path: 

            for e in master_edge_seq: 

                if count < len(path) - 1: 

                    if (str(e.tuple[0]) == str(l) and str(e.tuple[1]) == str(path[count + 1])) 

\ 

                            or (str(e.tuple[0]) == str(path[count + 1]) and str(e.tuple[1]) == 

str(l)): 

                        path_edges.append(e) 

                        count = count + 1 

        for single in path_edges: 

            checker = single['capacity'] - pair.comm_frequency() 
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            single['capacity'] = single['capacity'] - pair.comm_frequency() 

            if checker < 0: 

                self.cap_flag = 1 

        for single_revert in path_edges: 

            single_revert['capacity'] = single_revert['capacity'] + 

pair.comm_frequency() 

        # used to print the path, used for debug 

        # print("path: " + str(path)) 

 

    def run_alg(self): 

        pair_cost = 0 

        priority = 0 

        # once pairs are ordered, calc cost 

        for pair in self.vmPairs: 

            self.cap_check(pair) 

            vm1, vm2 = pair.get_vms() 

            # print("pair " + str(vm1.get_name()) + " " + str(vm2.get_name()) + " pri: 

" 

            #       + str(pair.get_priority()) + " cost: " + str(pair.run_alg_calc()) 

            #       + " freq: " + str(pair.comm_frequency())) 

 

            if self.cap_flag == 0: 
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                mb_counter = 0 

                priority += pair.get_priority() 

                if len(self.middleboxes) != 0: 

                    pair_cost += self.topo.get_distance_new( 

                        vm1.get_parent().get_name(), 

                        self.middleboxes[mb_counter].get_parent_switch().get_name(), 

                        pair.comm_frequency() 

                    ) 

                    mb_counter = mb_counter + 1 

                    while mb_counter < len(self.middleboxes): 

                        pair_cost += self.topo.get_distance_new( 

                            self.middleboxes[mb_counter - 

1].get_parent_switch().get_name(), 

                            self.middleboxes[mb_counter].get_parent_switch().get_name(), 

                            pair.comm_frequency() 

                        ) 

                        mb_counter = mb_counter + 1 

                    pair_cost += self.topo.get_distance_new( 

                        self.middleboxes[mb_counter - 1].get_parent_switch().get_name(), 

                        vm2.get_parent().get_name(), 

                        pair.comm_frequency() 

                    ) 
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                else: 

                    pair_cost += self.topo.get_distance_new( 

                        vm1.get_parent().get_name(), 

                        vm2.get_parent().get_name(), 

                        pair.comm_frequency() 

                    ) 

                self.cap_flag = 0 

            else: 

                self.dropped_pairs = self.dropped_pairs + pair.comm_frequency() 

                self.cap_flag = 0 

        # print("lowest freq first, dropped packets: " + str(self.dropped_pairs)) 

        # print("lowest freq first, Value: " + str(priority)) 

        return priority 

 

 

 

 

 

 

 

 



	
 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B 

HIGHEST PRIORITY FIRST CODE 
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class HiPriFirst: 

    def __init__(self, topo, vmPairs): 

        self.topo = topo 

        self.vmPairs = vmPairs 

        self.middleboxes = topo.get_middleboxes() 

        self.dropped_pairs = 0 

        self.cap_flag = 0 

 

    def allocate(self): 

        print("Highest priority first start: -running-") 

        temp_arr = self.vmPairs 

 

        for index in range(1, len(self.vmPairs)): 

            value = self.vmPairs[index] 

            i = index - 1 

            while i >= 0: 

                if value.get_priority() > self.vmPairs[i].get_priority(): 

                    temp_arr[i + 1] = self.vmPairs[i] 

                    temp_arr[i] = value 

                    i -= 1 

                else: 
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                    break 

        self.vmPairs = temp_arr 

 

    def cap_check(self, pair): 

        mb_counter = 0 

        path = [] 

 

        vm1, vm2 = pair.get_vms() 

        if len(self.middleboxes) != 0: 

            path.extend(self.topo.get_path( 

                vm1.get_parent().get_name(), 

                self.middleboxes[mb_counter].get_parent_switch().get_name() 

            )) 

        else: 

            path.extend(self.topo.get_path( 

                vm1.get_parent().get_name(), 

                vm2.get_parent().get_name() 

            )) 

 

        if len(self.middleboxes) > 1: 

            mb_counter = mb_counter + 1  # start at 1 

            while mb_counter < len(self.middleboxes): 
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                path.extend(self.topo.get_path( 

                    self.middleboxes[mb_counter - 1].get_parent_switch().get_name(), 

                    self.middleboxes[mb_counter].get_parent_switch().get_name() 

                )[1:]) 

                mb_counter = mb_counter + 1 

            path.extend(self.topo.get_path( 

                self.middleboxes[mb_counter - 1].get_parent_switch().get_name(), 

                vm2.get_parent().get_name() 

            )[1:]) 

        master_edge_seq = self.topo.es 

        path_edges = [] 

        count = 0 

        for l in path: 

            for e in master_edge_seq: 

                if count < len(path) - 1: 

                    if (str(e.tuple[0]) == str(l) and str(e.tuple[1]) == str(path[count + 1])) \ 

                            or (str(e.tuple[0]) == str(path[count + 1]) and str(e.tuple[1]) == str(l)): 

                        path_edges.append(e) 

                        count = count + 1 

        for single in path_edges: 

            checker = single['capacity'] - pair.get_communication_frequency() 

            single['capacity'] = single['capacity'] - pair.get_communication_frequency() 
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            if checker < 0: 

                self.cap_flag = 1 

        for single_revert in path_edges: 

            single_revert['capacity'] = single_revert['capacity'] + 

pair.get_communication_frequency() 

        # used to print the path, used for debug 

        # print("path: " + str(path)) 

 

    def run_alg(self): 

        pair_cost = 0 

        priority = 0 

        # once pairs are ordered, calc cost 

        

 for pair in self.vmPairs: 

            self.cap_check(pair) 

            vm1, vm2 = pair.get_vms() 

            # print("pair " + str(vm1.get_name()) + " " + str(vm2.get_name()) + " pri: " 

            #       + str(pair.get_priority()) + " cost: " + str(pair.run_alg_calc()) 

            #       + " freq: " + str(pair.get_communication_frequency())) 

 

            if self.cap_flag == 0: 

                mb_counter = 0 
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                priority += pair.get_priority() 

                if len(self.middleboxes) != 0: 

                    pair_cost += self.topo.get_distance_new( 

                        vm1.get_parent().get_name(), 

                        self.middleboxes[mb_counter].get_parent_switch().get_name(), 

                        pair.get_communication_frequency() 

                    ) 

                    mb_counter = mb_counter + 1 

                    while mb_counter < len(self.middleboxes): 

                        pair_cost += self.topo.get_distance_new( 

                            self.middleboxes[mb_counter - 1].get_parent_switch().get_name(), 

                            self.middleboxes[mb_counter].get_parent_switch().get_name(), 

                            pair.get_communication_frequency() 

                        ) 

                        mb_counter = mb_counter + 1 

                    pair_cost += self.topo.get_distance_new( 

                        self.middleboxes[mb_counter - 1].get_parent_switch().get_name(), 

                        vm2.get_parent().get_name(), 

                        pair.get_communication_frequency() 

                    ) 

                else: 

                    pair_cost += self.topo.get_distance_new( 
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                        vm1.get_parent().get_name(), 

                        vm2.get_parent().get_name(), 

                        pair.get_communication_frequency() 

                    ) 

                self.cap_flag = 0 

            else: 

                self.dropped_pairs = self.dropped_pairs +  

 

pair.get_communication_frequency() 

                self.cap_flag = 0 

        # print("highest pri first, dropped packets: " + str(self.dropped_pairs)) 

        # print("highest pri first, Value: " + str(priority)) 

        return priority 

 

 

 

 

 

 

 

 



	
 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX C 

HIGHEST AVERAGE PRIORITY FIRST CODE
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class HighAveFirst: 

    def __init__(self, topo, vmPairs): 

        self.topo = topo 

        self.vmPairs = vmPairs 

        self.middleboxes = topo.get_middleboxes() 

        self.dropped_pairs = 0 

        self.cap_flag = 0 

 

    def allocate(self): 

        print("Highest Avg priority first start: -running-") 

        temp_arr = self.vmPairs 

 

        for index in range(1, len(self.vmPairs)): 

            value = self.vmPairs[index] 

            i = index - 1 

            while i >= 0: 

                if (value.get_priority()/value.get_communication_frequency()) > \ 

                        

(self.vmPairs[i].get_priority()/self.vmPairs[i].get_communication_frequency()): 

                    temp_arr[i + 1] = self.vmPairs[i] 

                    temp_arr[i] = value 
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                    i -= 1 

                else: 

                    break 

        self.vmPairs = temp_arr 

 

    def cap_check(self, pair): 

        mb_counter = 0 

        path = [] 

 

        vm1, vm2 = pair.get_vms() 

        if len(self.middleboxes) != 0: 

            path.extend(self.topo.get_path( 

                vm1.get_parent().get_name(), 

                self.middleboxes[mb_counter].get_parent_switch().get_name() 

            )) 

        else: 

            path.extend(self.topo.get_path( 

                vm1.get_parent().get_name(), 

                vm2.get_parent().get_name() 

            )) 

 

        if len(self.middleboxes) > 1: 
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            mb_counter = mb_counter + 1  # start at 1 

            while mb_counter < len(self.middleboxes): 

                path.extend(self.topo.get_path( 

                    self.middleboxes[mb_counter - 1].get_parent_switch().get_name(), 

                    self.middleboxes[mb_counter].get_parent_switch().get_name() 

                )[1:]) 

                mb_counter = mb_counter + 1 

            path.extend(self.topo.get_path( 

                self.middleboxes[mb_counter - 1].get_parent_switch().get_name(), 

                vm2.get_parent().get_name() 

            )[1:]) 

        master_edge_seq = self.topo.es 

        path_edges = [] 

        count = 0 

        for l in path: 

            for e in master_edge_seq: 

                if count < len(path) - 1: 

                    if (str(e.tuple[0]) == str(l) and str(e.tuple[1]) == str(path[count + 1])) \ 

                            or (str(e.tuple[0]) == str(path[count + 1]) and str(e.tuple[1]) == str(l)): 

                        path_edges.append(e) 

                        count = count + 1 

        for single in path_edges: 
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            checker = single['capacity'] - pair.get_communication_frequency() 

            single['capacity'] = single['capacity'] - pair.get_communication_frequency() 

            if checker < 0: 

                self.cap_flag = 1 

        for single_revert in path_edges: 

            single_revert['capacity'] = single_revert['capacity'] + 

pair.get_communication_frequency() 

        # used to print the path, used for debug 

        # print("path: " + str(path)) 

 

    def run_alg(self): 

        pair_cost = 0 

        priority = 0 

        # once pairs are ordered, calc cost 

        for pair in self.vmPairs: 

            self.cap_check(pair) 

            vm1, vm2 = pair.get_vms() 

            # print("pair " + str(vm1.get_name()) + " " + str(vm2.get_name()) + " pri: " 

            #       + str(pair.get_priority()) + " cost: " + str(pair.run_alg_calc()) 

            #       + " freq: " + str(pair.get_communication_frequency())) 

 

            if self.cap_flag == 0: 
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                mb_counter = 0 

                priority += pair.get_priority() 

                if len(self.middleboxes) != 0: 

                    pair_cost += self.topo.get_distance_new( 

                        vm1.get_parent().get_name(), 

                        self.middleboxes[mb_counter].get_parent_switch().get_name(), 

                        pair.get_communication_frequency() 

                    ) 

                    mb_counter = mb_counter + 1 

                    while mb_counter < len(self.middleboxes): 

                        pair_cost += self.topo.get_distance_new( 

                            self.middleboxes[mb_counter - 1].get_parent_switch().get_name(), 

                            self.middleboxes[mb_counter].get_parent_switch().get_name(), 

                            pair.get_communication_frequency() 

                        ) 

                        mb_counter = mb_counter + 1 

                    pair_cost += self.topo.get_distance_new( 

                        self.middleboxes[mb_counter - 1].get_parent_switch().get_name(), 

                        vm2.get_parent().get_name(), 

                        pair.get_communication_frequency() 

                    ) 

                else: 
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                    pair_cost += self.topo.get_distance_new( 

                        vm1.get_parent().get_name(), 

                        vm2.get_parent().get_name(), 

                        pair.get_communication_frequency() 

                    ) 

                self.cap_flag = 0 

            else: 

                self.dropped_pairs = self.dropped_pairs + pair.get_communication_frequency() 

                self.cap_flag = 0 

        # print("highest pri first, dropped packets: " + str(self.dropped_pairs)) 

        # print("highest pri first, Value: " + str(priority)) 

        return priority 

 

 

 

 

 

 

 

 

 



	
 

 

 

 

 

 

 

 

 

 

 

APPENDIX D 

DYNAMIC PROGRAMMING CODE 
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class DynamicProg: 

    def __init__(self, topo, vmPairs): 

        self.topo = topo 

        self.vmPairs = vmPairs 

        self.middleboxes = topo.get_middleboxes() 

        self.lowest_spine = 0 

        self.path_edges = [] 

        self.path = [] 

        self.cache = {} 

        self.vms = () 

        self.max_cap = 0 

 

    def allocate(self): 

        print("Dynamic Prog: -running-") 

        mb_counter = 0 

        lowest_spine = 0 

        first_pass = 1 

        path = [] 

        if len(self.middleboxes) > 1: 

            mb_counter = mb_counter + 1  # start at 1 

            while mb_counter < len(self.middleboxes): 
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                if first_pass == 1: 

                    path.extend(self.topo.get_path( 

                        self.middleboxes[mb_counter - 1].get_parent_switch().get_name(), 

                        self.middleboxes[mb_counter].get_parent_switch().get_name() 

                    )) 

                    first_pass = 0 

                else: 

                    path.extend(self.topo.get_path( 

                        self.middleboxes[mb_counter - 1].get_parent_switch().get_name(), 

                        self.middleboxes[mb_counter].get_parent_switch().get_name() 

                    )[1:]) 

                mb_counter = mb_counter + 1 

        else: 

            lowest_spine = 0 

 

        master_edge_seq = self.topo.es 

        path_edges = [] 

        count = 0 

        for l in path: 

            for e in master_edge_seq: 

                if count < len(path) - 1: 

                    if (str(e.tuple[0]) == str(l) and str(e.tuple[1]) == str(path[count + 1])) \ 
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                            or (str(e.tuple[0]) == str(path[count + 1]) and str(e.tuple[1]) == str(l)): 

                        path_edges.append(e) 

                        count = count + 1 

                        # print("edge link: " + str(e.tuple[0]) + "-" + str(e.tuple[1]) + 

str(e.attributes())) 

 

        self.path_edges = path_edges 

        self.path = path 

 

    def spine_checker(self, path_edges, path): 

        # how many times does each edge get crossed in spine 

        # cap of links / # of times crossed 

        # return the lowest 

        counter = 0 

        path_tuple_counter = 0 

        dest_index = 1 

        flag = 0 

        path_tuple = [] 

        for single in path_edges[:len(path_edges)]: 

            z = path[counter], path[dest_index], single['capacity'], 1 

            for tuple_single in path_tuple: 

                if (tuple_single[0] == z[0] and tuple_single[1] == z[1]) \ 
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                        or (tuple_single[1] == z[0] and tuple_single[0] == z[1]): 

                    tuple_single = tuple_single[0], tuple_single[1], tuple_single[2], 

(tuple_single[3] + 1) 

                    flag = 1 

                if flag == 1: 

                    path_tuple[path_tuple_counter] = tuple_single 

                path_tuple_counter += 1 

            if flag == 0: 

                path_tuple.append(z) 

            flag = 0 

            path_tuple_counter = 0 

            counter += 1 

            dest_index += 1 

        lowest_available_cap = int(path_tuple[0][2] / path_tuple[0][3]) 

        for tup in path_tuple: 

            if int(tup[2] / tup[3]) < lowest_available_cap: 

                lowest_available_cap = int(tup[2] / tup[3]) 

        self.max_cap = lowest_available_cap + 1 

        return lowest_available_cap 

 

    def dyn_setup(self): 

        t = self.spine_checker(self.path_edges, self.path) 
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    @staticmethod 

    def total_value(vms, max_weight): 

        return sum([x[2] for x in vms]) if sum([x[1] for x in vms]) < max_weight else 0 

 

    def solve(self, vms, max_weight): 

        if not vms: 

            return () 

        if (vms, max_weight) not in self.cache: 

            tail = vms[1:] 

            head = vms[0] 

 

            chose = (head,) + self.solve(tail, max_weight - head[1]) 

            dont_chose = self.solve(tail, max_weight) 

            if self.total_value(chose, max_weight) > self.total_value(dont_chose, 

max_weight): 

                item_choice = chose 

            else: 

                item_choice = dont_chose 

            self.cache[(vms, max_weight)] = item_choice 

        return self.cache[(vms, max_weight)] 
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    def pair_dyn_setup(self): 

        dyn_pairs = () 

        for pair in self.vmPairs: 

            vm1, vm2 = pair.get_vms() 

            x = str(vm1.get_name()) + " (" + str(vm1.get_parent().get_label()) + ")" \ 

                + str(vm2.get_name()) + " (" + str(vm2.get_parent().get_label()) + ")", \ 

                pair.get_communication_frequency(), pair.get_priority() 

            dyn_pairs = (x,) + dyn_pairs 

        return dyn_pairs 

 

    def cap_check(self, pair): 

        mb_counter = 0 

        path = [] 

 

        vm1, vm2 = pair.get_vms() 

        if len(self.middleboxes) != 0: 

            path.extend(self.topo.get_path( 

                vm1.get_parent().get_name(), 

                self.middleboxes[mb_counter].get_parent_switch().get_name() 

            )) 

        else: 

            path.extend(self.topo.get_path( 
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                vm1.get_parent().get_name(), 

                vm2.get_parent().get_name() 

            )) 

 

        if len(self.middleboxes) > 1: 

            mb_counter = mb_counter + 1  # start at 1 

            while mb_counter < len(self.middleboxes): 

                path.extend(self.topo.get_path( 

                    self.middleboxes[mb_counter - 1].get_parent_switch().get_name(), 

                    self.middleboxes[mb_counter].get_parent_switch().get_name() 

                )[1:]) 

                mb_counter = mb_counter + 1 

            path.extend(self.topo.get_path( 

                self.middleboxes[mb_counter - 1].get_parent_switch().get_name(), 

                vm2.get_parent().get_name() 

            )[1:]) 

        master_edge_seq = self.topo.es 

        path_edges = [] 

        count = 0 

        for l in path: 

            for e in master_edge_seq: 

                if count < len(path) - 1: 
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                    if (str(e.tuple[0]) == str(l) and str(e.tuple[1]) == str(path[count + 1])) \ 

                            or (str(e.tuple[0]) == str(path[count + 1]) and str(e.tuple[1]) == str(l)): 

                        path_edges.append(e) 

                        count = count + 1 

        for single in path_edges: 

            checker = single['capacity'] - pair.get_communication_frequency() 

            single['capacity'] = single['capacity'] - pair.get_communication_frequency() 

            if checker < 0: 

                self.cap_flag = 1 

        for single_revert in path_edges: 

            single_revert['capacity'] = single_revert['capacity'] + 

pair.get_communication_frequency() 

        # used to print the path, used for debug 

        # print("path: " + str(path)) 

 

    def run_alg(self): 

        pair_cost = 0 

        priority = 0 

        # once pairs are ordered, calc cost 

        for pair in self.vmPairs: 

            self.cap_check(pair) 

            vm1, vm2 = pair.get_vms() 
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            # print("pair " + str(vm1.get_name()) + " " + str(vm2.get_name()) + " pri: " 

            #       + str(pair.get_priority()) + " cost: " + str(pair.run_alg_calc()) 

            #       + " freq: " + str(pair.get_communication_frequency())) 

            if self.cap_flag == 0: 

                mb_counter = 0 

                priority += pair.get_priority() 

                if len(self.middleboxes) != 0: 

                    pair_cost += self.topo.get_distance_new( 

                        vm1.get_parent().get_name(), 

                        self.middleboxes[mb_counter].get_parent_switch().get_name(), 

                        pair.get_communication_frequency() 

                    ) 

                    mb_counter = mb_counter + 1 

                    while mb_counter < len(self.middleboxes): 

                        pair_cost += self.topo.get_distance_new( 

                            self.middleboxes[mb_counter - 1].get_parent_switch().get_name(), 

                            self.middleboxes[mb_counter].get_parent_switch().get_name(), 

                            pair.get_communication_frequency() 

                        ) 

                        mb_counter = mb_counter + 1 

                    pair_cost += self.topo.get_distance_new( 

                        self.middleboxes[mb_counter - 1].get_parent_switch().get_name(), 
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                        vm2.get_parent().get_name(), 

                        pair.get_communication_frequency() 

                    ) 

                else: 

                    pair_cost += self.topo.get_distance_new( 

                        vm1.get_parent().get_name(), 

                        vm2.get_parent().get_name(), 

                        pair.get_communication_frequency() 

                    ) 

                self.cap_flag = 0 

            else: 

                self.dropped_pairs = self.dropped_pairs + pair.get_communication_frequency() 

                self.cap_flag = 0 

        # print("Random, dropped packets: " + str(self.dropped_pairs)) 

        # print("Random, Value: " + str(priority)) 

        return priority 
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class RandomAlg: 

    def __init__(self, topo, vmPairs): 

        self.topo = topo 

        self.vmPairs = vmPairs 

        self.middleboxes = topo.get_middleboxes() 

        self.dropped_pairs = 0 

        self.cap_flag = 0 

 

    def allocate(self): 

        t = self.middleboxes 

        print("Random Running" + str(t[0])) 

 

    def cap_check(self, pair): 

        mb_counter = 0 

        path = [] 

 

        vm1, vm2 = pair.get_vms() 

        if len(self.middleboxes) != 0: 

            path.extend(self.topo.get_path( 

                vm1.get_parent().get_name(), 
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                self.middleboxes[mb_counter].get_parent_switch().get_name() 

            )) 

        else: 

            path.extend(self.topo.get_path( 

                vm1.get_parent().get_name(), 

                vm2.get_parent().get_name() 

            )) 

 

        if len(self.middleboxes) > 1: 

            mb_counter = mb_counter + 1  # start at 1 

            while mb_counter < len(self.middleboxes): 

                path.extend(self.topo.get_path( 

                    self.middleboxes[mb_counter - 1].get_parent_switch().get_name(), 

                    self.middleboxes[mb_counter].get_parent_switch().get_name() 

                )[1:]) 

                mb_counter = mb_counter + 1 

            path.extend(self.topo.get_path( 

                self.middleboxes[mb_counter - 1].get_parent_switch().get_name(), 

                vm2.get_parent().get_name() 

            )[1:]) 

        master_edge_seq = self.topo.es 

        path_edges = [] 
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        count = 0 

        for l in path: 

            for e in master_edge_seq: 

                if count < len(path) - 1: 

                    if (str(e.tuple[0]) == str(l) and str(e.tuple[1]) == str(path[count + 1])) \ 

                            or (str(e.tuple[0]) == str(path[count + 1]) and str(e.tuple[1]) == str(l)): 

                        path_edges.append(e) 

                        count = count + 1 

        for single in path_edges: 

            checker = single['capacity'] - pair.get_communication_frequency() 

            single['capacity'] = single['capacity'] - pair.get_communication_frequency() 

            if checker < 0: 

                self.cap_flag = 1 

        for single_revert in path_edges: 

            single_revert['capacity'] = single_revert['capacity'] + 

pair.get_communication_frequency() 

        # used to print the path, used for debug 

        # print("path: " + str(path)) 

 

    def run_alg(self): 

        pair_cost = 0 

        priority = 0 
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        # once pairs are ordered, calc cost 

        for pair in self.vmPairs: 

            self.cap_check(pair) 

            vm1, vm2 = pair.get_vms() 

            # print("pair " + str(vm1.get_name()) + " " + str(vm2.get_name()) + " pri: " 

            #       + str(pair.get_priority()) + " cost: " + str(pair.run_alg_calc()) 

            #       + " freq: " + str(pair.get_communication_frequency())) 

            if self.cap_flag == 0: 

                mb_counter = 0 

                priority += pair.get_priority() 

                if len(self.middleboxes) != 0: 

                    pair_cost += self.topo.get_distance_new( 

                        vm1.get_parent().get_name(), 

                        self.middleboxes[mb_counter].get_parent_switch().get_name(), 

                        pair.get_communication_frequency() 

                    ) 

                    mb_counter = mb_counter + 1 

                    while mb_counter < len(self.middleboxes): 

                        pair_cost += self.topo.get_distance_new( 

                            self.middleboxes[mb_counter - 1].get_parent_switch().get_name(), 

                            self.middleboxes[mb_counter].get_parent_switch().get_name(), 

                            pair.get_communication_frequency() 
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                        ) 

                        mb_counter = mb_counter + 1 

                    pair_cost += self.topo.get_distance_new( 

                        self.middleboxes[mb_counter - 1].get_parent_switch().get_name(), 

                        vm2.get_parent().get_name(), 

                        pair.get_communication_frequency() 

                    ) 

                else: 

                    pair_cost += self.topo.get_distance_new( 

                        vm1.get_parent().get_name(), 

                        vm2.get_parent().get_name(), 

                        pair.get_communication_frequency() 

                    ) 

                self.cap_flag = 0 

            else: 

                self.dropped_pairs = self.dropped_pairs + pair.get_communication_frequency() 

                self.cap_flag = 0 

        # print("Random, dropped packets: " + str(self.dropped_pairs)) 

        # print("Random, Value: " + str(priority)) 

        return priority 
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import igraph 

import math as m 

import random as r 

import NetworkComponents as networks 

 

 

class topoGen: 

 

    def __init__(self, nodes, children, numPairs, numMB, physicalCap=None, 

link_cap=None): 

        self.nodes = nodes 

        self.children = children 

        self.numPairsairs = numPairs 

        self.n_middleboxes = numMB 

        self.max_vm_size = 1 

 

        self.hosts, self.edgeSwitches = [], [], [], [] 

        self.middleboxes = [] 

        self.master_graph = None 

 

        self.physicalCap = physicalCap 
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        self.link_cap = link_cap 

        self.es = None 

        self.freq = 1 

 

    def create_topology(self): 

        tree = igraph.Graph.Tree(self.nodes, self.children) 

        host_count = 0 

        create_count = 0 

        e_count = 0 

        pod_number, pod_index = 0, 0 

        vertical_number = 1 

        for g in tree.vs: 

            g["label"] = create_count 

            g["host_flag"] = 0 

            g["edgeSwitch"] = "None" 

            g["host"] = "None" 

            g["name"] = "None" 

            flag = 0 

            for e in tree.es: 

                if create_count == e.tuple[0] or create_count == e.tuple[1]: 

                    flag = flag + 1 

            if flag == 1: 
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                g["host_flag"] = 1 

                host_count = host_count + 1 

                host_name = "host_" + str(host_count) 

                if self.physicalCap is None: 

                    host_capacity = int(m.ceil((self.numPairsairs * 2.0 * self.max_vm_size))) 

                else: 

                    host_capacity = self.physicalCap 

                host = networks.PhysicalMachine(host_capacity, host_name, g["label"]) 

                g["host"] = tree.vs.select() 

                g["name"] = str(host_name) 

                self.hosts.append(host) 

            else: 

                e_count = e_count + 1 

                edgeSwitch_name = "edgeSwitch_" + str(e_count) 

                edgeSwitch = networks.PhysicalSwitch(edgeSwitch_name) 

                edgeSwitch.set_label(g["label"]) 

                edgeSwitch.set_p(pod_number) 

                edgeSwitch.set_v(vertical_number) 

                edgeSwitch.set_h(2) 

                pod_index += 1 

                vertical_number += 1 

                g["edgeSwitch"] = tree.vs.select() 
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                g["name"] = edgeSwitch_name 

                self.edgeSwitches.append(edgeSwitch) 

 

            create_count = create_count + 1 

 

        self.master_graph = tree 

        self.es = igraph.EdgeSeq(self.master_graph) 

        self.es["weight"] = 1 

        self.es["capacity"] = 0 

        self.es["capacity_val"] = 0 

        for edge in self.es: 

            edge["capacity"] = self.link_cap  # randomize here 

            edge["capacity_val"] = self.link_cap  # randomize here 

 

    def create_middleboxes(self): 

        # make first and last middlebox an edge switch here 

 

        middlebox_host = [] 

        self.randomEdgeSwitch() 

        for i in range(1, self.n_middleboxes + 1): 

            if self.n_middleboxes > 1: 

                if i == 1 or i == self.n_middleboxes: 
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                    new_middlebox = networks.MiddleBox("MiddleBox_" + str(i)) 

                    random_parent_switch = self.randomEdgeSwitch() 

 

                    while random_parent_switch.get_name() in middlebox_host: 

                        random_parent_switch = self.randomEdgeSwitch() 

 

                    new_middlebox.set_parent_switch(random_parent_switch) 

                    middlebox_host.append(random_parent_switch.get_name()) 

                    self.middleboxes.append(new_middlebox) 

                else: 

                    new_middlebox = networks.MiddleBox("MiddleBox_" + str(i)) 

                    random_parent_switch = self.randomSwitch() 

 

                    while random_parent_switch.get_name() in middlebox_host: 

                        random_parent_switch = self.randomSwitch() 

 

                    new_middlebox.set_parent_switch(random_parent_switch) 

                    middlebox_host.append(random_parent_switch.get_name()) 

                    self.middleboxes.append(new_middlebox) 

 

    def randomSwitch(self): 

        #layer_check = r.randint(0, 3) 
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        switches = self.edgeSwitches 

        return switches[r.randint(1, len(switches) - 1)] 

 

    def randomEdgeSwitch(self): 

        switches = [] 

        index = [] 

        for z in self.master_graph.vs: 

            if z['host_flag'] == 1: 

                index.append(self.master_graph.neighbors(z)[0]) 

        for x in self.edgeSwitches: 

            if x.get_label() in index: 

                switches.append(x) 

        return switches[r.randint(1, len(switches) - 1)] 

 

    def get_hosts(self): 

        return self.hosts 

 

    def getGraph(self): 

        return self.master_graph 

 

    def getMiddleboxes(self): 

        return self.middleboxes 
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    def setMiddleboxes(self, mbs): 

        self.middleboxes = mbs 

 

    def get_path(self, node1, node2): 

        path = self.master_graph.get_shortest_paths( 

            node1, to=node2, weights='weight', mode=igraph.OUT, output='vpath') 

        return path[0] 

 

    def get_distance_new(self, node1, node2, freq): 

        # self.master_graph.es[0]["capacity"] = 1 

        self.freq = freq 

        path = self.master_graph.get_shortest_paths( 

            node1, to=node2, weights='weight', mode=igraph.OUT, output='vpath') 

        # print("p: " + str(path[0])) # prints path, uncomment to debug 

        counter = 0 

        link_full = False 

        while counter < len(path[0]) - 1: 

            for e in self.es: 

                if (e.tuple[0] == path[0][counter] and e.tuple[1] == path[0][counter + 1]) or 

(e.tuple[1] == 

                                                            path[0][counter] and e.tuple[0] == path[0][counter 
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+ 1]): 

                    if e["capacity"] <= 0: 

                        link_full = True 

                    e["capacity"] = e["capacity"] - self.freq 

                    if e["capacity"] <= 0: 

                        e["weight"] = 999999 

                        # self.master_graph.delete_edges(e) 

            counter = counter + 1 

        if link_full: 

            # if full set to -1 but for now the same 

            # cost = -1 

            cost = len(path[0]) - 1 

        else: 

            cost = len(path[0]) - 1 

        return cost 

 


