
	

TRAFFIC PRIORITY MAXIMIZATION IN POLICY ENABLED TREE BASED

DATA CENTERS

A Thesis

Presented

to the Faculty of

California State University Dominguez Hills

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

 Computer Science

by

Alexander Ing

Summer 2018

	

ii	
	

ACKNOWLEDGEMENTS

I would like to thank the department of computer science for sharing their

knowledge and teaching me the necessary material to make this thesis. A special thanks

to my committee chair, Dr. Bin Tang, for his passion and influence on me and this

research. I am also grateful to my committee members, Dr. Han and Dr.Beheshti, for

their input and guidance.

	

iii	
	

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTS ... ii

TABLE OF CONTENTS ... iii

LIST OF TABLES ...v

LIST OF FIGURES ... vi

ABSTRACT .. vii

CHAPTER

1. INTRODUCTION. ..1

Background Survey ..4

2. PROBLEM DESCRIPTION AND METHODOLOGY ..7

Network Model ..7
VM Pair Model ..8
Edge Model ..8
Middlebox Model ...9
Data Center Topology ..9

3. PROPOSED SOLUTIONS ..11

Feasibility Study ..11
Algorithms ...12

4. RESULTS AND ANALYSIS ...19

5. CONCLUSION AND FUTURE WORK ...28

REFERENCES ..31

	

iv	
	

APPENDICES ..35

A: LOWEST DEMAND FIRST CODE ..36
B: HIGHEST PRIORITY FIRST CODE ..43
C: HIGHEST AVERAGE PRIORITY FIRST CODE ..50
D: DYNAMIC PROGRAMMING CODE ..57
E: RANDOM ALGOITHM CODE ...68
F: TOPOLOGY GENERATOR CODE...74

	

v	
		

LIST OF TABLES

 PAGE

1. Dynamic Programming Table Creation ...24

2. Average Priority Varying Amount of VMs ..32

vi	
	

LIST OF FIGURES

 PAGE

1. Tree topology with highlighted spine ...16

2. Lowest demand first pseudocode ..19

3. Highest priority first pseudocode ..20

4. Highest average priority first pseudocode ..21

5. Tree topology with highlighted subtrees under ingress and egress switch22

6. Data center topology used in simulations ...26

7. Algorithm performance with varying MBs, special case ..27

8. Algorithm performance with varying MBs, general case ...28

9. Algorithm performance, varying link capacity, special case ..29

10. Algorithm performance, varying link capacity, general case30

11. Algorithm performance, varying amount of VMs, special case31

12. Algorithm performance, varying amount of VMs, general case33

	

	
	

ABSTRACT

Increased internet service usage places increased demand on data centers posing

new problems such as degrading performance and increased security risks. Middleboxes

such as load balancers and intrusion detection systems are one way of addressing the

issues facing data centers. A policy chain is a sequence of middleboxes that traffic must

traverse in a specified order, policy driven data centers enforce policy chains to insure

data integrity and improve network performance. In situations where a data center is

impacted and receives more traffic demand than available bandwidth then a decision

must be made as to which requests to satisfy. This thesis examines the maximization of

traffic priority in policy driven data centers using tree topologies, while adhering to

bandwidth constraints. Three heuristic algorithms are proposed to address the

maximization problem. A dynamic programming approach that outperforms the heuristic

algorithms is proposed when the data center is under additional constraints.

1	

CHAPTER 1

INTRODUCTION

The increase of internet activities and data processing has led to an increase of

data center traffic and usage. This increase in activity has led to increased demand for

Infrastructure as a Service (IaaS) and cloud data center services to provide the resources

needed to run online services such as video on demand, social media applications, and

data processing (Bhardwaj, 2010). The influx of activity has led to new issues within

cloud data centers such as security, quality assurance, traffic control, and resource

allocation (Buyya, 2010). Data centers use a variety of techniques and tools to address

these issues, an example of such tools are network appliances called middleboxes. These

middleboxes help improve network performance, security, and many other aspects of the

data center. Middleboxes are computer networking devices that perform specialized tasks

on data center traffic, examples of such tasks are packet inspection, firewalls, load

balancing, and intrusion detection (Carpenter, 2002).

 Network appliances such as middleboxes are highly used in enterprise

environments as they provide much needed network services. Many data centers rely on

middleboxes to perform crucial tasks such as ensuring their data is secure and to help in

data forwarding. Due to the specialization and complexity of the tasks performed by

middleboxes, they are oftentimes installed in data centers using specialized proprietary

hardware. The use of proprietary hardware makes installing and managing middleboxes

time intensive and costly.

2	

 The virtualization technologies were introduced to data centers in order to address

the limitations and inflexibility of traditional network functions. Network function

virtualization (NFV) and software defined networks (SDN) are two technologies that are

being introduced into data centers to help optimize their processes (Han, 2015). SDNs

and their controllers receive information from throughout the data center, allowing for a

global view of the status of the network, unlike traditional off the shelf network

components. The global view allows for SDN enabled data centers the opportunity to

perform optimizations within the network such as improving traffic control, load

balancing, and network policy enforcement (Markiewicz, 2014). The opportunity for

optimizations provided by SDNs and NFV has increased interest and improved adoption

rate of such technologies, it is estimated that 44% of traffic within data centers will be

supported by SDNs and NFV technology by 2020 (Cisco 2016).

 The introduction of IaaS and virtualization of hardware resources has led to the

use of virtual machines (VMs) in data centers. The VMs provide customers with

computing resources in an isolated environment that the customer can then manipulate to

perform their desired task (Beloglazov, 2010). The VMs also provide a monetization

strategy for the datacenter as the VMs and their resources can be rented to customers.

VM communication within the data center make up the majority of traffic on the data

center network, by 2020 it is estimated that communication within the data center itself

will make up 77% of its network traffic (Cisco, 2016).

In a policy driven data center, traffic flowing through the data center will need to

adhere to the network’s policy. These policies establish rules that network traffic must

3	

follow such as the order of middleboxes traffic must traverse. An example of such a

policy would be for each VM communication pair generating traffic, that traffic would

need to pass through a firewall for security then pass through a WAN optimizer. The

traffic in the example would need to follow the policy and go through the specified

middleboxes in their assigned order before getting delivered to its destination. The

ordering of the middleboxes is called a policy chain or service chain, as each packet in

the traffic flow must follow the chain of middleboxes in the policy (Sallam, 2018).

Data center topologies describe the structure of the network and how the network

components are setup. The data center topology can determine how many paths are

available to transport data flow from server to server. There are many data center

topologies in use today such as Fat Tree, Bcube, and Elastic Trees each with their own

advantages and disadvantages (Heller, 2010).

This paper will discuss how to maximize VM communication traffic priority

within the data center network that are limited to using a tree topology while adhering to

network policy. Data center traffic must be processed by every middlebox type in the

specified order, as well as satisfying bandwidth constraints. We call the problem priority

maximization problem. A literature review is conducted to show similar work already

done in this field. The priority maximization problem is formally formulated and special

cases are addressed. We show that in special cases the priority maximization problem can

be modeled as the knapsack problem which can be solved using dynamic solving. A few

heuristic algorithms are proposed they are lowest demand first, highest priority first, and

highest average priority first. The heuristic algorithms are compared to the dynamic

4	

programming solution in the special cases to show the heuristics performance under

specific restrictions. The heuristics are then run in the general case and compared with

each other to determine their performance.

Background Survey

Many studies have investigated traffic optimization in data center networks such

as Charikar et al. who have characterized a multicommodity flow problem in a general

graph, with demand on flows and capacity constraints on edges (Charikar, 2018). They

also introduce a new constraint where flow must be processed by compute nodes hosting

middleboxes in a particular order determined by a policy applied to all flow. They

attempt to optimize middlebox placement among the available compute nodes as well as

optimize traffic steering, and routing paths. The proposed solution to their

multicommodity flow problem is the use of linear programming which are used to solve

the optimization problems.

Vazirani proposed an approximation algorithm for maximizing flow in a tree

graph, he accomplished this by solving multi cut and integer multicommodity flow

(Vazirani, 2003). They formulate a model with source and sink nodes at the leaves of the

tree with weighted edges. Their proposed solution is a primal dual algorithm that results

in a 2 approximation algorithm. This paper however does not consider middleboxes or

policy in its formulation. Gouveia also solves the multicommodity flow problem in data

center networks but adds a new constraint to flows (Gouveia, 1996). The new constraint

is to limit the amount of hops a flow can take, this is similar to the acceptable amount of

5	

delay a flow can have to meet quality of service standards. The solution they propose is a

linear programming approach that provides a lower bound to the amount of hop

constraint. They solve the constraint in both directed and undirected graphs, but they do

not take into consideration middleboxes or policy enforcement. Nguyen et al. propose an

optimization framework called OFFICER that is a heuristic algorithm that attempts to

maximize traffic in a network, keeping into consideration endpoint policy (Nguyen,

2015). The proposed algorithm performs in polynomial time, however does not take into

consideration middlebox policy chains.

 Policy enforcement in data centers has also been a hot topic in research due to the

amount of optimizations and complexity of the problems that need addressing. Qazi et al.

propose a SDN based traffic steering model to direct traffic in data centers such that

network policy is enforced (Qazi, 2013). The model which they call SIMPLE, showed

that SDNs can be used to not only monitor traffic but to steer it toward ordered

middleboxes in the policy chain. Fayazbakhsh et al. also propose a solution to policy

enforcement using what they call FlowTags (Fayazbakhsh,	2013). They recognize that

network wide policy enforcement with middleboxes can be complex, and without proper

implementation can be a cause for errors. Their solution is FlowTags, traffic that are

processed by a middlebox are tagged upon completion. Joseph et al. proposed a policy

aware switching layer that they called Player (Joseph, 2008). Player is a layer-2 switching

layer that consist of policy aware switches called pswitches, middleboxes are then

connected to the pswitches. These pswitches can then forward traffic to each other to

enforce policy.

6	

 Of the works mentioned above, only Charikar et al. addresses policy chain

enforcement and traffic optimization under constraints of edge capacity and traffic

demand. However, their work differs from ours as they do not take into consideration

communication priority and instead focus on flow maximization. They also focus heavily

on middlebox placement within the compute nodes in the data center, while we assume

the middleboxes are already installed and will not be moved after installation.

7	

CHAPTER 2

PROBLEM DESCRIPTION AND METHODOLOGY

Data centers may not be able to serve all of the communication request, especially

during peak hours of internet service usage. It is shown that data flow within the data

center itself is a major component of all traffic serviced by its network (Mahimkar, 2011).

When data centers are overloaded a decision must be made as to which VM requests to

satisfy, and which VMs to move to a different network. VM communication pairs may

have higher priority than others such as certain services such as VoIP or video streaming

depending on the network configurations. The problem facing data centers is which

virtual machine requests should be fulfilled to insure network congestion does not

interfere with data flow and optimize the value of the VMs being serviced.

Network Model

 The data center is modeled as an undirected graph G (V, E). Where V = VP ∪ VS,

the union of physical machines VP and the network switches VS. E is the set of edges in

the graph G, each edge representing a connection in the network, connecting a switch to

another switch or switch to physical machine. Each network component V is connected

by C connections, where 1 ≤ C. The data center network will contain L communication

pairs; each communication pair consist of a VM pair. The set of communicating VM

pairs P = {(vm1, vm1`), (vm2, vm2`), …, (vmi, vmi`)} where each pair vmi and vmi ` (1 ≤ i

≤ L), are the communication source VM and a destination VM respectively. Each

8	

physical machine VP can store multiple VMs, it is possible for the same physical machine

to host both vmi and vmi`. Middleboxes M can be installed on switches VS within the

datacenter network.

VM Pair Model

 Each VM pair P consist of a source and destination VM, the flow of traffic travels

from the source VM to its corresponding destination VM. Each VM pair in our model has

three properties: communication frequency, communication priority, and demand. Pair

(Vi, Vi`) communicates at frequency Fi, where Fi is a random number from [1, F]. The

second VM pair property is priority Ti, each pair (Vi, Vi`) is given a priority which is a

random number from [1, T]. The total value of a VM pair is given by the product of Ti

and Fi. The last property associated with each VM pair (Vi, Vi`) is demand Di, the

demand is the amount of bandwidth used by the communicating pair. The demand for a

given for a pair is a random number from [1, D].

Edge Model

 Each edge E in graph G has a capacity to the available bandwidth, the bandwidth

capacity determines how much demand an edge can support. Edge (u,v) has capacity

K(u,v), indicating the bandwidth available at (u,v). The total demand D across an edge

must not exceed capacity, thus D ≤ K. Total demand supported by a given edge E is the

sum of demand from all VM communication pairs transmitting over E. Each edge

9	

connects at most two network switches vertices VS or one VS to a physical machine

vertex VP.

Middlebox Model

 The data center is modeled such that the set M middleboxes are placed within the

network, where M = {m1 . . . mx}, x being the total number of middleboxes placed in the

data center. In this model x ≥ 2 as policy enforcement is one of the factors in this study.

However, it should be noted that the proposed heuristic algorithms will still perform

should M < 2 be the case. The middleboxes are placed randomly on a switch VS within

the data center network, an example is shown in figure 1. The path needed to traverse the

ordered middleboxes in the policy chain make up what we call the ‘spine’. The spine S is

S⊆E where Si = E(uq, vq+1), q and q+1 indicate the middlebox in the set M. The term

spine is used as the VM communication pairs must traverse the predetermined path once

the flow reaches the first middlebox in the policy chain. Figure 1 shows an example of

the spine which is colored in orange. In the example below, the policy to be enforced is

as follows {MB1, MB2, MB3} and the spine consist of the edges E(MB1, MB2) and

E(MB2, MB3). The switch containing the first middlebox in the policy chain is labeled

the ingress switch as it is the switch letting flow into the spine. Conversely, the switch

hosting the last middlebox in the policy is labeled as the egress switch, as flow is leaving

the spine through said switch.

10	

	

Figure 1. Example tree data center topology with highlighted spine path

Data Center Topology

 The data center topology in this study is modeled as a tree, an example of such a

topology is shown in figure 1. The leaf nodes of the tree represent physical machines with

capabilities and resources to host VMs. All non-leaf nodes represent OpenFlow enabled

switches with sufficient resources to install and support middleboxes. OpenFlow is a

standardized protocol used by SDN controllers to interact with switchs using the protocol

(McKeown, 2008). The tree data center topology was chosen because of the property of

having a single path to and from any node. This makes routing flows from a VM in a

communication pair to its destination simple, allowing us to focus on the VM

satisfiability and communication priority maximization. Despite the lack of redundancy,

trees are still used in data center topologies. One common case for tree use in data centers

is when virtual lans (VLANs) are implemented, they are often structured as spanning

11	

trees of the network. An example of this is Cisco’s suggestion of implementing Remote

Span (RSPAN) VLANs, citing that the redundancy for such usage is unnecessary (Cisco,

2005). Even a physical 3-layer network can have a logical 2-layer topology forming a

tree that can be created using a spanning tree algorithm of the network and the use of

VLANs (Meng, 2010).

12	

CHAPTER 3

THE PROPOSED SOLUTIONS

 This section of the thesis will discuss the proposed algorithms to maximize

communication priority given edge capacity and communication demand constraints.

First a feasibility study is proposed to determine if the pending communication can all be

satisfied by network. Next, four algorithms are proposed and their functionality are

shown and explained.

Feasibility	Study

 Before optimizations algorithms are considered, we must first determine if they

are even necessary. The feasibility study is used to check if the data center has the

resources necessary to satisfy all of the VM communication pairs. If there is available

bandwidth to sustain all of the communication flows, then there is no need to decide

which VMs to choose in order to optimize priority as we can simply choose all of the

VMs. The tree topology makes the feasibility study simple as there is only one path to

consider for each pair, thus to determine feasibility we can check the path of each

allocated communication pair and calculate remaining bandwidth available. Every VM

pair will subtract its demand T from the edge capacity K of edges along their path to the

spine, through the spine, and to the destination VM. while checking every

communication, if any edge no longer has any bandwidth, K < 0, then the feasibility

study shows that not every VM can be satisfied and a decision must be made to which

VMs to choose in order to maximize priority.

13	

Algorithms

Lowest Demand First

The Lowest Demand First algorithm performs the following tasks. First the VM

communication pairs P are ordered in terms of lowest demand D. VM IDs are stored

using a list in non-decreasing order, the IDs will be used to keep track of which VM to

check. Once the list is created, the first VM in the list, will identify all the edges on its

path toward the ingress switch. The selected edges will then be check to determine their

bandwidth capacity K, if K < D then the VM is not considered further and the Lowest

Demand First will move to the next VM. If K ≥ D then the most traveled edge in the

spine is checked to see its bandwidth availability, if not then the VM is not considered. If

there is available bandwidth, then the edges from the egress switch of the spine to the

destination VM is selected and the bandwidth is checked, if not enough bandwidth then

the VM is not considered. If there is available bandwidth, then the whole path from

source and destination of the communication pairs can support the demand of the pair.

When the demand has been shown to have available bandwidth to support the VM, it will

send the communication over the checked path. The time complexity for sorting the VMs

would be O(V2) and each VM would need a tree traversal to check bandwidth along its

path which is O(n), resulting in a time complexity of O(V2 * n). Figure 2 below shows

the pseudocode of the Lowest Demand First algorithm.

14	

Figure 2. Lowest demand first pseudocode

Highest Priority First

 The Highest Priority First algorithm receives a list of VM communication pairs.

The communication pairs are sorted by the highest priority, a list of VM ids are stored to

keep track of order. The algorithm then performs the same bandwidth check described in

the Lowest Demand First algorithm, checking edges to the ingress switch, the spine, then

15	

from the egress switch to the destination VM. If all the edges on the communication path

have available bandwidth, then the checked VM communication is permitted. If there is

not enough bandwidth, then the VM is not considered. This algorithm shares the same

structure of sorting then tree traversal as the lowest demand first algorithm, thus the time

complexity is O(V2 * n). Figure 3 below shows the pseudocode of Highest Priority First

algorithm, from line nine onwards refer to the first algorithm as they are identical.

Figure 3. Highest priority first pseudocode

Highest Average Priority First

 The Highest Average Priority First algorithm receives a list of VM

communication pairs. The VM pairs each have the attributes of demand D and priority T,

the average priority is calculated by T / D. Once the average priority is calculated the

VMs are sorted in order of highest average priority first. The checking and allocating of

bandwidth used after the ordering is established is the same as the previous algorithms.

16	

This algorithm shares the same structure as the previous algorithms, resulting in the same

time complexity of O(V2 * n). Figure 4 below shows the pseudocode of the Highest

Average Priority First algorithm, from line nine onwards refer to the first algorithm as

they are identical.

Figure 4. Highest average priority first pseudocode

Dynamic Programming

 The tree data center with edges E that have uniform bandwidth capacity and VMs

are placed under special conditions can be modeled such that dynamic programming can

be used to select VM communication pairs. The special conditions for the VM

communication pairs is the source VM in in the pairs must be hosted in a physical

machine that exist in the subtree G`, where the root of G` is the ingress switch to the

spine. An example of the subtree G` can be seen in figure 5, in this example MB1 is the

first middlebox in the policy so the subtree G` is represented in red. Another special

17	

condition that must be met to allow for dynamic programming is the destination VMs in

the communication pairs must exist in the subtree G``, where the root of G`` is the egress

switch to the spine. The example shown in figure 5 has MB3 as the last middlebox in the

policy, the subtree with the egress switch as the root is shown by the color green.

Figure 5. Tree topology with highlighted subtree under ingress and egress switch

If the source VMs are located in the subtree with the spine ingress as the root and

the destination VMs located in the subtree with the spine egress as the root, then the

maximization of priority in the data center can be modeled as the 1/0 knapsack problem.

The knapsack problem is an optimization problem where a knapsack with total available

capacity C is given and we are given [1 . . . n] items i, each item has the two attributes of

weight W and value V (Khuri, 1994). Assuming that Wi ＞C and that items

cannot be split resulting in an all or nothing approach per item selected, then a decision

18	

must be made for which items to take in order to maximize the value. The data center can

be modeled to reflect the description above, the total available capacity in the model is

calculated by the identifying the most traversed edge in the spine. Once identified, the

edge capacity divided by the amount of times traversed will result in the total available

capacity that this network can support. The items to choose from in this model are the

communication pairs, the weight of each pair is modeled as the demand they require to

send their flow, the value of each pair is modeled as the communication priority. The

time complexity of dynamic programming for the knapsack problem is O(V * C) where

V is the VMs and C is the maximum capacity the network can support. A tree traversal is

required to determine the max capacity C, which is O(n), resulting in a total time

complexity of O(V * C + n).

Dynamic programming example

 Given the data center shown in figure 5 shown above, assume the following is

true for this data center:

1. Edges have K = 2.

2. VM pair 1 and 2 have D = 1 and T * F = 1.

3. VM pair 3 has D = 2 and T * F = 3.

With the given information we can model the data center to resemble the 1/0 knapsack

problem. In the example given all the edges in the spine are traversed once, resulting in

the first edge being selected. Since all edges in this data center have K = 2, the total

available capacity C for the knapsack problem would be K/traversals which is 2. VM pair

1 and 2 both are modeled to have weight 1 and value 1, while VM pair 3 has weight 2

19	

and value 3. Table 1 below shows the results of the dynamic programming using the

parameters described.

Table 1

Dynamic Programming Table Creation
Items \ Weight 0 1 2

0 0 0 0

1 0 1 1

2 0 1 2

3 0 1 3

Using the generated table, the dynamic programming algorithm can determine

that item three will provide the most value for the weight available, thus selecting VM

pair 3. When VM pair 3 is selected, using the table we can see that the edge capacity no

longer has any available capacity, so no other VM pair is selected. After VM pair 3 is

selected the connection will be made and the edge capacities within the data center would

be updated. In the provided example we show that the Dynamic Programming approach

can be used to solve the priority maximization problem effectively.

20	

CHAPTER 4

RESULTS AND ANALYSIS

 This section will first discuss the performance of the heuristic algorithms, Highest

Priority First, Lowest Demand First, Highest Average Priority First, dynamic

programming approach, and random VM selection. First the case were VMs are placed in

the subtree of the egress and ingress MBs to the spine is analyzed. Then the results of the

heuristic algorithms will be analyzed in the general VM placement case.

 The parameters used for VM attributes in the simulations are the same across all

tests. Communication pair priority is randomly assigned upon creation; the range of

priority is 1 - 100. The frequency of each communication pair is random, the range for

communication frequency is 1 - 10. The demand cost of a communication pair is also

random and assigned on creation, the range for demand is also 1 - 10. The topology used

in the simulation is a tree data center with 84 nodes, each node having four children,

excluding leaf nodes. This setup results in 21 switches in the data center connecting 64

physical machines as shown by figure 6. We will now explore the effects of varying

parameters for the amount of middleboxes, available link capacity, and amount of VMs

to examine the performance of the proposed algorithms.

21	

Figure 6. Data center topology used in simulations

 First the heuristic algorithms and the dynamic programming algorithm are tested

to see how they perform with varying amounts of middleboxes in the data center policy

under the special conditions mentioned earlier. The parameters used for the simulation is

link capacity equaling to 200. The amount of communication pairs attempting to establish

data flow is 200, for a total of 200 source VMs and 200 destination VMs. Figure 7 shows

the performance of the proposed algorithms when the network has three, five, and eight

middleboxes in the policy. In all three middlebox cases we observe that the Dynamic

Programming approach performs the best with an average of 3247.82 priority serviced

when three MBs where placed in the data center. The worst performing heuristic

algorithm was the Highest Priority First with an average of 1852.98 priority serviced with

three MBs. We believe a potential reason for this underperformance is the algorithm does

not take into consideration the demand of the communications, while the other higher

performing algorithms, all consider demand when choosing communication pairs.

22	

Figure 7. Algorithm performance with varying MBs, special case

 Next the heuristic algorithms are tested to observe their performance with varying

amounts of middleboxes in the data center policy in the general case. The parameters

used for the simulation are the same as when the varying middleboxes were tested in the

special case, once again testing three, five, and eight middleboxes. The difference now is

the VM communication pairs are now be placed randomly on any physical machine in the

data center instead of limiting to subtrees of the ingress and egress switches. Figure 8

shows the average priority from the results of the simulations, we observe that the highest

performing heuristic algorithm is the Highest Average Priority First. The lowest

performing heuristic, once again being the Highest Priority First.

23	

Figure 8. Algorithm performance with varying MBs, general case

 Next we test what effect varying link capacity has on the proposed algorithms, fist

we test the special case allowing for the Dynamic Programming algorithm to be

used. The parameters used for the simulation is the number of middleboxes that are

placed in the data center amounts to five. The amount of communication pairs attempting

to establish data flow is 200, for a total of 200 source VMs and 200 destination VMs. The

varying link capacities, which will determine how much demand they can sustain, used in

the test is 100, 300, and 500. The results show the Dynamic Programming algorithm

performs the best in all link capacities. The algorithm that performed the second best is

the Highest Average Priority First. We can see from the results shown in Figure 9 that as

the link capacity increases the more demand can be satisfied, and the better all of the

algorithms perform.

24	

Figure 9. Algorithm performance, varying link capacity, special case

 Next we test the heuristic algorithm’s performance with varying link capacities in

the general case. The parameters of the simulation testing were the same as the special

case, but with random placement of the VMs from the communication pairs. The Highest

Average Priority First performs the best out of the heuristic algorithms, with Highest

Priority First only performing better than Random. The results shown in Figure 10 show

that as the amount of capacity per edge increased the performance of Highest Average

Priority First algorithm also increased.

25	

Figure 10. Algorithm performance, varying link capacity, general case

 The last group of testing done on the algorithms is with varying amounts of VM

communication pairs placed within the data center, first the special case is examined

along with the Dynamic Programming approach. The parameters used for the simulation

is the number of middleboxes that are placed in the data center amounts to five. The

amount of link capacity for every edge is 200. The varying amount of VM

communication pairs attempting to establish connections for data flow were tested using

100, 300, and 500 VM pairs. Once again the Dynamic Programming approach

outperformed the other algorithms as shown in Figure 11, with the Highest Average

Priority First performing second best. An interesting note is the average priority

improved for all of the algorithms, with the exception of random, as the number of VM

26	

pairs increased as shown by table 2, despite the amount of bandwidth available was static

at 200. A possible explanation for this occurrence is that as the amount of VM

communication pairs increase, the algorithms now have a larger pool of communication

pairs with preferable demand, frequency, and priority ratios.

Figure 11. Algorithm performance, varying amount of VMs, special case

27	

Table 2

Average Priority Varying Amount of VMs
Algorithms / Number of VMs 100 300 500

Random 420 421.2 411.82

Lowest Demand First 1725.1 2910.58 3649.14

Highest Avg Priority First 1963.08 3101.92 3853.14

Highest Demand First 1346.5 1400.76 1439.68

Dynamic Programming 1970.74 3224.24 3994.22

Lastly, the heuristic algorithms are compared with each other in the general case

with varying amounts of VM communication pairs. The parameters of the simulation

testing were the same as the special case, but with random placement of the VMs from

the communication pairs instead of only in the subtree of the ingress and egress switches.

The Highest Average Priority First algorithm performs the best of the heuristics with

Lowest Demand First performing second best. Once again we observe from Figure 12

that as the amount of VM pairs increases so does the average priority satisfied, excluding

random. Another interesting note is Highest Priority First algorithm does increase in

performance with the amount of VM pairs available, but not as much as the other

heuristic algorithms.

28	

Figure 12. Algorithm performance, varying amount of VMs, general case

28	

CHAPTER 5

CONCLUSION AND FUTURE WORK

Future work that could extend the research presented in this study would include

development and testing of a general solution for the priority maximization in a policy

enforced tree data center. This thesis looked into multiple middleboxes with only a single

instance each, further research can be done to propose a solution to the multiple

middlebox with multiple instances policy enforcement problem. The addition of other

NFV technologies and techniques, such as VM replication or middlebox placement, can

be factored into the optimization of the data center in tandem with the algorithms

proposed in this paper. Further future work includes testing the proposed algorithms in an

emulated data center environment, the testing was done via simulation in this report, but

implementation via emulation would improve the validity of the findings.

 In this thesis we proposed four algorithms to maximize communication priority of

VM communication pairs in policy aware data centers using tree topology under

bandwidth capacity constraints. To address the problem, three heuristic algorithms were

proposed they are highest priority first, lowest demand, and highest average

priority. Under specific conditions we show the priority maximization problem can be

modeled as a 1/0 knapsack problem, which can then be solved using dynamic

programming. Rigorous simulation showed that the dynamic programming out performs

the three heuristic algorithms under the specific conditions, with the Highest Average

Priority First performing second best. In the general case with VMs randomly distributed

29	

across the physical machines, the Highest Average Priority First performed the best with

Lowest Demand First performing second best and all heuristics performing better then

random choice. The proposed algorithms show that there are still many optimizations that

can be made within data centers that can improve performance and quality of service

without the need for purchasing new hardware.

REFERENCES

	
31	

REFERENCES

Beloglazov, A., & Buyya, R. (2010, May). Energy efficient allocation of virtual machines

in cloud data centers. In Cluster, Cloud and Grid Computing (CCGrid), 2010 10th

IEEE/ACM International Conference on (pp. 577-578). IEEE.

Bhardwaj, S., Jain, L., & Jain, S. (2010). Cloud computing: A study of infrastructure as a

service (IAAS). International Journal of engineering and information Technology,

2(1), 60-63.

Buyya, R., Beloglazov, A., & Abawajy, J. (2010). Energy-efficient management of data

center resources for cloud computing: a vision, architectural elements, and open

challenges. arXiv preprint arXiv:1006.0308.

Carpenter, B., & Brim, S. (2002). Middleboxes: Taxonomy and issues (No. RFC 3234).

Charikar, M., Naamad, Y., Rexford, J., & Zou, X. K. (2018). Multi-commodity flow with

in-network processing. arXiv preprint arXiv:1802.09118.

Cisco, C. (2005). Server Farm Security in the Business Ready Data Center Architecture

v2. (pp. 2.1 - 2.16)

Cisco Index, C. G. C. (2016). Forecast and methodology, 2015-2020 white paper.

Retrieved 1st June.

Fayazbakhsh, S. K., Sekar, V., Yu, M., & Mogul, J. C. (2013, August). Flowtags:

Enforcing network-wide policies in the presence of dynamic middlebox actions.

In Proceedings of the second ACM SIGCOMM workshop on Hot topics in

software defined networking (pp. 19-24). ACM.

	
32	

Gouveia, L. (1996). Multicommodity flow models for spanning trees with hop

constraints. European Journal of Operational Research, 95(1), 178-190.

Han, B., Gopalakrishnan, V., Ji, L., & Lee, S. (2015). Network function virtualization:

Challenges and opportunities for innovations. IEEE Communications Magazine,

53(2), 90-97.

Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee, S., &

McKeown, N. (2010, April). Elastictree: Saving energy in data center networks.

In Nsdi (Vol. 10, pp. 249-264).

Joseph, D. A., Tavakoli, A., & Stoica, I. (2008, August). A policy-aware switching layer

for data centers. In ACM SIGCOMM Computer Communication Review (Vol.

38, No. 4, pp. 51-62). ACM.

Khuri, S., Bäck, T., & Heitkötter, J. (1994, April). The zero/one multiple knapsack

problem and genetic algorithms. In Proceedings of the 1994 ACM symposium on

Applied computing (pp. 188-193). ACM.

Mahimkar, A., Chiu, A., Doverspike, R., Feuer, M. D., Magill, P., Mavrogiorgis, E., ... &

Yates, J. (2011, November). Bandwidth on demand for inter-data center

communication. In Proceedings of the 10th ACM Workshop on Hot Topics in

Networks (p. 24). ACM.

Markiewicz, A., Tran, P. N., & Timm-Giel, A. (2014, October). Energy consumption

optimization for software defined networks considering dynamic traffic. In Cloud

Networking (CloudNet), 2014 IEEE 3rd International Conference on (pp. 155-

160). IEEE.

	
33	

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., &

Turner, J. (2008). OpenFlow: enabling innovation in campus networks. ACM

SIGCOMM Computer Communication Review, 38(2), 69-74.

Meng, X., Pappas, V., & Zhang, L. (2010, March). Improving the scalability of data

center networks with traffic-aware virtual machine placement. In INFOCOM,

2010 Proceedings IEEE (pp. 1-9). IEEE.

Nguyen, X. N., Saucez, D., Barakat, C., & Turletti, T. (2015, April). OFFICER: A

general optimization framework for OpenFlow rule allocation and endpoint policy

enforcement. In Computer Communications (INFOCOM), 2015 IEEE Conference

on (pp. 478-486). IEEE.

Qazi, Z. A., Tu, C. C., Chiang, L., Miao, R., Sekar, V., & Yu, M. (2013, August).

SIMPLE-fying middlebox policy enforcement using SDN. In ACM SIGCOMM

computer communication review (Vol. 43, No. 4, pp. 27-38). ACM.

Sallam, G., Gupta, G. R., Li, B., & Ji, B. (2018). Shortest Path and Maximum Flow

Problems Under Service Function Chaining Constraints. arXiv preprint

arXiv:1801.05795.

Vazirani, V. V. (2003). Multicut and Integer Multicommodity Flow in Trees. In

Approximation Algorithms (pp. 145-153). Springer, Berlin, Heidelberg.

APPENDICES

APPENDIX A

LOWEST DEMAND FIRST CODE

36	

class LowCostFirst:

 def __init__(self, topo, vmPairs):

 self.topo = topo

 self.vmPairs = vmPairs

 self.middleboxes = topo.get_middleboxes()

 self.cap_flag = 0

 self.dropped_pairs = 0

 def allocate(self):

 print("Lowest Freq first start: -running-")

 # after cost is calc'd for each pair, order: lowest cost first

 temp_arr = self.vmPairs

 for index in range(1, len(self.vmPairs)):

 value = self.vmPairs[index]

 i = index - 1

 while i >= 0:

 if value.comm_frequency() < self.vmPairs[i].comm_frequency():

 temp_arr[i + 1] = self.vmPairs[i]

 temp_arr[i] = value

 i -= 1

 else:

 break

37	

 self.vmPairs = temp_arr

 def cap_check(self, pair):

 mb_counter = 0

 path = []

 vm1, vm2 = pair.get_vms()

 if len(self.middleboxes) != 0:

 path.extend(self.topo.get_path(

 vm1.get_parent().get_name(),

 self.middleboxes[mb_counter].get_parent_switch().get_name()

))

 else:

 path.extend(self.topo.get_path(

 vm1.get_parent().get_name(),

 vm2.get_parent().get_name()

))

 if len(self.middleboxes) > 1:

 mb_counter = mb_counter + 1 # start at 1

 while mb_counter < len(self.middleboxes):

 path.extend(self.topo.get_path(

38	

 self.middleboxes[mb_counter - 1].get_parent_switch().get_name(),

 self.middleboxes[mb_counter].get_parent_switch().get_name()

)[1:])

 mb_counter = mb_counter + 1

 path.extend(self.topo.get_path(

 self.middleboxes[mb_counter - 1].get_parent_switch().get_name(),

 vm2.get_parent().get_name()

)[1:])

 master_edge_seq = self.topo.es

 path_edges = []

 count = 0

 for l in path:

 for e in master_edge_seq:

 if count < len(path) - 1:

 if (str(e.tuple[0]) == str(l) and str(e.tuple[1]) == str(path[count + 1]))

\

 or (str(e.tuple[0]) == str(path[count + 1]) and str(e.tuple[1]) ==

str(l)):

 path_edges.append(e)

 count = count + 1

 for single in path_edges:

 checker = single['capacity'] - pair.comm_frequency()

39	

 single['capacity'] = single['capacity'] - pair.comm_frequency()

 if checker < 0:

 self.cap_flag = 1

 for single_revert in path_edges:

 single_revert['capacity'] = single_revert['capacity'] +

pair.comm_frequency()

 # used to print the path, used for debug

 # print("path: " + str(path))

 def run_alg(self):

 pair_cost = 0

 priority = 0

 # once pairs are ordered, calc cost

 for pair in self.vmPairs:

 self.cap_check(pair)

 vm1, vm2 = pair.get_vms()

 # print("pair " + str(vm1.get_name()) + " " + str(vm2.get_name()) + " pri:

"

 # + str(pair.get_priority()) + " cost: " + str(pair.run_alg_calc())

 # + " freq: " + str(pair.comm_frequency()))

 if self.cap_flag == 0:

40	

 mb_counter = 0

 priority += pair.get_priority()

 if len(self.middleboxes) != 0:

 pair_cost += self.topo.get_distance_new(

 vm1.get_parent().get_name(),

 self.middleboxes[mb_counter].get_parent_switch().get_name(),

 pair.comm_frequency()

)

 mb_counter = mb_counter + 1

 while mb_counter < len(self.middleboxes):

 pair_cost += self.topo.get_distance_new(

 self.middleboxes[mb_counter -

1].get_parent_switch().get_name(),

 self.middleboxes[mb_counter].get_parent_switch().get_name(),

 pair.comm_frequency()

)

 mb_counter = mb_counter + 1

 pair_cost += self.topo.get_distance_new(

 self.middleboxes[mb_counter - 1].get_parent_switch().get_name(),

 vm2.get_parent().get_name(),

 pair.comm_frequency()

)

41	

 else:

 pair_cost += self.topo.get_distance_new(

 vm1.get_parent().get_name(),

 vm2.get_parent().get_name(),

 pair.comm_frequency()

)

 self.cap_flag = 0

 else:

 self.dropped_pairs = self.dropped_pairs + pair.comm_frequency()

 self.cap_flag = 0

 # print("lowest freq first, dropped packets: " + str(self.dropped_pairs))

 # print("lowest freq first, Value: " + str(priority))

 return priority

	

APPENDIX B

HIGHEST PRIORITY FIRST CODE

43	

class HiPriFirst:

 def __init__(self, topo, vmPairs):

 self.topo = topo

 self.vmPairs = vmPairs

 self.middleboxes = topo.get_middleboxes()

 self.dropped_pairs = 0

 self.cap_flag = 0

 def allocate(self):

 print("Highest priority first start: -running-")

 temp_arr = self.vmPairs

 for index in range(1, len(self.vmPairs)):

 value = self.vmPairs[index]

 i = index - 1

 while i >= 0:

 if value.get_priority() > self.vmPairs[i].get_priority():

 temp_arr[i + 1] = self.vmPairs[i]

 temp_arr[i] = value

 i -= 1

 else:

44	

 break

 self.vmPairs = temp_arr

 def cap_check(self, pair):

 mb_counter = 0

 path = []

 vm1, vm2 = pair.get_vms()

 if len(self.middleboxes) != 0:

 path.extend(self.topo.get_path(

 vm1.get_parent().get_name(),

 self.middleboxes[mb_counter].get_parent_switch().get_name()

))

 else:

 path.extend(self.topo.get_path(

 vm1.get_parent().get_name(),

 vm2.get_parent().get_name()

))

 if len(self.middleboxes) > 1:

 mb_counter = mb_counter + 1 # start at 1

 while mb_counter < len(self.middleboxes):

45	

 path.extend(self.topo.get_path(

 self.middleboxes[mb_counter - 1].get_parent_switch().get_name(),

 self.middleboxes[mb_counter].get_parent_switch().get_name()

)[1:])

 mb_counter = mb_counter + 1

 path.extend(self.topo.get_path(

 self.middleboxes[mb_counter - 1].get_parent_switch().get_name(),

 vm2.get_parent().get_name()

)[1:])

 master_edge_seq = self.topo.es

 path_edges = []

 count = 0

 for l in path:

 for e in master_edge_seq:

 if count < len(path) - 1:

 if (str(e.tuple[0]) == str(l) and str(e.tuple[1]) == str(path[count + 1])) \

 or (str(e.tuple[0]) == str(path[count + 1]) and str(e.tuple[1]) == str(l)):

 path_edges.append(e)

 count = count + 1

 for single in path_edges:

 checker = single['capacity'] - pair.get_communication_frequency()

 single['capacity'] = single['capacity'] - pair.get_communication_frequency()

46	

 if checker < 0:

 self.cap_flag = 1

 for single_revert in path_edges:

 single_revert['capacity'] = single_revert['capacity'] +

pair.get_communication_frequency()

 # used to print the path, used for debug

 # print("path: " + str(path))

 def run_alg(self):

 pair_cost = 0

 priority = 0

 # once pairs are ordered, calc cost

 for pair in self.vmPairs:

 self.cap_check(pair)

 vm1, vm2 = pair.get_vms()

 # print("pair " + str(vm1.get_name()) + " " + str(vm2.get_name()) + " pri: "

 # + str(pair.get_priority()) + " cost: " + str(pair.run_alg_calc())

 # + " freq: " + str(pair.get_communication_frequency()))

 if self.cap_flag == 0:

 mb_counter = 0

47	

 priority += pair.get_priority()

 if len(self.middleboxes) != 0:

 pair_cost += self.topo.get_distance_new(

 vm1.get_parent().get_name(),

 self.middleboxes[mb_counter].get_parent_switch().get_name(),

 pair.get_communication_frequency()

)

 mb_counter = mb_counter + 1

 while mb_counter < len(self.middleboxes):

 pair_cost += self.topo.get_distance_new(

 self.middleboxes[mb_counter - 1].get_parent_switch().get_name(),

 self.middleboxes[mb_counter].get_parent_switch().get_name(),

 pair.get_communication_frequency()

)

 mb_counter = mb_counter + 1

 pair_cost += self.topo.get_distance_new(

 self.middleboxes[mb_counter - 1].get_parent_switch().get_name(),

 vm2.get_parent().get_name(),

 pair.get_communication_frequency()

)

 else:

 pair_cost += self.topo.get_distance_new(

48	

 vm1.get_parent().get_name(),

 vm2.get_parent().get_name(),

 pair.get_communication_frequency()

)

 self.cap_flag = 0

 else:

 self.dropped_pairs = self.dropped_pairs +

pair.get_communication_frequency()

 self.cap_flag = 0

 # print("highest pri first, dropped packets: " + str(self.dropped_pairs))

 # print("highest pri first, Value: " + str(priority))

 return priority

	

APPENDIX C

HIGHEST AVERAGE PRIORITY FIRST CODE

50	

class HighAveFirst:

 def __init__(self, topo, vmPairs):

 self.topo = topo

 self.vmPairs = vmPairs

 self.middleboxes = topo.get_middleboxes()

 self.dropped_pairs = 0

 self.cap_flag = 0

 def allocate(self):

 print("Highest Avg priority first start: -running-")

 temp_arr = self.vmPairs

 for index in range(1, len(self.vmPairs)):

 value = self.vmPairs[index]

 i = index - 1

 while i >= 0:

 if (value.get_priority()/value.get_communication_frequency()) > \

(self.vmPairs[i].get_priority()/self.vmPairs[i].get_communication_frequency()):

 temp_arr[i + 1] = self.vmPairs[i]

 temp_arr[i] = value

51	

 i -= 1

 else:

 break

 self.vmPairs = temp_arr

 def cap_check(self, pair):

 mb_counter = 0

 path = []

 vm1, vm2 = pair.get_vms()

 if len(self.middleboxes) != 0:

 path.extend(self.topo.get_path(

 vm1.get_parent().get_name(),

 self.middleboxes[mb_counter].get_parent_switch().get_name()

))

 else:

 path.extend(self.topo.get_path(

 vm1.get_parent().get_name(),

 vm2.get_parent().get_name()

))

 if len(self.middleboxes) > 1:

52	

 mb_counter = mb_counter + 1 # start at 1

 while mb_counter < len(self.middleboxes):

 path.extend(self.topo.get_path(

 self.middleboxes[mb_counter - 1].get_parent_switch().get_name(),

 self.middleboxes[mb_counter].get_parent_switch().get_name()

)[1:])

 mb_counter = mb_counter + 1

 path.extend(self.topo.get_path(

 self.middleboxes[mb_counter - 1].get_parent_switch().get_name(),

 vm2.get_parent().get_name()

)[1:])

 master_edge_seq = self.topo.es

 path_edges = []

 count = 0

 for l in path:

 for e in master_edge_seq:

 if count < len(path) - 1:

 if (str(e.tuple[0]) == str(l) and str(e.tuple[1]) == str(path[count + 1])) \

 or (str(e.tuple[0]) == str(path[count + 1]) and str(e.tuple[1]) == str(l)):

 path_edges.append(e)

 count = count + 1

 for single in path_edges:

53	

 checker = single['capacity'] - pair.get_communication_frequency()

 single['capacity'] = single['capacity'] - pair.get_communication_frequency()

 if checker < 0:

 self.cap_flag = 1

 for single_revert in path_edges:

 single_revert['capacity'] = single_revert['capacity'] +

pair.get_communication_frequency()

 # used to print the path, used for debug

 # print("path: " + str(path))

 def run_alg(self):

 pair_cost = 0

 priority = 0

 # once pairs are ordered, calc cost

 for pair in self.vmPairs:

 self.cap_check(pair)

 vm1, vm2 = pair.get_vms()

 # print("pair " + str(vm1.get_name()) + " " + str(vm2.get_name()) + " pri: "

 # + str(pair.get_priority()) + " cost: " + str(pair.run_alg_calc())

 # + " freq: " + str(pair.get_communication_frequency()))

 if self.cap_flag == 0:

54	

 mb_counter = 0

 priority += pair.get_priority()

 if len(self.middleboxes) != 0:

 pair_cost += self.topo.get_distance_new(

 vm1.get_parent().get_name(),

 self.middleboxes[mb_counter].get_parent_switch().get_name(),

 pair.get_communication_frequency()

)

 mb_counter = mb_counter + 1

 while mb_counter < len(self.middleboxes):

 pair_cost += self.topo.get_distance_new(

 self.middleboxes[mb_counter - 1].get_parent_switch().get_name(),

 self.middleboxes[mb_counter].get_parent_switch().get_name(),

 pair.get_communication_frequency()

)

 mb_counter = mb_counter + 1

 pair_cost += self.topo.get_distance_new(

 self.middleboxes[mb_counter - 1].get_parent_switch().get_name(),

 vm2.get_parent().get_name(),

 pair.get_communication_frequency()

)

 else:

55	

 pair_cost += self.topo.get_distance_new(

 vm1.get_parent().get_name(),

 vm2.get_parent().get_name(),

 pair.get_communication_frequency()

)

 self.cap_flag = 0

 else:

 self.dropped_pairs = self.dropped_pairs + pair.get_communication_frequency()

 self.cap_flag = 0

 # print("highest pri first, dropped packets: " + str(self.dropped_pairs))

 # print("highest pri first, Value: " + str(priority))

 return priority

	

APPENDIX D

DYNAMIC PROGRAMMING CODE

57	

class DynamicProg:

 def __init__(self, topo, vmPairs):

 self.topo = topo

 self.vmPairs = vmPairs

 self.middleboxes = topo.get_middleboxes()

 self.lowest_spine = 0

 self.path_edges = []

 self.path = []

 self.cache = {}

 self.vms = ()

 self.max_cap = 0

 def allocate(self):

 print("Dynamic Prog: -running-")

 mb_counter = 0

 lowest_spine = 0

 first_pass = 1

 path = []

 if len(self.middleboxes) > 1:

 mb_counter = mb_counter + 1 # start at 1

 while mb_counter < len(self.middleboxes):

58	

 if first_pass == 1:

 path.extend(self.topo.get_path(

 self.middleboxes[mb_counter - 1].get_parent_switch().get_name(),

 self.middleboxes[mb_counter].get_parent_switch().get_name()

))

 first_pass = 0

 else:

 path.extend(self.topo.get_path(

 self.middleboxes[mb_counter - 1].get_parent_switch().get_name(),

 self.middleboxes[mb_counter].get_parent_switch().get_name()

)[1:])

 mb_counter = mb_counter + 1

 else:

 lowest_spine = 0

 master_edge_seq = self.topo.es

 path_edges = []

 count = 0

 for l in path:

 for e in master_edge_seq:

 if count < len(path) - 1:

 if (str(e.tuple[0]) == str(l) and str(e.tuple[1]) == str(path[count + 1])) \

59	

 or (str(e.tuple[0]) == str(path[count + 1]) and str(e.tuple[1]) == str(l)):

 path_edges.append(e)

 count = count + 1

 # print("edge link: " + str(e.tuple[0]) + "-" + str(e.tuple[1]) +

str(e.attributes()))

 self.path_edges = path_edges

 self.path = path

 def spine_checker(self, path_edges, path):

 # how many times does each edge get crossed in spine

 # cap of links / # of times crossed

 # return the lowest

 counter = 0

 path_tuple_counter = 0

 dest_index = 1

 flag = 0

 path_tuple = []

 for single in path_edges[:len(path_edges)]:

 z = path[counter], path[dest_index], single['capacity'], 1

 for tuple_single in path_tuple:

 if (tuple_single[0] == z[0] and tuple_single[1] == z[1]) \

60	

 or (tuple_single[1] == z[0] and tuple_single[0] == z[1]):

 tuple_single = tuple_single[0], tuple_single[1], tuple_single[2],

(tuple_single[3] + 1)

 flag = 1

 if flag == 1:

 path_tuple[path_tuple_counter] = tuple_single

 path_tuple_counter += 1

 if flag == 0:

 path_tuple.append(z)

 flag = 0

 path_tuple_counter = 0

 counter += 1

 dest_index += 1

 lowest_available_cap = int(path_tuple[0][2] / path_tuple[0][3])

 for tup in path_tuple:

 if int(tup[2] / tup[3]) < lowest_available_cap:

 lowest_available_cap = int(tup[2] / tup[3])

 self.max_cap = lowest_available_cap + 1

 return lowest_available_cap

 def dyn_setup(self):

 t = self.spine_checker(self.path_edges, self.path)

61	

 @staticmethod

 def total_value(vms, max_weight):

 return sum([x[2] for x in vms]) if sum([x[1] for x in vms]) < max_weight else 0

 def solve(self, vms, max_weight):

 if not vms:

 return ()

 if (vms, max_weight) not in self.cache:

 tail = vms[1:]

 head = vms[0]

 chose = (head,) + self.solve(tail, max_weight - head[1])

 dont_chose = self.solve(tail, max_weight)

 if self.total_value(chose, max_weight) > self.total_value(dont_chose,

max_weight):

 item_choice = chose

 else:

 item_choice = dont_chose

 self.cache[(vms, max_weight)] = item_choice

 return self.cache[(vms, max_weight)]

62	

 def pair_dyn_setup(self):

 dyn_pairs = ()

 for pair in self.vmPairs:

 vm1, vm2 = pair.get_vms()

 x = str(vm1.get_name()) + " (" + str(vm1.get_parent().get_label()) + ")" \

 + str(vm2.get_name()) + " (" + str(vm2.get_parent().get_label()) + ")", \

 pair.get_communication_frequency(), pair.get_priority()

 dyn_pairs = (x,) + dyn_pairs

 return dyn_pairs

 def cap_check(self, pair):

 mb_counter = 0

 path = []

 vm1, vm2 = pair.get_vms()

 if len(self.middleboxes) != 0:

 path.extend(self.topo.get_path(

 vm1.get_parent().get_name(),

 self.middleboxes[mb_counter].get_parent_switch().get_name()

))

 else:

 path.extend(self.topo.get_path(

63	

 vm1.get_parent().get_name(),

 vm2.get_parent().get_name()

))

 if len(self.middleboxes) > 1:

 mb_counter = mb_counter + 1 # start at 1

 while mb_counter < len(self.middleboxes):

 path.extend(self.topo.get_path(

 self.middleboxes[mb_counter - 1].get_parent_switch().get_name(),

 self.middleboxes[mb_counter].get_parent_switch().get_name()

)[1:])

 mb_counter = mb_counter + 1

 path.extend(self.topo.get_path(

 self.middleboxes[mb_counter - 1].get_parent_switch().get_name(),

 vm2.get_parent().get_name()

)[1:])

 master_edge_seq = self.topo.es

 path_edges = []

 count = 0

 for l in path:

 for e in master_edge_seq:

 if count < len(path) - 1:

64	

 if (str(e.tuple[0]) == str(l) and str(e.tuple[1]) == str(path[count + 1])) \

 or (str(e.tuple[0]) == str(path[count + 1]) and str(e.tuple[1]) == str(l)):

 path_edges.append(e)

 count = count + 1

 for single in path_edges:

 checker = single['capacity'] - pair.get_communication_frequency()

 single['capacity'] = single['capacity'] - pair.get_communication_frequency()

 if checker < 0:

 self.cap_flag = 1

 for single_revert in path_edges:

 single_revert['capacity'] = single_revert['capacity'] +

pair.get_communication_frequency()

 # used to print the path, used for debug

 # print("path: " + str(path))

 def run_alg(self):

 pair_cost = 0

 priority = 0

 # once pairs are ordered, calc cost

 for pair in self.vmPairs:

 self.cap_check(pair)

 vm1, vm2 = pair.get_vms()

65	

 # print("pair " + str(vm1.get_name()) + " " + str(vm2.get_name()) + " pri: "

 # + str(pair.get_priority()) + " cost: " + str(pair.run_alg_calc())

 # + " freq: " + str(pair.get_communication_frequency()))

 if self.cap_flag == 0:

 mb_counter = 0

 priority += pair.get_priority()

 if len(self.middleboxes) != 0:

 pair_cost += self.topo.get_distance_new(

 vm1.get_parent().get_name(),

 self.middleboxes[mb_counter].get_parent_switch().get_name(),

 pair.get_communication_frequency()

)

 mb_counter = mb_counter + 1

 while mb_counter < len(self.middleboxes):

 pair_cost += self.topo.get_distance_new(

 self.middleboxes[mb_counter - 1].get_parent_switch().get_name(),

 self.middleboxes[mb_counter].get_parent_switch().get_name(),

 pair.get_communication_frequency()

)

 mb_counter = mb_counter + 1

 pair_cost += self.topo.get_distance_new(

 self.middleboxes[mb_counter - 1].get_parent_switch().get_name(),

66	

 vm2.get_parent().get_name(),

 pair.get_communication_frequency()

)

 else:

 pair_cost += self.topo.get_distance_new(

 vm1.get_parent().get_name(),

 vm2.get_parent().get_name(),

 pair.get_communication_frequency()

)

 self.cap_flag = 0

 else:

 self.dropped_pairs = self.dropped_pairs + pair.get_communication_frequency()

 self.cap_flag = 0

 # print("Random, dropped packets: " + str(self.dropped_pairs))

 # print("Random, Value: " + str(priority))

 return priority

	

APPENDIX E

RANDOM ALGORITHM CODE

68	

class RandomAlg:

 def __init__(self, topo, vmPairs):

 self.topo = topo

 self.vmPairs = vmPairs

 self.middleboxes = topo.get_middleboxes()

 self.dropped_pairs = 0

 self.cap_flag = 0

 def allocate(self):

 t = self.middleboxes

 print("Random Running" + str(t[0]))

 def cap_check(self, pair):

 mb_counter = 0

 path = []

 vm1, vm2 = pair.get_vms()

 if len(self.middleboxes) != 0:

 path.extend(self.topo.get_path(

 vm1.get_parent().get_name(),

69	

 self.middleboxes[mb_counter].get_parent_switch().get_name()

))

 else:

 path.extend(self.topo.get_path(

 vm1.get_parent().get_name(),

 vm2.get_parent().get_name()

))

 if len(self.middleboxes) > 1:

 mb_counter = mb_counter + 1 # start at 1

 while mb_counter < len(self.middleboxes):

 path.extend(self.topo.get_path(

 self.middleboxes[mb_counter - 1].get_parent_switch().get_name(),

 self.middleboxes[mb_counter].get_parent_switch().get_name()

)[1:])

 mb_counter = mb_counter + 1

 path.extend(self.topo.get_path(

 self.middleboxes[mb_counter - 1].get_parent_switch().get_name(),

 vm2.get_parent().get_name()

)[1:])

 master_edge_seq = self.topo.es

 path_edges = []

70	

 count = 0

 for l in path:

 for e in master_edge_seq:

 if count < len(path) - 1:

 if (str(e.tuple[0]) == str(l) and str(e.tuple[1]) == str(path[count + 1])) \

 or (str(e.tuple[0]) == str(path[count + 1]) and str(e.tuple[1]) == str(l)):

 path_edges.append(e)

 count = count + 1

 for single in path_edges:

 checker = single['capacity'] - pair.get_communication_frequency()

 single['capacity'] = single['capacity'] - pair.get_communication_frequency()

 if checker < 0:

 self.cap_flag = 1

 for single_revert in path_edges:

 single_revert['capacity'] = single_revert['capacity'] +

pair.get_communication_frequency()

 # used to print the path, used for debug

 # print("path: " + str(path))

 def run_alg(self):

 pair_cost = 0

 priority = 0

71	

 # once pairs are ordered, calc cost

 for pair in self.vmPairs:

 self.cap_check(pair)

 vm1, vm2 = pair.get_vms()

 # print("pair " + str(vm1.get_name()) + " " + str(vm2.get_name()) + " pri: "

 # + str(pair.get_priority()) + " cost: " + str(pair.run_alg_calc())

 # + " freq: " + str(pair.get_communication_frequency()))

 if self.cap_flag == 0:

 mb_counter = 0

 priority += pair.get_priority()

 if len(self.middleboxes) != 0:

 pair_cost += self.topo.get_distance_new(

 vm1.get_parent().get_name(),

 self.middleboxes[mb_counter].get_parent_switch().get_name(),

 pair.get_communication_frequency()

)

 mb_counter = mb_counter + 1

 while mb_counter < len(self.middleboxes):

 pair_cost += self.topo.get_distance_new(

 self.middleboxes[mb_counter - 1].get_parent_switch().get_name(),

 self.middleboxes[mb_counter].get_parent_switch().get_name(),

 pair.get_communication_frequency()

72	

)

 mb_counter = mb_counter + 1

 pair_cost += self.topo.get_distance_new(

 self.middleboxes[mb_counter - 1].get_parent_switch().get_name(),

 vm2.get_parent().get_name(),

 pair.get_communication_frequency()

)

 else:

 pair_cost += self.topo.get_distance_new(

 vm1.get_parent().get_name(),

 vm2.get_parent().get_name(),

 pair.get_communication_frequency()

)

 self.cap_flag = 0

 else:

 self.dropped_pairs = self.dropped_pairs + pair.get_communication_frequency()

 self.cap_flag = 0

 # print("Random, dropped packets: " + str(self.dropped_pairs))

 # print("Random, Value: " + str(priority))

 return priority

	

APPENDIX F

TOPOLOGY GENERATION CODE

74	

import igraph

import math as m

import random as r

import NetworkComponents as networks

class topoGen:

 def __init__(self, nodes, children, numPairs, numMB, physicalCap=None,

link_cap=None):

 self.nodes = nodes

 self.children = children

 self.numPairsairs = numPairs

 self.n_middleboxes = numMB

 self.max_vm_size = 1

 self.hosts, self.edgeSwitches = [], [], [], []

 self.middleboxes = []

 self.master_graph = None

 self.physicalCap = physicalCap

75	

 self.link_cap = link_cap

 self.es = None

 self.freq = 1

 def create_topology(self):

 tree = igraph.Graph.Tree(self.nodes, self.children)

 host_count = 0

 create_count = 0

 e_count = 0

 pod_number, pod_index = 0, 0

 vertical_number = 1

 for g in tree.vs:

 g["label"] = create_count

 g["host_flag"] = 0

 g["edgeSwitch"] = "None"

 g["host"] = "None"

 g["name"] = "None"

 flag = 0

 for e in tree.es:

 if create_count == e.tuple[0] or create_count == e.tuple[1]:

 flag = flag + 1

 if flag == 1:

76	

 g["host_flag"] = 1

 host_count = host_count + 1

 host_name = "host_" + str(host_count)

 if self.physicalCap is None:

 host_capacity = int(m.ceil((self.numPairsairs * 2.0 * self.max_vm_size)))

 else:

 host_capacity = self.physicalCap

 host = networks.PhysicalMachine(host_capacity, host_name, g["label"])

 g["host"] = tree.vs.select()

 g["name"] = str(host_name)

 self.hosts.append(host)

 else:

 e_count = e_count + 1

 edgeSwitch_name = "edgeSwitch_" + str(e_count)

 edgeSwitch = networks.PhysicalSwitch(edgeSwitch_name)

 edgeSwitch.set_label(g["label"])

 edgeSwitch.set_p(pod_number)

 edgeSwitch.set_v(vertical_number)

 edgeSwitch.set_h(2)

 pod_index += 1

 vertical_number += 1

 g["edgeSwitch"] = tree.vs.select()

77	

 g["name"] = edgeSwitch_name

 self.edgeSwitches.append(edgeSwitch)

 create_count = create_count + 1

 self.master_graph = tree

 self.es = igraph.EdgeSeq(self.master_graph)

 self.es["weight"] = 1

 self.es["capacity"] = 0

 self.es["capacity_val"] = 0

 for edge in self.es:

 edge["capacity"] = self.link_cap # randomize here

 edge["capacity_val"] = self.link_cap # randomize here

 def create_middleboxes(self):

 # make first and last middlebox an edge switch here

 middlebox_host = []

 self.randomEdgeSwitch()

 for i in range(1, self.n_middleboxes + 1):

 if self.n_middleboxes > 1:

 if i == 1 or i == self.n_middleboxes:

78	

 new_middlebox = networks.MiddleBox("MiddleBox_" + str(i))

 random_parent_switch = self.randomEdgeSwitch()

 while random_parent_switch.get_name() in middlebox_host:

 random_parent_switch = self.randomEdgeSwitch()

 new_middlebox.set_parent_switch(random_parent_switch)

 middlebox_host.append(random_parent_switch.get_name())

 self.middleboxes.append(new_middlebox)

 else:

 new_middlebox = networks.MiddleBox("MiddleBox_" + str(i))

 random_parent_switch = self.randomSwitch()

 while random_parent_switch.get_name() in middlebox_host:

 random_parent_switch = self.randomSwitch()

 new_middlebox.set_parent_switch(random_parent_switch)

 middlebox_host.append(random_parent_switch.get_name())

 self.middleboxes.append(new_middlebox)

 def randomSwitch(self):

 #layer_check = r.randint(0, 3)

79	

 switches = self.edgeSwitches

 return switches[r.randint(1, len(switches) - 1)]

 def randomEdgeSwitch(self):

 switches = []

 index = []

 for z in self.master_graph.vs:

 if z['host_flag'] == 1:

 index.append(self.master_graph.neighbors(z)[0])

 for x in self.edgeSwitches:

 if x.get_label() in index:

 switches.append(x)

 return switches[r.randint(1, len(switches) - 1)]

 def get_hosts(self):

 return self.hosts

 def getGraph(self):

 return self.master_graph

 def getMiddleboxes(self):

 return self.middleboxes

80	

 def setMiddleboxes(self, mbs):

 self.middleboxes = mbs

 def get_path(self, node1, node2):

 path = self.master_graph.get_shortest_paths(

 node1, to=node2, weights='weight', mode=igraph.OUT, output='vpath')

 return path[0]

 def get_distance_new(self, node1, node2, freq):

 # self.master_graph.es[0]["capacity"] = 1

 self.freq = freq

 path = self.master_graph.get_shortest_paths(

 node1, to=node2, weights='weight', mode=igraph.OUT, output='vpath')

 # print("p: " + str(path[0])) # prints path, uncomment to debug

 counter = 0

 link_full = False

 while counter < len(path[0]) - 1:

 for e in self.es:

 if (e.tuple[0] == path[0][counter] and e.tuple[1] == path[0][counter + 1]) or

(e.tuple[1] ==

 path[0][counter] and e.tuple[0] == path[0][counter

81	

+ 1]):

 if e["capacity"] <= 0:

 link_full = True

 e["capacity"] = e["capacity"] - self.freq

 if e["capacity"] <= 0:

 e["weight"] = 999999

 # self.master_graph.delete_edges(e)

 counter = counter + 1

 if link_full:

 # if full set to -1 but for now the same

 # cost = -1

 cost = len(path[0]) - 1

 else:

 cost = len(path[0]) - 1

 return cost

