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ABSTRACT 

This project shows a complete solution for efficient VM replication in a fat tree data 

center, modeled as a minimum cost flow problem for optimal replication flow, and then 

modeled as a bin packing problem for optimal server consolidation. Previously, both 

optimizations have not been shown in a single work. Using Python 3.6+ and the Google 

OR-Tools linear solver, results show the optimal algorithms outperform the best 

heuristics. Future work indicates a model where flow and consolidation can be 

optimized in a single algorithm, as well as a need for examination of non-linear factors 

(sensitivity analysis) and the use of machine learning for energy optimization.  
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Chapter 1: INTRODUCTION 

With the explosive growth of cloud infrastructure and worldwide network usage, 

minimizing the cost of virtual machine replication and data center energy usage has 

been a topic of interest for practical optimization. In data centers, the problem of moving 

around data efficiently has been modeled as a minimum cost flow problem [7]. 

The problem of efficient virtual machine replication in data centers is typically 

approached by considering the following sub-problems: minimizing flow costs, 

maximizing server consolidation, and fulfilling service level agreements. 

In order to minimize flow cost (i.e., transferring copies of a virtual machine across a 

network), the topology of the data center is modeled as a graph problem. Like others 

[7], this paper assumes the fat tree topology for the model. 

Maximizing server consolidation involves converting the network topology into a graph 

as well, and then solving it as a bin packing problem. Both of these types of optimization 

problems can be solved using linear programming. Linear optimization problems are a 

large class of problems which are most widely solved by applications of Dantzig’s 

simplex algorithm, devised in 1947 [6].  

Besides minimum cost flow and bin packing, other interesting applications of the 

simplex algorithm include: routing problems (i.e. traveling salesman or delivery 

optimization), assignment, scheduling, and large classes of linear, constraint, and 

integer optimizations. Examples of these can be found at [5]. 

The format of this paper first discusses related work, and why they are different from the 
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solution being addressed here. Then the 7 algorithms used are explained. There are 

two stages to the optimization, some algorithms concern the first stage where sum of 

network flow is minimized (Algorithms 1, 2, 3), and the other algorithms are used in the 

second stage where server consolidation is maximized (Algorithms 4, 5, 6, 7). To clarify, 

an optimal solution would only require Algorithm 3 (minimum cost flow) and Algorithm 7 

(bin packing with constraints). The others are for comparison to the optimal. 

There are often multiple optimal flow solutions, from these we use algorithms to 

maximize server consolidation. In the two-stage optimization design, the set of 

consolidation solutions is dependent on the set of optimal flow solutions. In other words, 

the second stage is searching through flow solutions which are equivalent in flow-cost to 

the minimum cost flow solution, in order to find an optimal flow solution which uses the 

least number of servers (maximizes consolidation). 

In each of these two stages (flow, consolidation), the optimal algorithms are compared 

to greedy heuristics. Algorithms (1, 2, 4, 5, 6) are greedy heuristics meant for 

comparison against the optimal algorithms (3, 7). Greedy heuristics are simpler to 

understand and implement, but only the optimal algorithms are guaranteed to produce 

the best solution every time. 

After the analysis of the algorithms, we look at implementation. The Implementation 

section explains the program logic. Each critical piece of logic is discussed, in the order 

that it executes in the program. The complete code is attached in the appendix. The 

results show why and how optimal outperforms heuristic, and at the very end there is 

discussion on direction of future work.  
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Chapter 2: RELATED WORK 

In "Power-efficient virtual machine replication in data centers," P. Khani, B. Tang, J. 

Han, and M. Beheshti showed the details of the graph transformation of a fat tree 

topology data center, in order to model virtual machine replication as a minimum cost 

flow problem with an optimal solution [7]. For reference, a figure diagramming an 

example fat tree topology where k=4 (k is the arity of the fat tree and determines the 

magnitude of its structure): 

 

Figure 1 Review of fat tree topology 

More information on how the fat tree structure is generated from ‘k’ and why it is a 

useful network topology structure can be found outside this paper.  

 

The “efficient virtual machine replication” problem was formulated as follows: there are 

several virtual machines sitting on physical machines in the fat tree topology. Each 
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‘original’ virtual machine wants to send R replica copies of itself to other physical 

machines, using the shortest network routing paths possible. Minimizing the sum of flow 

cost of all selected routing paths was the primary objective, subject to the following 

constraints: for safety, no two copies of a virtual machine could ever occupy the same 

physical machine; physical machines were modeled to have a limited space capacity.  

 

 

Figure 2 Initial VM placement example 

In the illustration above, the original virtual machines 0, 1, 2, 3 are initially located at 

physical machines 12, 13, 7, 15 respectively (physical machines are labeled 0 - 15). 
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Figure 3 Minimum cost flow solution example 

In the illustration above, we see an example minimum cost flow solution for the previous 

figure. Each VM replicates 9 times (red numbers). Virtual machine replica copies are 

indicated by the red numbers corresponding with their original virtual machine id: 0, 1, 2, 

or 3. The black numbers 0, 1, 2, 3 are the original virtual machines which never moved. 

For a detailed explanation of replica choices, please see Figure 17 on page 16. 

 

Khani et al.’s results compare the optimal flow cost of the minimum cost flow solution to 

some simple greedy heuristics, such as a heuristic where each virtual machine copy 

‘chooses’ its cheapest routing path. The heuristic is quite good, performing almost as 

well as optimal in most cases, but it is not as good as optimal because the order in 

which each virtual machine copy can pick is arbitrary. In more complex conditions, 
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sometimes one virtual machine copy will greedily choose a destination physical 

machine that could have been used more efficiently by a different virtual machine copy. 

 

Khani et al. ran into a problem when it came to server consolidation: the minimum cost 

flow solution gave them an arbitrary number of destination physical machines [7]. For 

example, imagine a minimum flow cost solution where total flow cost is 60, and 10 

physical machines end up holding virtual machines. Compare this to a solution where 

total flow cost is still 60, but 8 physical machines end up being used. Even though a 

solution using fewer physical machines is more desirable (because unused machines 

can be slept to save power), the minimum cost flow algorithm would arbitrarily choose 

any solution which minimized flow cost. This is due to the way the problem was 

modeled, see Figure 4. There was no modeled cost representing activation of a server. 

 

Figure 4 Khani, Tang, et. al graph transformation 

As a side note, when modeling assignment (assign each virtual machine copy to a 

destination physical machine) as a minimum cost flow problem, it is common to use a 

“super sink” and a “super source” node to aggregate all the supply and demand into just 
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1 source node and 1 sink node. This makes the problem compatible with a larger class 

of solvers than those which can handle multiple source and sink nodes. 

 

As the illustration of their graph transformation shows, there is no cost on the final set of 

edges from each physical machine to the super sink node, effectively making it ‘free’ to 

use an arbitrary number of servers in the solution. While this graph transformation 

allows a solver to minimize flow cost, it does not address server consolidation.  

 

After the minimum cost flow algorithm produces an optimal flow cost solution, Khani et 

al. then used a second ‘consolidation stage’ to try to consolidate servers used by 

reexamining choices made by the minimum cost flow solution. Their consolidation 

algorithms were greedy heuristics which were not optimal, thus leaving room for 

improvement. However, this problem can be solved optimally by being modeled as a bin 

packing problem with constraints, which is what this paper does. 

 

H. Goudarzi and M. Pedram have the most cited work concerning efficient virtual 

machine replication, in their paper "Energy-Efficient Virtual Machine Replication and 

Placement in a Cloud Computing System," (2012) [2]. Their paper focuses on fulfilling 

service level agreements in a cloud environment, which means ensuring the correct 

amount of CPU and memory are allocated to each virtual machine. In addition, they 

focus on server consolidation of virtual machines. Their work does not consider using 

virtual machine replicas as backup copies for safety, nor is flow cost ever considered.  
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X. Dai, J. M. Wang and B. Bensaou, in "Energy-Efficient Virtual Machines Scheduling in 

Multi-Tenant Data Centers," (2016) [9] have a paper similar to Goudarzi and Pedram 

concerning the fulfillment of service level agreements and server consolidation in cloud 

computing. They concluded an optimal solution would take too long to be practical, and 

they compared their greedy heuristic algorithms for server consolidation to an optimal 

one achieved by Gurobi (a privatized linear solver). Again, their work does not consider 

flow cost. 

 

In “Improved Filtering for the Bin-Packing with Cardinality Constraint” [8], Derval, R’egin, 

Schaus show how to prune the search tree of bin packing solutions, using a “too-big”, 

“too-small” concept, reducing computation time spent on impossible assignments. There 

is no mention of network flow cost or efficient VM replication, thus the scope of their 

paper is different than this one. However, their work has potential to reduce the bin 

packing time calculation. 

 

In “Minimum Cost Maximum Flow Algorithm for Dynamic Resource Allocation in Clouds” 

[10], Hadji and Zeghlache simplify VM assignment by assuming all costs are known by 

the cloud provider. The big idea of their paper is to predict future cloud resource 

allocation based on past usage. There are no mentions of network flow cost at all. They 

claim their algorithm “matches the global optimum most of the time”, which is a 

contradiction, as an optimal algorithm should guarantee the best solution, every time, all 

sets of cases considered. They use a simplified cost function where cost is inversely 

proportional to current usage of that PM. This means no concrete results data on PM 
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space capacity, etc., as VMs are only classified by “type”, ex: small, medium, large. 

They exclusively use minimum cost flow or bin packing to solve a simplified graph 

transformation of the problem. This project uses both MCF and bin packing in 

sequence. 

 

Currently, it seems that no single research paper produces both optimal network flow 

and optimal server consolidation together. There may also be a lack of organized data 

on sensitivity analysis: which factors are truly significant in optimizing data center 

energy usage? This would involve analysis of whether it is worth the cost of running 

optimal solutions against simpler greedy heuristics, frequency of recalculation 

(depending on how dynamic the environment is), actual measurable amount of energy 

saved, and whether there are other important factors to consider.  

 

This paper details an experiment with an optimal minimum cost flow solution and an 

optimal server consolidation solution used together. There is some discussion at the 

end on how to combine these two stages into one, for future work. 
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Chapter 3: ALGORITHMS AND THEIR ANALYSIS 

Algorithm 1: First Fit. Each replica VM goes to the lowest ID available PM without 

considering flow cost, which is why it achieves maximum consolidation. Available 

means there is both enough PM space and there are no other copies of this VM already 

on the target PM. First Fit algorithm is used as a benchmark for maximum consolidation, 

without any consideration of flow. Pseudocode:

 

Figure 5 Pseudocode for Algorithm 1 

First Fit time complexity: assuming feasibility, in the worst case, each replica VM must 

search through all the PMs, checking: if each PM already contains any copy of that VM, 

if that PM has enough space remaining. This means O(numReplicaCopies * numPMs) * 

(the constant which represents the time it takes to perform the checks for space and 

any other copies of this VM). 

Algorithm 2: Greedy. A greedy heuristic where each VM chooses the lowest flow-cost 

available destination PM, in arbitrary order. Pseudocode: 
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Figure 6 Pseudocode for Algorithm 2 

Greedy performance often matches or comes close to minimum cost flow solutions in 

terms of flow-cost, but it has no consideration of consolidation, and it is not an optimal 

flow-cost solution due to allowing the replica VMs to choose in arbitrary order, this can 

lead to one replica VM arbitrarily preventing a later replica VM’s optimal choice[1].  

Greedy time complexity: each replica VM must sort the list of PMs by ascending flow-

cost. It must check each PM for space and whether that PM contains any other copies 

of this VM. Worst case, this leads to O(numReplicaCopies * (numPM * log numPM) * 

numPM), where each replicaVM has to sort the list of PMs by flow-cost and doesn’t 

place until the last PM on its sorted list. 

Algorithm 3: Minimum Cost Flow. This is the optimal flow algorithm which can guarantee 

the minimum total flow cost every time. The minimum cost flow algorithm is 

implemented in Google’s OR-Tools in C++, using Goldberg’s method, with O(V^2 * E). 

In this graph transformation, the number of vertices will be numReplicaCopies + numPM 

, plus 2 (the supersource and supersink). The number of edges is numReplicaCopies + 

numPM + numReplicaCopies * (numPM-1). See the graph transformation figures. 

Algorithm 4: RFF, or ReplacementFirstFit, is a consolidation heuristic which limits each 

replica VM to a set of target PMs that are equivalent in flow cost to the minimum cost 

flow solution. This ensures the consolidation solution always has the same flow cost as 
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MCF’s solution(Algorithm 3). Replica VMs are placed in the lowest-id available PM, 

where “available” means: flow cost to target PM is the same as MCF, PM has enough 

space, and no other copy of that VM is on the target PM. Pseudocode:

 

Figure 7 Pseudocode for Algorithm 4 

ReplacementFirstFit’s time complexity: Since optimal flow costs are already given as a 

result of the MCF solution, each replica copy only searches for the lowest-ID-available-

PM from a list of target PMs which are equivalent in flow cost to the MCF solution, while 

also considering whether the target PM has enough space and whether there is already 

a replica copy of that VM on the target PM. The worst case is O(numReplicaCopies * 

numPMs). 

Algorithm 5: MCF-Placed-FirstFit, just like Algorithm 4 RFF, is a consolidation heuristic 

which starts from the minimum cost flow solution and examines each PM to try to move 

any VMs to the lowest-id available PM, while respecting equivalent flow-costs. The key 

difference is that Algorithm 5 keeps the MCF placement as a starting point and attempts 

to transfer to lower ID PMs, whereas RFF redoes all placements. Pseudocode:

 

Figure 8 Pseudocode for Algorithm 5 
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Algorithm 6: Khani et al.’s best consolidation heuristic is described as follows:  

(1) Look at each PM holding exactly 1 VM, in arbitrary order.  

(2) For each of these PMs, check if each of its contained VMs can be moved 

elsewhere (if the move is equivalent in cost to the MCF solution).  

(3) If all contained VMs can be moved, move them all. If not, don't move any. 

(4) Then repeat steps 1-3 with PMs holding 2 VMs, then repeat steps 1-3 with PMs 

with 3 VMs, ...until you reach the maximum possible number of VM per PM. 

Algorithm 6 outperforms Algorithms 4 and 5, because it starts by trying to consolidate 

the PMs holding the lowest number of VMs; intuitively, PMs containing the fewest VMs 

are the most likely to be consolidated. They are the “low-hanging fruit” for consolidation. 

At worst case, the algorithm will run numReplicaCopies times over all PMs that do not 

contain an original VM, checking each replicaVM for valid alternative PM choices 

(numReplica * numPM). This means a worst possible runtime of O ( numReplicaCopies 

* (numReplicaVMs * numPMs) ). In the above implementation, to try to speed up the 

algorithm, PMs containing an original VM are excluded from VM examination, and the 

remaining list of PMs is sorted ascending by number of contained VMs.  

Algorithm 7: the optimal bin packing solution has no known polynomial time algorithm. It 

is based on Dantzig’s simplex algorithm, the most efficient algorithm commonly used to 

solve linear programming problems. There are different variations of implementations of 

Dantzig’s simplex algorithm, however these can always be shown to have a class of 

problems for which the runtime is exponential. 

When setting stress is relatively low, there is usually no way for the optimal flow and 
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consolidation algorithms to outperform the heuristics, as choices are not constrained 

enough for a greedy heuristic to be forced into a local optimum while missing the global 

optimum of flow and consolidation. 

Additionally, when setting stress is relatively high, it becomes so difficult for a solution to 

meet the constraints that there may be no room left over for any intelligent decision 

making in which optimal outperforms the heuristics. 

We will see that in low or high stress conditions, optimal does not offer any 

improvement over Algorithm 6. There is a ‘sweet spot’ of stress where conditions are 

stressful enough that heuristics make mistakes, but not so stressful that there is no 

room for intelligent decision making to prevail after meeting the constraints. This ‘sweet 

spot’ of stress is where optimal most notably outperforms heuristics. This observation 

applies to both the flow-optimization-stage and the server-consolidation stage. 
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Chapter 4: IMPLEMENTATION 

 

Figure 9 High level program flow 

Above is a high level flow chart of the program. Initialization involves reading in the 

settings. 

 

Figure 10 Initial settings text file 

In the settings, k is the arity of the fat tree, which can be any positive even integer. A 

k=4 fat tree has 16 PMs, a k=8 fat tree has 128 PMs. Generalized, the fat tree will have 

((k^3) / 4) PMs. numVM is the number of original VMs, which have randomized 

placement. The min and max VM size are the allowed inclusive range for randomized 

VM size. numCopies is the total number of copies of each VM, including the original and 
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replica copies. Min and max PM size are the allowed inclusive range for randomized PM 

space capacity. numRuns is used by the write-only version (no monitor output) of the 

program, used for comparing X number of runs results in a table which is outputted in 

fattreeresults.txt.  

As the high level flow chart indicates, the minimum cost flow solution is turned into a 

table representing equivalent flow-cost PM choices for each replica VM copy. This table 

of choices is used as input to each of the various consolidation algorithms, which are 

described later in this paper. 

In order to model these types of problems, some environment setup is required. The 

least amount of setup is using Google’s OR-Tools, a free, open-source set of linear 

solvers that can handle a wide variety of optimization problems. Google’s OR-Tools can 

be installed with python “version 3.5+ on Linux, or 3.6+ on Mac OS or Windows” [3]. A 

64 bit system is required. Once Python 3.6+ and pip are installed, the easiest way is to 

pip install using the command: 

python -m pip install --upgrade --user ortools 

More information detailing the installation process as well as OR-Tools solving 

capabilities can be found on google’s developer website [3][4]. Example optimization 

problems are included with explanations of how to solve them using OR-Tools. OR-

Tools also has the option to be built from source with any other linear solver engine 

placed on top of it: OR-tools, Gurobi, SCIP, GLPK. 

Once Python 3.6+ and OR-Tools are successfully installed, in order to input the 
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topology into the minimum cost flow solver, we will need to define the graph as follows: 

(start-node, end-node, capacity, unit-cost) for each arc(a.k.a. edge) in the graph. The 

unit-cost, a.k.a. flow-cost, can be easily calculated by observing the following properties 

about the fat tree structure: for any positive even integer k, PMs (physical machines) 

which share the same edge switch are 2 network ‘hops’ apart.  

 

Above, illustration of a 2-hop path, through edge switch, in k=4 fat treePMs which share 

the same pod, but not the same edge switch, are always 4 network ‘hops’ apart:  

 

 

 

 

 

Above, example of a 4-hop path, k=4, using aggregate switch (yellow).  

Figure 11 Two hop example 

Figure 12 Four hop example 
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PMs which do not share the same edge switch and do not share the same pod are 

always 6 ‘hops’ apart, and must route through a core switch. This observation allows us 

to define every possible routing cost from any PM to any other PM by knowing ‘k’. 

Labeling each PM starting from 0, some index math allows us to identify whether PMs 

are connected most closely by the same edge switch, aggregate switch, or require a 

core switch, and thus assign either 2, 4, or 6 network ‘hops’ as their respective routing 

cost. These are compiled into a dictionary (aka hash map) structure for faster lookups. 

Key = (pm1 ID, pm2 ID). Value = Flow-cost between the two PMs. 

We define the super source and super sink nodes, giving them an index number that 

does not conflict with the assigned PM ids, and set their supply and demand to be 

opposites of each other. The supply will be the sum of sizes of all replica copies being 

transferred, since original VMs are never moved. The demand will be supply * -1. 

Following the transformation in Khani et al., we generate arcs from the super source 

node to each original VM, accounting for each VM’s size. Next we generate an arc from 

each source PM to any other PM that can be a potential destination PM (excluding 

itself): The capacity of each of these arcs is set to 1, ensuring that no PM ever receives 

more than 1 copy of a given VM, satisfying the replication constraint.  

Finally, each potential destination PM is connected to the super sink node. The capacity 

of each of these arcs is set to that destination PM’s remaining space capacity, satisfying 

the PM capacity constraint.  

From here it is just a matter of letting OR-Tools do all the work in computing a solution 
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and organizing its output into human readable form: which arcs were used, to exactly 

what capacity, along with the total flow-cost of the solution. After processing, we want to 

see which PMs now contain copies of which VMs.  

 

Figure 13 Sample MCF output 

While we have found an optimal flow-cost solution using the minimum cost flow solver, 

we have not yet optimized server consolidation. Like Khani et al., we can reexamine the 

choices made by the optimal minimum cost flow solution and come up with a list of 

equivalent cost choices for each VM replica copy that was moved. Once again, we 

leverage our observation of how routing costs in the fat tree structure will always 

predictably be 2, 4, or 6 network ‘hops’ and, once more, we make use of the cost 

dictionary we compiled earlier. 

Doing so allows us to form a pre-consolidation table detailing each replica VM copy’s 
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journey, where we can see: the originating VM id of that replica copy, the destination 

PM it was assigned by the minimum cost flow solution, the routing/flow cost of that 

assignment (always 2, 4, or 6 ‘hops’), and a list of destination PMs that would be the 

same cost as the MCF solution (including the one chosen by the MCF solution): 

 

Figure 14 Pre-consolidation table, MCF result 

In the above example, note how for some VM replica copies, there is only 1 choice. This 
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is the case where the minimum cost flow solution had a PM send a replica copy to its 

edge-switch-neighbor PM, at a cost of 2 network hops. In a k=4 fat tree, each edge 

switch only holds 2 PMs: therefore, there can be no other equivalent cost choice for that 

replica copy (sending a copy to itself is never an option). In a k=8 fat tree, each edge 

switch holds 3 PMs, therefore the minimum number of choices would be 2 instead of 1.  

As dictated by the minimum cost flow solution, the “medium length” (2 choices, in the 

above example) list of choices comes from choosing a destination PM in the same pod, 

but not the same edge-switch-neighbor, at a cost of 4 hops. The maximum length list of 

choices comes from being unable to choose an edge-switch-neighbor nor a pod-

neighbor, being forced to route through a core switch at a cost of 6 hops.  

Now that we have our list of minimum flow cost equivalent PM choices for each VM 

replica copy, we can use this as input to Khani et al.’s best consolidation heuristic and 

as input for our own optimal bin packing solution.  

In order to use a linear solver for our optimal bin packing solution, we must define the 

variables and constraints, using the minimum cost flow solution to help us define our 

choices. Each VM copy will be an “item” to be packed in a “bin” (a PM that meets 

constraints). The “weight” of a VM copy will be its size, ensuring we do not overpack a 

PM with more VMs than it can hold. 

Next we instantiate the solver and define the variables as follows: there are only two 

possible values concerning VM assignment:  x[i, j] = 1 means VM copy i is packed in 

PM j. x[i, j] = 0 means VM copy i is not packed in PM j.  
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Similarly, y[j] = 1 means bin j is used. Y[j] = 0 means bin j is not used. “Used” means the 

PM holds at least 1 VM.  

With the variables defined, we move on to defining constraints. Our first constraint is 

ensuring that each VM copy is in exactly one PM. In other words, for each item i, its 

sum in all bins must equal 1.  

Our next constraint ensures we do not violate the space capacity of any PM. In other 

words, the sum of VMs in each PM (bin), must be less than or equal to that PM’s (bin’s) 

capacity. Recall that y[j] is binary: 0 if a bin is not used, or 1 if a bin is used. If y[j] were 

0, the sum of sizes of all VMs packed in that bin can only be 0 as well. If y[j] were 1, 

then the sum of sizes of all VMs packed in that PM should be less than or equal to that 

PM’s capacity. Later, we will define our objective to have the solver minimize the 

number of PMs where y[j] is 1. 

Next we have a more complex constraint: VM copies cannot share a PM with any other 

copies of that same VM (including the original). For example, this means a copy of VM 

#1 can never be held in the same PM which contains any other copy of VM #1. To help 

us define this constraint, we look at a simple example where we define that “item 1 

cannot go in the same bin as item 2”:  

for j in data['bins']: 

    solver.Add((x[1,j] + x[2,j]) <= 1) 

The inequality ensures that either item 1(1 + 0 <= 1), or item 2 (0 + 1 <= 1), or neither (0 

+ 0 <= 1), can go in any given bin, but any given bin will never contain both at once (the 
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left side of the inequality would equal 2, violating the constraint). Using this, we write a 

helper function to mutually exclude any 2 given items, which we call the mutex function. 

Using the mutex function, we can then exclude each VM copy from every other copy of 

that same VM. For example, if we have 4 original VMs, with 10 total copies each, then 

we have 40 items. Copies of VM #0 will be assigned as items 0-9, copies of VM #1 will 

be 10-19, copies of VM #2 will be 20-29, and copies of VM #3 will be 30-39. This allows 

us to do integer division to figure out the originating VM id. 0 through 9 // 10 will all equal 

0. 10 through 19 // 10 will all equal 1... 

The final constraint involves limiting each VM copy to its minimum cost flow equivalent 

choices. Here are some examples of how to constrain an item to a specific set of bins: 

#item 5 must go in bin 9  

solver.Add(x[5,9] == 1) 

Here is another example of how to constrain an item to 2 specific bins: 

#item 5 must go in bins 9 or 10 

solver.Add((x[5,9] + x[5,10]) == 1) 

An example of constraining an item to 3 specific bins: 

#item 5 must go in bins 8 or 9 or 10 

solver.Add((x[5,8] + x[5,9] + x[5,10]) == 1) 

We use the above examples to construct a string for each item, composed of its 
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minimum cost flow equivalent choice PMs. Once the string is constructed we can then 

use eval() to add it as an expression to the solver. Construction involves referencing the 

equivalent cost choices table from earlier. 

With all our necessary constraints defined, we invoke the solver with the objective of 

minimizing the number of PMs (bins) used. With some manipulation of the solver’s 

output, we can achieve a more human readable output indicating which PMs contain 

which VMs:  

 

Figure 15 Optimal bin packing output 

With more output manipulation, we can construct a diagram similar to the one we used 

to view the output of the minimum cost flow solution, which used an arbitrary number of 

PMs: 
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Figure 16 Visualized bin packing output 

In the above example, the optimal bin packing method produced by the linear solver has 

used 10 PMs in its solution, as opposed to 11 by Khani et al.’s best heuristic, and 14 as 

arbitrarily done by the minimum cost flow solution. Substantial consolidation 

improvement over the best heuristic is somewhat rare, but the linear solution is 

guaranteed to be optimal. 
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Chapter 5: RESULTS 

FirstFit (Algorithm 1) is just a benchmark, what we are interested in the flow stage is 

comparing greedy (Algorithm 2) to optimal (Algorithm 3 MCF), to show that optimal 

always matches or outperforms greedy. We can see as the number of VMs increases, 

there is a greater difference in flow costs between the greedy flow heuristic (page 33 for 

details) and the optimal minimum cost flow. This verifies Khani et al.’s work. The FirstFit 

flow heuristic (see page 32 for details) will always have an extremely high flow cost 

because it disregards flow cost in its solution.  

 

Figure 17 Flow cost results, variable VMs 

We can also see that as the number of replica copies increases, there is again greater 

differentiation between the best flow heuristic and the optimal solution: 
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Figure 18 Flow cost results, variable copies 

Rather than cherry-pick examples where optimal consolidation outperforms the 

heuristics, we use the same settings we tested the flow algorithms with: 

 

Figure 19 Consolidation results, variable VMs 

The number of active PMs do not normally show much differentiation between the 

consolidation algorithms except under unusually specific conditions, discussed later. 

The only exception being that FirstFit ignores flow cost, thus it deviates significantly 

from the number of active PMs used by other algorithms, which are restricted by 
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considering flow cost. To clarify, the FirstFit benchmark is not outperforming the optimal, 

it is simply not subject to the constraint of considering flow-cost. 

It is clear that an optimal algorithm will always match or outperform a heuristic, but the 

question is how exactly does optimal outperform a greedy heuristic in this problem? 

Consider the following example: 

 

Figure 20 Example, optimal outperforms greedy 

VM “b” can place a copy on either PM 0 or PM 1 for a flow-cost of 4 ‘hops’. However, 

VM “a” has a more important choice: place a copy of VM “a” on PM 0 for a cost of 2, or 

be forced to pay more to replicate elsewhere. If VM “b” is allowed to choose first, and 

arbitrarily chooses PM 0 instead of PM 1, this blocks VM “a” from making its optimal 

choice; this is an example of how the greedy heuristics often fail, they allow arbitrary 

order of choice and have no mechanism for backtracking. This type of heuristic mistake 
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happens more often under “stressful conditions”. 

What is meant by “stressful” conditions? As stated before, there is a sweet spot in 

parameter stress where optimal notably outperforms greedy, rather than simply 

matching it. With low numbers of copies, or lots of extra PM space compared to the total 

size of VMs, it is easy to find a solution which satisfies the constraints, there will not be 

significant differentiation between optimal and greedy. There will not be many places for 

the greedy algorithm to make a mistake, like in the previous example with Figure 20. 

Likewise, under very stressful conditions, such as where the PMs are filled nearly to 

capacity for any possible solution, there will not be much differentiation between greedy 

and optimal, as the difficulty in satisfying the constraints alone leaves almost no room 

for ‘intelligent’ decision making, because there are a very limited number of possible 

solutions which satisfy the constraints.  

What about the sweet spot of moderately stressful conditions? The following settings 

where k=4, 4 original VMs, 10 total copies of each, PM size of 10, are considered 

moderately stressful, a higher number of VM copies approaches the limit as defined by 

the replication constraint; with k=4, there are only 16 PMs, at least 10 different PMs are 

required to hold all 10 the copies of any given VM, even before considering flow cost 

and space capacity. 

We now look at an example where optimal Algorithm 7 outperformed the Algorithm 6 

consolidation heuristic. The minimum cost flow solution produces a solution using 14 

servers: 
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Figure 21 Sample MCF output, 14 servers used 

Algorithm 6 reduces the number of servers from 14 to 11: 

 

Figure 22 Sample Khani output, 11 servers used 

The optimal solution saves 1 additional server over the best heuristic:
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Figure 23 Sample optimal output, 10 servers used 

Even under “moderately stressful” conditions, improvement is somewhat uncommon: 

 

Figure 24 Summary results from 1000 runs 

Out of 1000 runs under those same settings, k=4, 4 VMs, 10 copies each, 10 PM size, 

optimal outperformed the best heuristic 34 times.  

On average, the best heuristic used 12.23 servers, whereas optimal used 12.19 servers 

in a flow-cost-equivalent solution. When there was improvement to be found, the 

magnitude of improvement averaged an additional 1.09 servers consolidated. 
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Chapter 6: FUTURE DIRECTIONS 

Rather than first optimizing flow and then optimizing consolidation in a secondary 

calculation, it is possible to avoid a consolidation stage altogether, simply by adding in a 

server activation cost to the initial model before flow cost is optimized. 

Recall the initial graph transformation, as specified by Khani et al.: 

 

Figure 25 Review of Khani et. al original graph transformation 

Note that the final set of edges connecting each potential destination PM to the super 

sink have a cost of 0. This is the reason why the minimum cost flow solution chooses an 

arbitrary number of servers. If this cost was changed to represent a one-time cost, or 

constant cost, of activating a server, there would be no need for a separate 

consolidation phase, as the model could be solved for both flow and consolidation at the 

same time: 
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Figure 26 Modified graph transformation, single stage optimization 

However, this cannot be done without understanding the difference between 

representing a typical flow-cost vs. a one-time cost in the flow balance equations. In 

order to plug this into a linear solver, the equations would have to be adjusted to 

represent an additional one-time, or constant, cost on the final set of edges, not simply 

a flow-cost.  

Sensitivity analysis is needed. Adding in a one-time or constant cost to represent the 

energy required to turn on a server also presents some additional complexity: what if 

the energy of an active but empty server is much greater in magnitude than the flow 

cost? Then an optimal solution would seek to prioritize server consolidation over flow-

cost. How much energy would we save in each case? What if we approach the problem 

asynchronously, more realistically, rather than assuming all VMs are being copied and 

transferred at once? These types of questions can only be answered by a sensitivity 

analysis using real world data centers, to determine what the most important factors in 
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data center energy savings really are.  

In a more realistic scenario, there are certainly factors outside of flow and consolidation 

to consider, including nonlinear considerations as well. To this end, Google has given its 

artificial intelligence “DeepMind” administrative level access to its data centers in order 

to optimize energy costs, claiming an energy savings of 40%, although the analysis as 

to how and the details as to what factors it prioritizes are still unknown [1]. The machine 

learning approach seems able to adjust for factors that may be nonlinear in nature. 
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APPENDIX 

Code requires python 3.6+, 64 bit system, Google OR-tools to run. The fattree.py 

version of the program prints out visualizations of the PM states to the screen, use this 

for k=4 simulations when you want to see what is happening. The fattree_writeonly.py 

version has no screen printing, it writes a summary of all results to fattreeresults.txt. 

Both versions read in the simulation settings from fattreesettings.txt, which looks like: 

k 4 

numVM 4 

minVMsize 1 

maxVMsize 1 

numCopies 5 

minPMsize 30 

maxPMsize 30 

numRuns 20 

 

You can change the integer values to whatever you wish (k should be a positive even 

integer). For small simulations (k=4, 4 VMs, 10 copies) it takes less than 1 second per 

run. It gets slow (10 minutes) at high settings, such as 300+ VMs, 10+ copies each on 

k=8 fat tree due to a lack of optimization on the data structures storing PM and VM data. 

 

Link to full code folder: 

 

https://drive.google.com/drive/folders/1D4qHIxmuf4c30e9dy9mTLX1mWwzRrtxc?usp=s

haring 

 
Copy of code for fattree.py (screen printing version): 

 

import random #used to randomize initial pm and vm placement 

from copy import deepcopy #used for saving pm states before each algorithm 

from ortools.graph import pywrapgraph #used for mcf optimal solver 

from ortools.linear_solver import pywraplp #used for bin packing optimal solver 

#import time #used to time algorithms 

import sys 

 

def calcPMtoPMcost(pm1,pm2): 

    pm1=int(pm1) 

    pm2=int(pm2) 

    if pm1 == pm2: #pm to itself costs 0 

        return 0  

    pmPerEdge=int(numPM / totalEdge) 

    pm1Edge=int(pm1 / pmPerEdge) 

    pm2Edge=int(pm2 / pmPerEdge) 

    if pm1Edge == pm2Edge: #pms on same edge switch costs 2 

        return 2  

https://drive.google.com/drive/folders/1D4qHIxmuf4c30e9dy9mTLX1mWwzRrtxc?usp=sharing
https://drive.google.com/drive/folders/1D4qHIxmuf4c30e9dy9mTLX1mWwzRrtxc?usp=sharing
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    pm1Pod=int(pm1Edge / numEdgePerPod) 

    pm2Pod=int(pm2Edge / numEdgePerPod) 

    if pm1Pod == pm2Pod: #pms on same pod costs 4 

        return 4 

    return 6 #routing through core switch costs 6 

 

with open('fattreesettings.txt','r') as f: 

    settings=[] 

    for line in f: 

        line=line.strip().split() 

        settings.append(line) 

 

#read in settings saved from txt file 

k=          int(settings[0][1]) 

numVM=      int(settings[1][1]) 

minVMsize=  int(settings[2][1]) 

maxVMsize=  int(settings[3][1]) 

numCopies=  int(settings[4][1]) #replica + original 

minPMsize=  int(settings[5][1]) 

maxPMsize=  int(settings[6][1]) 

numRuns=    int(settings[7][1]) 

#how many runs to simulate, 

#only used in write-only version for data collection 

 

 

 

#calculate number of switches and edges 

numPod=int(k) 

numCore=int((k/2)**2) 

numAggPerPod=int(k/2) 

numEdgePerPod=int(k/2) 

totalAgg=numAggPerPod * numPod 

totalEdge=numEdgePerPod * numPod 

numPM=int((k**3) / 4) 

totalSwitches=int(numCore + totalAgg + totalEdge) 

totalNode=totalSwitches + numPM 

totalEdges=numPM * 3 

 

 

def printl(label,variable): 

    print('%30s:' %(str(label)),variable) 

 

printl('Core switches',numCore) 

printl('Number of pods',numPod) 

printl('Aggregation switches per pod',numAggPerPod) 

printl('Edge switches per pod',numEdgePerPod) 

printl('Number of Physical Machines',numPM) 

printl('Total aggregate switches',totalAgg) 

printl('Total edge switches',totalEdge) 
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printl('Total Switches',totalSwitches) 

printl('Total Switches + PMs',totalNode) 

printl('Total Edges',totalEdges) 

 

 

#assign ID to each switch and PM 

v= [x for x in range(totalNode)] 

vc=[x for x in range(totalNode - numCore,totalNode)] 

va=[x for x in range(numPM + totalEdge, totalNode - numCore)] 

ve=[x for x in range(numPM, totalNode - numCore - totalEdge)] 

pmDict={} 

#pmDict has [ [pmID, space-used, max-space] , 

#[containedVM1-id, vm-size, originatingPM-id], [containedVM2-id...] ] 

 

totalPMCapacity = 0 

for x in range(numPM): 

    randomPMsize = random.randint(minPMsize,maxPMsize) 

    totalPMCapacity+=randomPMsize 

    pmDict[x] = [x,0,randomPMsize] 

 

def printv(label,vlist):  

    print('%30s:' %(str(label)),vlist[0],'...',vlist[-1]) 

     

print() 

print('%37s'%('PM IDs: 0 ...'),numPM-1) 

printv('PMs and all switches IDs', v) 

printv('Core switch IDs', vc) 

printv('Aggregation switch IDs',va) 

printv('Edge switch IDs',ve) 

print() 

     

#creating cost dictionary for later reference 

cost_dict={} 

for x in range(numPM): 

    for y in range(x): 

        costkey=(x,y) 

        costvalue=calcPMtoPMcost(x,y) 

        cost_dict[costkey]=costvalue 

        reversecostkey = (y,x) #reverse pair has same cost 

        cost_dict[reversecostkey]=costvalue 

for x in range(numPM): #pm to itself is 0 

    costkey = (x,x) 

    cost_dict[costkey] = 0 

 

vmList = [] 

totalOrigVMsize = 0 

totalOrigPlusReplicaSize = 0 

vmDict = {} 

#key: vmID 



39 
 

#value: [vm-id, vm-size, originating-PM-id] 

 

for x in range(numVM): 

    randomVMsize = random.randint(minVMsize,maxVMsize) 

    totalOrigVMsize += randomVMsize 

    totalOrigPlusReplicaSize += (randomVMsize * numCopies) 

 

    #find a PM to place this VM on 

    placed = False 

    allPMids = [y for y in range(numPM)] 

    #random.shuffle(allPMids) #not necessary to shuffle since we pop randomly 

    for p in range(len(allPMids)): 

        randomPM = allPMids.pop(random.randint(0,len(allPMids)-1)) 

        randomPM = pmDict[randomPM] 

        randomPMspaceremaining = randomPM[2] - randomPM[1] #max - used  

        if randomPMspaceremaining >= randomVMsize: 

            randomPMid = randomPM[0] 

            placed = True 

            thisvm = [x,randomVMsize,randomPMid] 

            vmList.append(thisvm) #add to vm list 

            vmDict[x]=thisvm #add to vm dict 

            pmDict[randomPMid].append(thisvm) 

            pmDict[randomPMid][1] += randomVMsize #update pm used space 

            break 

    if placed == False: #never placed the VM 

        print('warning, VM',x,' could not be placed') 

        sys.exit() 

         

replicaSize = totalOrigPlusReplicaSize - totalOrigVMsize 

 

print('VM-ID, VM-Size, PM-location') 

for x in vmList: 

    print('%5s %6s %5s' %(str(x[0]),str(x[1]),str(x[2]))) 

 

pmList= [] 

for k,v in pmDict.items(): 

    pmList.append(v) 

 

def printPM(pmList): 

    print('\nPM- | PM-space | PM-max-  | Assigned-') 

    print('ID  | used     | capacity | VM(s)') 

    print('-'*50) 

    for pm in pmList: 

        print(' %-5d  %-8d %-10d'%(pm[0],pm[1],pm[2]),end=' ') 

        for vm in pm[3:]: 

            print('%-3d'%(vm[0]),end=' ') 

        print() 

    print() 
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print('\nInitial, random original VM placement') 

printPM(pmList) 

####################### nonrandom pmlist and vmlist for testing purposes 

#pmList = [[0, 0, 30], [1, 0, 30], [2, 0, 30], [3, 0, 30], [4, 0, 30], [5, 0, 30], [6, 0, 30], [7, 1, 30, [2, 1, 7]], [8, 0, 

30], [9, 0, 30], [10, 0, 30], [11, 0, 30], [12, 1, 30, [0, 1, 12]], [13, 1, 30, [1, 1, 13]], [14, 0, 30], [15, 1, 30, [3, 

1, 15]]] 

#vmList = [[0, 1, 12], [1, 1, 13], [2, 1, 7], [3, 1, 15]] 

####################### 

 

 

 

#first fit flow heuristic. in arbitrary order, each VM replica copy chooses the lowest ID available PM. flow 

cost ignored. 

firstFitDict = deepcopy(pmDict) 

firstFit_pmList=deepcopy(pmList) #deep copy pmList for different solutions 

firstFitFlowCost = 0 

 

def pmXcontainsvmY(pmx,vmy): 

    for x in firstFitDict[pmx[0]][3:]: 

        if x[0] == vmy[0]: 

            return True 

    return False 

     

replicaCopies=numCopies-1 

if replicaCopies > 0: 

    for vm in vmList: 

        needtoplace = replicaCopies 

        placed = 0 

        transferCost = 0 

        for pm in firstFit_pmList: 

            if placed==replicaCopies: #already placed enough replica copies 

                break 

            if pmXcontainsvmY(pm,vm): 

                continue 

            pmvalues = firstFitDict[pm[0]] 

            if pmvalues[2] - pmvalues[1] >= vm[1]: #pm-max - pm-used >= vm-size 

                needtoplace-=1 

                placed+=1 

                pmvalues[1] += vm[1] #update space used 

                pmvalues.append(vm) 

                firstFitDict[pm[0]] = deepcopy(pmvalues) 

                costkey = (pm[0],vm[2]) 

                transferCost += (cost_dict[costkey] * vm[1]) 

        if needtoplace != 0: 

            print('warning: didnt place all copies of VM',vm[0]) 

        firstFitFlowCost+=transferCost 

                 

firstfitPMlist = [] 

firstfit_pms_used = 0 
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for k,v in firstFitDict.items(): 

    firstfitPMlist.append(v) 

    if len(v) > 3: 

        firstfit_pms_used+=1 

print('\nFirstFit, flowcost:',firstFitFlowCost,' num-active-PMs:',firstfit_pms_used) 

printPM(firstfitPMlist) 

 

#greedy: each vm seeks its lowest flow-cost available PM 

greedy_pmList=deepcopy(pmList) 

greedy_pmDict=deepcopy(pmDict) 

greedyFlowCost=0 

 

def greedycheckPMcontainsVM(pmx,vmy): 

    for x in greedy_pmDict[pmx[0]][3:]: 

        if x[0] == vmy[0]: 

            return True 

    return False 

 

greedyFlowCost=0 

for v in vmList: 

    for y in range (replicaCopies): 

        choices=[] 

        for pm in greedy_pmList:#calc flow cost from origPM to all other PMs 

            #pmID=pm[0] 

            #origPM=v[2] 

            costkey = (v[2],pm[0]) 

            #cost = cost_dict[costkey] 

            choice_tuple=(pm[0],cost_dict[costkey]) 

            choices.append(choice_tuple) 

 

        choices=sorted(choices, key = lambda x: x[1]) #sort by cost of choices, lowest cost first 

        transferCost=0 

        for choice in choices: 

            #pmID=choice[0], vmID=v[0] 

            if greedycheckPMcontainsVM(choice,v): 

                continue #if pm contains this vm already 

            pmvalues = greedy_pmDict[choice[0]] 

            #vmSize=v[1] 

            if pmvalues[2] - pmvalues[1] >= v[1]: #pm-max - pm-used >= vm-size 

                pmvalues[1] += v[1] #update space used 

                pmvalues.append(v) 

                greedy_pmDict[choice[0]] = deepcopy(pmvalues) 

                costkey = (choice[0],v[2]) 

                transferCost += (cost_dict[costkey] * v[1]) 

                break #stop trying to place in more choices PMs 

        greedyFlowCost+=transferCost 

 

greedy_pmList = [] 

greedy_pms_used = 0 
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for k,v in greedy_pmDict.items(): 

    greedy_pmList.append(v) 

    if len(v) > 3: 

        greedy_pms_used+=1 

print('\nGreedy, flowcost:',greedyFlowCost,' num-active-PMs:',greedy_pms_used) 

printPM(greedy_pmList) 

 

#Minimum Cost Flow Solution 

mcf_pmDict=deepcopy(pmDict) 

mcf_vmDict=deepcopy(vmDict) 

 

#Instantiate an OR-Tools SimpleMinCostFlow solver 

min_cost_flow = pywrapgraph.SimpleMinCostFlow() 

print('Minimum Cost Flow Solution: Pre-Consolidation') 

 

superSourceID = numVM 

superSinkID = numVM+1 

offset = numVM+2 #PM ids will be offset by this number, to avoid conflict 

 

superSourceSupply=replicaSize #set source supply to sum of replica sizes 

min_cost_flow.SetNodeSupply(superSourceID,superSourceSupply) 

 

superSinkDemand=superSourceSupply * -1 #set sink demand 

min_cost_flow.SetNodeSupply(superSinkID,superSinkDemand) 

 

#generate arcs from super source to each orig vm 

#min_cost_flow.AddArcWithCapacityAndUnitCost parameters are 

#                                       (start-node, end-node, capacity, unit-cost) 

finalsetdict={} 

for k in range(numVM): 

    thisvmsize = mcf_vmDict[k][1] #get size of this vm 

    #add arcs from super-source to each original VM 

    min_cost_flow.AddArcWithCapacityAndUnitCost(superSourceID,k,replicaCopies*thisvmsize,0) 

    thisvmorigPM = mcf_vmDict[k][2] 

    for pmID in mcf_pmDict.keys(): 

        if pmID == thisvmorigPM: #dont create arc to originating-PM 

            continue 

        costkey = (thisvmorigPM,pmID) 

        cost = cost_dict[costkey] 

        #add arcs from each orig-VM to potential-destination-PMs 

        newPMid = pmID+offset 

        min_cost_flow.AddArcWithCapacityAndUnitCost(k,newPMid,thisvmsize,cost) 

        if newPMid not in finalsetdict: 

            finalsetdict[newPMid] = 0 #value doesnt matter here, storing the key does 

            pm_remaining_space = mcf_pmDict[pmID][2] - mcf_pmDict[pmID][1]#maxSpace - usedSpace 

            #generate arcs from each potential-destination-PM to the super sink 

            min_cost_flow.AddArcWithCapacityAndUnitCost(newPMid,superSinkID,pm_remaining_space,0) 

 

#vm_table holds information about MCF equivalent cost choices for each VM 



43 
 

 

if min_cost_flow.Solve() == min_cost_flow.OPTIMAL: 

    vm_table = [] 

    print('Minimum cost:', min_cost_flow.OptimalCost(),end='  ') 

    copyid=0 

    for i in range(min_cost_flow.NumArcs()): 

        cost = min_cost_flow.Flow(i) * min_cost_flow.UnitCost(i) 

        if min_cost_flow.Flow(i) > 0 and cost > 0: 

            

#a,b,c,d,e=min_cost_flow.Tail(i),min_cost_flow.Head(i),min_cost_flow.Flow(i),min_cost_flow.Capacity(i),c

ost 

            origVMid,destinationPMid=min_cost_flow.Tail(i),min_cost_flow.Head(i) 

            destinationPMid -= offset 

            #vm_table will have structure of: [copyID, origVMid, orig PM, destination PM, sunk cost] 

            vm_table.append([copyid,origVMid,mcf_vmDict[origVMid][2],destinationPMid,cost]) 

            copyid+=1 

            #update the pm dict to show a vm was replicated to the destination PM 

            pmvalues = mcf_pmDict[destinationPMid] 

            pmvalues.append(mcf_vmDict[origVMid]) 

            pmvalues[1] += mcf_vmDict[origVMid][1] #update pm-space-used 

            mcf_pmDict[destinationPMid] = deepcopy(pmvalues) 

             

else: 

    print('Error: There was an issue with the min cost flow input.') 

 

 

mcf_pmList=[] 

numMCFActivePM = 0 

for v in mcf_pmDict.values(): 

    if len(v) > 3: 

        numMCFActivePM+=1#tally up active PMs 

    mcf_pmList.append(v) 

print('num-active-PMs:',numMCFActivePM) 

printPM(mcf_pmList) 

 

#EQUIVALENT-COST-DESTINATION-PM-CHOICE TABLE HERE 

print('replicaID,origVMid,origPM,destPM,flowcost,equiv-cost-choice-PMs') 

for vm in vm_table: 

    #filter the cost_dict for equivalent cost choices, using origPM and cost 

    #append the list of equivalent-cost-choice-PMs to each replicaVM 

    #origpm,cost = vm[2],vm[4] 

    filtered_list = [k[1] for k,v in cost_dict.items() if (k[0] == vm[2]) and v == vm[4]] 

    vm.append(filtered_list) 

     

    #print out the replica-vm-table 

    for y in vm:  

        print(y,'\t',end='  ') 

    print() 
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rffPMdict = deepcopy(pmDict) 

 

#Replacement first fit, consolidation heuristic 

print('\nReplacement First Fit - MCF cost considered, MCF placement disregarded') 

#acts as though all vms are unplaced but mcf cost is known, then first fit places them according to 

equivalent mcf cost per copy 

 

def RFFcheckPMcontainsVM(pmID,vmID): 

    for vm in rffPMdict[pmID][3:]: 

        if vm[0] == vmID: 

            return True 

    return False 

 

for vm in vm_table: 

    for choice in vm[5]: 

        #check if pm contains this vm already. replication constraint. 

        vmID = vm[1] 

        #pmID = choice 

        if RFFcheckPMcontainsVM(choice,vmID): 

            continue 

        #pm-space-max  = rffPMdict[pmID][2] 

        #pm-space-used = rffPMdict[pmID][1] 

        #pm-space-remaining = max - used 

        if (rffPMdict[choice][2] - rffPMdict[choice][1]) >= vmDict[vmID][1]:#pm has enough space, we can 

place 

            pmvalues = rffPMdict[choice] 

            vmSize = vmDict[vmID][1]#vmID = vm[1] 

            addVM = [vmID,vmSize,vm[2]]#vmOrigPM = vm[2] or vmDict[vmID][2] 

            pmvalues[1] += vmSize 

            pmvalues.append(addVM) 

            rffPMdict[choice] = deepcopy(pmvalues) #[x for x in pmvalues] 

            break 

 

#find active PMs and visualize rff solution         

rff_pmList=[] 

numRFFactivePM = 0 

for v in rffPMdict.values(): 

    if len(v) > 3: 

        numRFFactivePM+=1#tally up active PMs 

    rff_pmList.append(v) 

print('num-active-PMs:',numRFFactivePM) 

printPM(rff_pmList) 

 

#First fit consolidation heuristic 

#Keeps mcf placement, tries to firstfit consolidate from there, using mcf-equivalent-cost for each copy 

#will only transfer if destination-PM is not empty 

 

print('\nFirst Fit Consolidation - from MCF solution, \nEach VM jumps to a same-cost, lowest-id PM') 
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#before transfer dictionary 

ffnotemptyDict = {k:v for k,v in mcf_pmDict.items()} 

 

def FFcheckPMcontainsVM(pmID,vmID): 

    for vm in ffnotemptyDict[pmID][3:]: 

        if vm[0] == vmID: 

            return True 

    return False 

 

#print('replicaID,origVMid,origPM,destPM,flowcost,equiv-cost-choice-PMs') 

for vm in vm_table: 

    for choice in vm[5]: 

        vmID = vm[1] 

        #pmID = choice 

        if len(ffnotemptyDict[choice]) == 3: #pm is empty, dont transfer 

            continue 

        if choice == vm[3]: 

            continue #dest-pm is same as mcf solution, dont transfer 

        if FFcheckPMcontainsVM(choice,vmID): 

            continue #dest-pm contains a copy of this vm already, dont transfer 

        #pm-space-max  = ffnotemptyDict[pmID][2] 

        #pm-space-used = ffnotemptyDict[pmID][1] 

        #pm-space-remaining = max - used 

        if (ffnotemptyDict[choice][2] - ffnotemptyDict[choice][1]) >= vmDict[vmID][1]: 

            #pm has enough space, we can transfer 

            pmvalues = [x for x in ffnotemptyDict[choice]] 

            vmSize = vmDict[vmID][1]#vmID = vm[1] 

            #add vm to chosen dest PM 

            addVM = [vmID,vmSize,vm[2]]#vmOrigPM = vm[2] or vmDict[vmID][2] 

            pmvalues[1] += vmSize 

            pmvalues.append(addVM) 

            ffnotemptyDict[choice] = [x for x in pmvalues] #[x for x in pmvalues] 

 

            #remove vm from previous dest PM 

            ffnotemptyDict[vm[3]] = [x for x in ffnotemptyDict[vm[3]] if x != addVM] 

            ffnotemptyDict[vm[3]][1] -= vmSize 

            break 

 

#find num-active-PMs and visualize ff solution         

ff_pmList=[] 

numFFactivePM = 0 

howmanyvms = 0 

for v in ffnotemptyDict.values(): 

    if len(v) > 3: 

        numFFactivePM+=1#tally up active PMs 

        for vm in v[3:]: 

            howmanyvms+=1 

    ff_pmList.append(v) 

print('num-active-PMs:',numFFactivePM) 
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printPM(ff_pmList) 

 

#implement original post-MCF consolidation as described in Dr. Tang's paper 

#look at PMs with 1 VM in arbitrary order. for each PM, check if all its containing VMs can be moved 

elsewhere to a set of TPM. if yes, move them all. if no, dont move any. 

#repeat with PMs with 2 VMs, then PMs with 3 VMs, until you reach max possible VM #. 

 

#start_time = time.time() 

def printDict(anydict, label = '\nprinting some dict'): 

    print(label) 

    for k,v in anydict.items(): 

        print(k,v) 

    print() 

#copy mcf solution dict but sort by number of vms 

#bestconsolidationheuristicDict = {k:v for k,v in sorted(mcf_pmDict.items(), key = lambda x: len(x[1]))} 

#printDict(bestconsolidationheuristicDict) 

         

print('Best consolidation heuristic, tries to move all PMs containing') 

print('1 VM, then 2 VM, then 3 VM, ... only if all VMs can be moved') 

#start_time = time.time() 

 

#if PM contains original vm, cant move 

#if destinationPM is VM's origPM, cant move 

#cost-equivalent 

#destinationPM cannot be empty 

#check replica constraint 

#check PMhasspace 

#update space 

#add vm to new pm 

#remove vm from old pm 

bestheurDict = {k:v for k,v in sorted(pmDict.items(), key = lambda x: len(x[1]))} 

#exclude PMs which contain the original VMs 

excludelist = [v[2] for v in vmList] 

bestheurResult = {k:v for k,v in mcf_pmDict.items()} #final positions will be saved here 

 

vm_tableDict = {} #this is the dict equivalent of vm_table 

 

#build pm-dict using replica ids, not just orig vm ids, for lookup 

for vm in vm_table: 

    #add vm to dest pm 

    #origvmSize = vmDict[vm[1]][1] 

    #destpm = vm[3] 

    pmvalues = bestheurDict[vm[3]] 

    pmvalues.append(vm[0]) #add the replicaID to the destPM 

 

    #since we're looping through the list, build a dict for later 

    vm_tableDict[vm[0]] = [x for x in vm] 
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sortbynumcontainedVMs={} 

 

for k,v in bestheurDict.items(): 

    if k in excludelist: 

        #dont bother trying to consolidate PMs which contain- 

        #an original vm 

        #print('skipping',k) 

        continue 

    sortbynumcontainedVMs[k] = [x for x in v[3:]] 

 

#print('replicaID,origVMid,origPM,destPM,flowcost,equiv-cost-choice-PMs') 

sortbynumcontainedVMs = sorted(sortbynumcontainedVMs, key = lambda 

x:len(sortbynumcontainedVMs[x])) #sort PM-ids by number of contained vms 

#print(sortbynumcontainedVMs) 

#we try to consolidate starting from PMs containing the fewest replica VMs 

#skipping PMs which contain no VMs 

#skipping PMs which contain an original VM 

#skipping PMs in which not all VMs can be moved 

#valid alternate PM must be: not empty, same cost, contain no other copies of that vm, has enough space 

for pmID in sortbynumcontainedVMs: 

    pmvalues = [x for x in bestheurDict[pmID]] #trying to consolidate this PM 

    #print('\npmvalues',pmvalues) 

    #print('lenpmvalues3:',len(pmvalues[3:])) #num of replica copies on this pm 

    #print('PMID',pmID) 

    canmoveall = True 

    movesmade = [] 

    #beforemove = {k:v for k,v in bestheurResult.items()} #save state before attempting moves 

    for replica in pmvalues[3:]: #check if each replica can be moved. PMs that have no replicas are skipped 

here. 

        choicedata = [x for x in vm_tableDict[replica]] 

        #choicedata is replicaID,origVMid,origPM,destPM,flowcost,equiv-cost-choice-PMs 

        #print('choicedata',choicedata) 

        #we are looking at each replica copy's choices now 

        canmove = False 

        for choice in choicedata[5]: #these are the equiv-cost-PMs 

            #print('choice',choice) 

            #check that new dest is not same as old dest 

            if choice == choicedata[3]: #cant move, new pm is same as old pm 

                #print('dest pm is same as old dest', choice, choicedata[3]) 

                continue 

             

            tpmvalues = [x for x in bestheurResult[choice]] #makes a copy instead of a reference to targetPM 

            #print('tpmvalues',tpmvalues) 

            #check that dest pm is not empty. we wont transfer to an empty pm 

            if len(tpmvalues) == 3: 

                #print(tpmvalues,'is empty, cant move') 

                continue 

             

            #check if alternate pm choice contains any copy of this vm 
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            containsflag = False 

            for containedvm in tpmvalues[3:]: 

                if containedvm[0] == choicedata[1]: #found match for this vm, cant move 

                    #print('vm match, cant move', containedvm[0],choicedata[1]) 

                    containsflag = True 

                    break 

            if containsflag == True: 

                continue #skip to next possible choice, dont place here. 

             

            #check if alternate choice has space 

            #pmMax - pmUsed >= originatingVMsize 

            #pmMax  = tpmvalues[2] 

            #pmUsed = tpmvalues[1] 

            #originating-vm-size = vmDict[choicedata[1]][1] 

            if (tpmvalues[2] - tpmvalues[1]) >= vmDict[choicedata[1]][1]: #has space to accept this replica 

copy 

                #print('size data',tpmvalues[2],tpmvalues[1],vmDict[choicedata[1]][1]) 

                #print(tpmvalues,'has space for',vm_tableDict[replica]) 

                #print(choice,'has space for',replica) 

                #store the data 

                #set success flag 

                #if you try an implementation that stores all the valid moves before making any, it wont save 

any calculations 

                #due to some replicas picking the same target pm. updating the space on those target pms is 

                #the same amount of calculations as to just make the move, and revert if not all replicas were 

able to move. 

                #print('moving vm x from pm y to pm z', vmDict[choicedata[1]], 

bestheurResult[pmID],bestheurResult[choice]) 

                canmove = True 

                #remove vm from old dest pm 

                #update old pm space-used 

                #print('old pm bef',bestheurResult[pmID]) 

                bestheurResult[pmID] = [x for x in bestheurResult[pmID] if x != vmDict[choicedata[1]]] 

                bestheurResult[pmID][1] -= vmDict[choicedata[1]][1] #subtract vm-size from space-used, on old 

dest pm 

                #print('old pm aft',bestheurResult[pmID]) 

                 

                #print('new pm bef',bestheurResult[choice]) 

                #add vm to new dest pm 

                #update new pm space-used 

                bestheurResult[choice].append(vmDict[choicedata[1]]) 

                bestheurResult[choice][1] += vmDict[choicedata[1]][1] #add vm-size to space-used, on new 

dest pm 

                #print('new pm aft',bestheurResult[choice]) 

                #print() 

                movesmade.append([ vmDict[choicedata[1]], bestheurResult[pmID], bestheurResult[choice] ] 

)#save orig-vm-data, old-dest-pm, new-dest-pm 

                break 

        if canmove == False: 
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            canmoveall = False 

    if canmoveall == False: 

        #revert 

        #bestheurResult = {k:v for k,v in beforemove.items()} 

        for move in movesmade: 

            #vmsize = move[0][1] 

            #print('reverting',move[0]) 

            #vm, oldpm, newpm 

            #print('before revert',move) 

            move[2].remove(move[0]) 

            move[2][1] -= move[0][1] #update pm-used, subtract vm-size 

            move[1].append(move[0]) 

            move[1][1] += move[0][1] #update pm-used, add vm-size 

            #print('after  revert',move) 

            #print() 

         

#print('calculation time =',time.time() - start_time) 

bestheurList = [] 

numactivePM_bestheurList = 0 

for v in bestheurResult.values(): 

    bestheurList.append(v) 

    if len(v) > 3: 

        numactivePM_bestheurList +=1 

print('best heuristic, numactivePM:',numactivePM_bestheurList) 

printPM(bestheurList)  

 

 

def updatePMspaceused(pmlist): 

    pmlistcopy = deepcopy(pmlist) 

    for pm in pmlistcopy: 

        if len(pm) > 3: #contains VMs 

            vms = pm[3:] 

            spaceused = 0 

            for v in vms: 

                spaceused += v[1] 

            pm[1] = spaceused 

        else: 

            pm[1] = 0 

    return pmlistcopy 

 

#use google's OR-Tools to optimally solve consolidation 

#as a bin packing problem w constraints 

#constraint 1: choices are limited to mcf solution equivalent cost choices 

#constraint 2: replication constraint (copies of a particular vm cannot share a pm) 

#constraint 3: capacity constraint of each pm 

 

optimalbinpack = deepcopy(pmList) 

optimalbinpack = [pm[:3] for pm in optimalbinpack] #remove orig vms 

optimalbinpack = [[a[0],0,a[2]] for a in optimalbinpack] #set used space=0 



50 
 

 

print('\n Optimal bin packing solution:') 

print('\t constraints:') 

print('\t PM capacity, replication, MCF equivalent cost choice\n') 

vmdict = {} 

for v in vmList: 

    vmdict[v[0]] = (v[1],v[2]) #key: vmID, value: (vmSize,pmLocation) 

 

data = {} 

#add the weights, which is the size of each vm copy 

weights=[] 

items=[] 

itemnumber = 0 

for vm in vmdict: 

    for r in range(numCopies): 

        weights.append(vmdict[vm][0]) #append vm size 

        items.append(itemnumber) #originating vmID = itemnumber // numCopies 

        itemnumber += 1 

         

data['weights'] = weights 

data['items'] = items 

data['bins'] = list(range(numPM)) 

bin_capacity = [pm[2] for pm in optimalbinpack] 

#dont need pm[2] - pm[1], no space used, orig vms are temporarily removed 

data['bin_capacity'] = bin_capacity 

 

def mutex(vm1,vm2): #vm1 cannot go in same pm as vm2 

    for j in data['bins']: 

        solver.Add(x[vm1,j] + x[vm2,j] <= 1) 

    return 

 

#Instantiate MIP solver with CBC backend 

solver = pywraplp.Solver('simple_mip_program', 

                       pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING) 

 

# Variables 

# x[i, j] = 1 if vm i is packed in pm j. 

x = {} 

for i in data['items']: 

    for j in data['bins']: 

        x[(i, j)] = solver.IntVar(0, 1, 'x_%i_%i' % (i, j)) 

        #x[(i, j)] = solver.IntVar(0, 1, '') #testing blank name 

# y[j] = 1 if pm j is used. 

y = {} 

for j in data['bins']: 

    y[j] = solver.IntVar(0, 1, 'y[%i]' % j) 

    #y[j] = solver.IntVar(0, 1, '') 

# Constraints 

# Each vm must be in exactly one pm. 
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for i in data['items']: 

    solver.Add(sum(x[i, j] for j in data['bins']) == 1) 

     

#constrain each PM to its remaining space capacity 

for j in data['bins']: 

    solver.Add( 

    sum(x[(i, j)] * data['weights'][i] for i in data['items']) <= y[j] * data['bin_capacity'][j]) 

''' 

multiplying by y[j] forces y[j] to equal 1 if any vm is packed in pm j. 

if y[j] were 0, the right side of the inequality would be 0, while the pm-space-used on the left side would be 

greater than 0, 

violating the constraint. 

the solver minimizes the number of pms where y[j] is 1. 

''' 

''' 

#constrain each vm replica copy to avoid originating pm 

for i in data['items']: 

    vmID = i//replicaCopies #vmcopy i is a replica of vmID 

    avoidPM = vmdict[vmID][1] #gets originating pm id 

    solver.Add(x[i,avoidPM] == 0) #vmcopy i avoids originating pm 

    if avoidPM == 0: 

        print(i,'avoids',avoidPM) 

''' 

#vm table format: vmid (non uniq), originating pm id, destination pm, cost, equivalent cost choices 

choices_table = [x[1:] for x in vm_table] 

#vmList format: vmid, size, orig pm 

for v in vmList: 

    pretendchoice = [v[0],v[2],v[2],0,[v[2]]] 

    choices_table.append(pretendchoice) 

choices_table=sorted(choices_table, key = lambda x: (x[0],len(x[4]))) #sort by vm id first, number of 

choices second 

#constrain replica copies of the same vm to avoid other copies of that vm 

exdict={} 

for i in data['items']: 

    vmID = i//numCopies 

    startvalue = vmID * numCopies 

    for r in range(startvalue,startvalue+numCopies): 

        if i == r: #do not mutually exclude itself 

            continue 

        if (r,i) in exdict.keys(): #already did this combination 

            continue 

        mutex(i,r) #but DO mutex other copies of the vm 

        exdict[(i,r)] = 1 

        #print(r,'avoids',i,r//numCopies,i//numCopies) 

 

def vmXgoesinpmY(vmid,pmid): 

    strexp = 'x[' + str(vmid) + ',' + str(pmid) + ']' 

    return strexp 
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#constrain choices to mcf equivalent cost choices 

for v in range(len(choices_table)): 

    choicelist = choices_table[v][4] 

    totalexp = '' 

    for c in choicelist: #build constraint expression as string, then eval 

        totalexp = totalexp + vmXgoesinpmY(v,c) + ' + ' 

    totalexp = totalexp[:-3] #truncate last 3 chars, the extra ' + ' 

    totalexp += ' == 1' 

    totalexp = eval(totalexp) #eval lets us eval the string as an expression 

    solver.Add(totalexp) 

 

pmdict = {} 

for pm in optimalbinpack: #translate list into dict for faster lookups 

    pmdict[pm[0]] = pm[1:] #key is pmid, value is rest of pm attributes 

  

# Objective: minimize the number of PMs used. 

solver.Minimize(solver.Sum([y[j] for j in data['bins']])) 

status = solver.Solve() 

 

if status == pywraplp.Solver.OPTIMAL: 

    num_bins = 0. 

    for j in data['bins']: 

        if y[j].solution_value() == 1: 

            bin_items = [] 

            bin_weight = 0 

            for i in data['items']: 

                if x[i, j].solution_value() > 0: 

                    vmid = i//numCopies 

                    bin_items.append(vmid) 

                    #add vm to pm in pmdict [vmid, size, origpmID] 

                    addvm = [vmid, vmdict[vmid][0],vmdict[vmid][1]] 

                    pmdict[j].append(addvm) 

                    bin_weight += data['weights'][i] 

            if bin_weight > 0: 

                num_bins += 1 

                #print(' %-5d  %-8d %-10d'%(pm[0],pm[1],pm[2]),end=' ') 

                print('\t PM # %-5d' %(j), end = ' ') 

                print(' stores VMs:', bin_items) 

                #print('           using:', bin_weight, 'space') 

    print() 

    #print('PMs used:', int(num_bins)) 

    print('\tOptimal Bin Packing calculation time = ', solver.WallTime(), ' milliseconds') 

else: 

    print('No optimal solution is possible.') 

     

optimalbinpack = [] #rebuild pm list from dict 

numactive_optimalbinpack=0 

for key,values in pmdict.items(): 

    pm = [] 
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    pm.append(key) 

    if len(values)>2: 

        numactive_optimalbinpack+=1 

    for v in values: 

        pm.append(v) 

    optimalbinpack.append(pm) 

 

optimalbinpack = updatePMspaceused(optimalbinpack) 

 

printPM(optimalbinpack) 

print(numMCFActivePM,'PMs used by MCF') 

print(numRFFactivePM, 'replacement firstfit consolidation method') 

print(numFFactivePM, 'firstFit consolidation heuristic') 

print(numactivePM_bestheurList,'best consolidation heuristic') 

print(numactive_optimalbinpack,'linear solver method') 

''' 

if checkNumActivePM(optimalbinpack) < checkNumActivePM(originalconsolidationpmlist): 

    print('\n') 

    print(pmList) 

    print(vmList) 

''' 

''' 

def mutex (i1, i2): #i1 and i2 become mutually exclusive in any given bin 

    for j in data['bins']: 

      solver.Add((x[i1,j] + x[i2,j]) <= 1) 

    return 

     

Useful examples of adding constraints: 

#item 1 can't go in bin 6 

solver.Add((x[1, 6] == 0)) 

 

#item 1 can't go in the same bin as item 2 

#for j in data['bins']: 

#    solver.Add((x[1,j] + x[2,j]) <= 1) 

 

#item 0 can't go in the same bin as any other item 

for jk in range(all bin numbers): 

    if jk != 0: #avoid excluding itself from itself 

        mutex(0,jk) 

 

#item 5 must go in bins 9 or 10 

solver.Add((x[5,9] + x[5,10]) == 1) 

 

 

''' 

#sort dictionary example 

#x = {1: 2, 3: 4, 4: 3, 2: 1, 0: 0} 

#print(x) 

#x= {k: v for k, v in sorted(x.items(), key=lambda item: item[1])} 
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Copy of fattree_writeonly.py (no screen printing, writes summary of results to fattreeresults.txt): 

import random #used to randomize initial pm and vm placement 

from copy import deepcopy #used for saving pm states before each algorithm 

from ortools.graph import pywrapgraph #used for mcf optimal solver 

from ortools.linear_solver import pywraplp #used for bin packing optimal solver 

#import time #used to time algorithms 

import sys 

import os 

 

def calcPMtoPMcost(pm1,pm2): 

    pm1=int(pm1) 

    pm2=int(pm2) 

    if pm1 == pm2: #pm to itself costs 0 

        return 0  

    pmPerEdge=int(numPM / totalEdge) 

    pm1Edge=int(pm1 / pmPerEdge) 

    pm2Edge=int(pm2 / pmPerEdge) 

    if pm1Edge == pm2Edge: #pms on same edge switch costs 2 

        return 2  

    pm1Pod=int(pm1Edge / numEdgePerPod) 

    pm2Pod=int(pm2Edge / numEdgePerPod) 

    if pm1Pod == pm2Pod: #pms on same pod costs 4 

        return 4 

    return 6 #routing through core switch costs 6 

 

with open('fattreesettings.txt','r') as f: 

    settings=[] 

    for line in f: 

        line=line.strip().split() 

        settings.append(line) 

 

#read in settings saved from txt file 

k=          int(settings[0][1]) 

numVM=      int(settings[1][1]) 

minVMsize=  int(settings[2][1]) 

maxVMsize=  int(settings[3][1]) 

numCopies=  int(settings[4][1]) #replica + original 

minPMsize=  int(settings[5][1]) 

maxPMsize=  int(settings[6][1]) 

numRuns=    int(settings[7][1]) 

 

fattreek = k 

#how many runs to simulate, 

#only used in write-only version for data collection 

''' 

fattreesettings.txt should be in this format: 

k 4 

numVM 4 

minVMsize 1 
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maxVMsize 1 

numCopies 5 

minPMsize 30 

maxPMsize 30 

''' 

 

#calculate number of switches and edges 

#this doesn't change with randomized placements. can leave outside of loop 

numPod=int(k) 

numCore=int((k/2)**2) 

numAggPerPod=int(k/2) 

numEdgePerPod=int(k/2) 

totalAgg=numAggPerPod * numPod 

totalEdge=numEdgePerPod * numPod 

numPM=int((k**3) / 4) 

totalSwitches=int(numCore + totalAgg + totalEdge) 

totalNode=totalSwitches + numPM 

totalEdges=numPM * 3 

 

#set of lists for tracking the stats of each algorithm per run ################################### 

firstFitFlowCost_list = [] 

firstfit_pms_used_list = [] 

greedyFlowCost_list = [] 

greedy_pms_used_list = [] 

mcf_flowcost_list = [] 

 

numMCFActivePM_list = [] 

numRFFactivePM_list = [] 

numFFactivePM_list = [] 

numactivePM_bestheurList_list = [] 

numactive_optimalbinpack_list = [] 

 

improvementAmountList = [] 

 

improvementcount=0 

errorcount=0 

samecount=0 

##################LOOP STARTS HERE######################################## 

 

for number in range(numRuns): 

    pmDict={} 

    #pmDict has [ [pmID, space-used, max-space] , 

    #[containedVM1-id, vm-size, originatingPM-id], [containedVM2-id...] ] 

 

    totalPMCapacity = 0 

    for x in range(numPM): 

        randomPMsize = random.randint(minPMsize,maxPMsize) 

        totalPMCapacity+=randomPMsize 

        pmDict[x] = [x,0,randomPMsize] 
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    #creating cost dictionary for later reference 

    cost_dict={} 

    for x in range(numPM): 

        for y in range(x): 

            costkey=(x,y) 

            costvalue=calcPMtoPMcost(x,y) 

            cost_dict[costkey]=costvalue 

            reversecostkey = (y,x) #reverse pair has same cost 

            cost_dict[reversecostkey]=costvalue 

    for x in range(numPM): #pm to itself is 0 

        costkey = (x,x) 

        cost_dict[costkey] = 0 

 

    vmList = [] 

    totalOrigVMsize = 0 

    totalOrigPlusReplicaSize = 0 

    vmDict = {} 

    #key: vmID 

    #value: [vm-id, vm-size, originating-PM-id] 

 

    for x in range(numVM): 

        randomVMsize = random.randint(minVMsize,maxVMsize) 

        totalOrigVMsize += randomVMsize 

        totalOrigPlusReplicaSize += (randomVMsize * numCopies) 

 

        #find a PM to place this VM on 

        placed = False 

        allPMids = [y for y in range(numPM)] 

        #random.shuffle(allPMids) #not necessary to shuffle since we pop randomly 

        for p in range(len(allPMids)): 

            randomPM = allPMids.pop(random.randint(0,len(allPMids)-1)) 

            randomPM = pmDict[randomPM] 

            randomPMspaceremaining = randomPM[2] - randomPM[1] #max - used  

            if randomPMspaceremaining >= randomVMsize: 

                randomPMid = randomPM[0] 

                placed = True 

                thisvm = [x,randomVMsize,randomPMid] 

                vmList.append(thisvm) #add to vm list 

                vmDict[x]=thisvm #add to vm dict 

                pmDict[randomPMid].append(thisvm) 

                pmDict[randomPMid][1] += randomVMsize #update pm used space 

                break 

        if placed == False: #never placed the VM 

            print('warning, VM',x,' could not be placed') 

            errorcount+=1 

            sys.exit() #being unable to place an orig vm is a serious error. it implies there is absolutely no 

space for replication. 
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    replicaSize = totalOrigPlusReplicaSize - totalOrigVMsize 

 

    #print('VM-ID, VM-Size, PM-location') 

    #for x in vmList: 

    #    print('%5s %6s %5s' %(str(x[0]),str(x[1]),str(x[2]))) 

 

    pmList= [] 

    for k,v in pmDict.items(): 

        pmList.append(v) 

    ''' 

    def printPM(pmList): 

        print('\nPM- | PM-space | PM-max-  | Assigned-') 

        print('ID  | used     | capacity | VM(s)') 

        print('-'*50) 

        for pm in pmList: 

            print(' %-5d  %-8d %-10d'%(pm[0],pm[1],pm[2]),end=' ') 

            for vm in pm[3:]: 

                print('%-3d'%(vm[0]),end=' ') 

            print() 

        print() 

 

    print('\nInitial, random original VM placement') 

    printPM(pmList) 

    ''' 

    ####################### nonrandom pmlist and vmlist for testing purposes 

    #pmList = [[0, 0, 30], [1, 0, 30], [2, 0, 30], [3, 0, 30], [4, 0, 30], [5, 0, 30], [6, 0, 30], [7, 1, 30, [2, 1, 7]], [8, 

0, 30], [9, 0, 30], [10, 0, 30], [11, 0, 30], [12, 1, 30, [0, 1, 12]], [13, 1, 30, [1, 1, 13]], [14, 0, 30], [15, 1, 30, 

[3, 1, 15]]] 

    #vmList = [[0, 1, 12], [1, 1, 13], [2, 1, 7], [3, 1, 15]] 

    ####################### 

 

    #first fit flow heuristic. in arbitrary order, each VM replica copy chooses the lowest ID available PM. flow 

cost ignored. 

    firstFitDict = deepcopy(pmDict) 

    firstFit_pmList=deepcopy(pmList) #deep copy pmList for different solutions 

    firstFitFlowCost = 0 

 

    def pmXcontainsvmY(pmx,vmy): 

        for x in firstFitDict[pmx[0]][3:]: 

            if x[0] == vmy[0]: 

                return True 

        return False 

         

    replicaCopies=numCopies-1 

    if replicaCopies > 0: 

        for vm in vmList: 

            needtoplace = replicaCopies 

            placed = 0 

            transferCost = 0 
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            for pm in firstFit_pmList: 

                if placed==replicaCopies: #already placed enough replica copies 

                    break 

                if pmXcontainsvmY(pm,vm): 

                    continue 

                pmvalues = firstFitDict[pm[0]] 

                if pmvalues[2] - pmvalues[1] >= vm[1]: #pm-max - pm-used >= vm-size 

                    needtoplace-=1 

                    placed+=1 

                    pmvalues[1] += vm[1] #update space used 

                    pmvalues.append(vm) 

                    firstFitDict[pm[0]] = deepcopy(pmvalues) 

                    costkey = (pm[0],vm[2]) 

                    transferCost += (cost_dict[costkey] * vm[1]) 

            if needtoplace != 0: 

                print('warning: didnt place all copies of VM',vm[0]) 

                sys.exit()#this should never happen, 

                #but just exit instead of continuing all calculations 

                errorcount+=1 

            firstFitFlowCost+=transferCost 

                     

    firstfitPMlist = [] 

    firstfit_pms_used = 0 

    for k,v in firstFitDict.items(): 

        firstfitPMlist.append(v) 

        if len(v) > 3: 

            firstfit_pms_used+=1 

    #print('\nFirstFit, flowcost:',firstFitFlowCost,' num-active-PMs:',firstfit_pms_used) 

    #printPM(firstfitPMlist) 

 

    #greedy: each vm seeks its lowest flow-cost available PM 

    greedy_pmList=deepcopy(pmList) 

    greedy_pmDict=deepcopy(pmDict) 

    greedyFlowCost=0 

 

    def greedycheckPMcontainsVM(pmx,vmy): 

        for x in greedy_pmDict[pmx[0]][3:]: 

            if x[0] == vmy[0]: 

                return True 

        return False 

 

    greedyFlowCost=0 

    for v in vmList: 

        for y in range (replicaCopies): 

            choices=[] 

            for pm in greedy_pmList:#calc flow cost from origPM to all other PMs 

                #pmID=pm[0] 

                #origPM=v[2] 

                costkey = (v[2],pm[0]) 
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                #cost = cost_dict[costkey] 

                choice_tuple=(pm[0],cost_dict[costkey]) 

                choices.append(choice_tuple) 

 

            choices=sorted(choices, key = lambda x: x[1]) #sort by cost of choices, lowest cost first 

            transferCost=0 

            for choice in choices: 

                #pmID=choice[0], vmID=v[0] 

                if greedycheckPMcontainsVM(choice,v): 

                    continue #if pm contains this vm already 

                pmvalues = greedy_pmDict[choice[0]] 

                #vmSize=v[1] 

                if pmvalues[2] - pmvalues[1] >= v[1]: #pm-max - pm-used >= vm-size 

                    pmvalues[1] += v[1] #update space used 

                    pmvalues.append(v) 

                    greedy_pmDict[choice[0]] = deepcopy(pmvalues) 

                    costkey = (choice[0],v[2]) 

                    transferCost += (cost_dict[costkey] * v[1]) 

                    break #stop trying to place in more choices PMs 

            greedyFlowCost+=transferCost 

 

    greedy_pmList = [] 

    greedy_pms_used = 0 

    for k,v in greedy_pmDict.items(): 

        greedy_pmList.append(v) 

        if len(v) > 3: 

            greedy_pms_used+=1 

    #print('\nGreedy, flowcost:',greedyFlowCost,' num-active-PMs:',greedy_pms_used) 

    #printPM(greedy_pmList) 

 

    #Minimum Cost Flow Solution 

    mcf_pmDict=deepcopy(pmDict) #copy over dicts so we dont change the originals 

    mcf_vmDict=deepcopy(vmDict) 

 

    #Instantiate an OR-Tools SimpleMinCostFlow solver 

    min_cost_flow = pywrapgraph.SimpleMinCostFlow() 

    #print('Minimum Cost Flow Solution: Pre-Consolidation') 

 

    superSourceID = numVM 

    superSinkID = numVM+1 

    offset = numVM+2 #PM ids will be offset by this number, to avoid conflict 

 

    superSourceSupply=replicaSize #set source supply to sum of replica sizes 

    min_cost_flow.SetNodeSupply(superSourceID,superSourceSupply) 

 

    superSinkDemand=superSourceSupply * -1 #set sink demand 

    min_cost_flow.SetNodeSupply(superSinkID,superSinkDemand) 

 

    #generate arcs from super source to each orig vm 
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    #min_cost_flow.AddArcWithCapacityAndUnitCost parameters are 

    #                                       (start-node, end-node, capacity, unit-cost) 

    finalsetdict={} 

    for k in range(numVM): 

        thisvmsize = mcf_vmDict[k][1] #get size of this vm 

        #add arcs from super-source to each original VM 

        min_cost_flow.AddArcWithCapacityAndUnitCost(superSourceID,k,replicaCopies*thisvmsize,0) 

        thisvmorigPM = mcf_vmDict[k][2] 

        for pmID in mcf_pmDict.keys(): 

            if pmID == thisvmorigPM: #dont create arc to originating-PM 

                continue 

            costkey = (thisvmorigPM,pmID) 

            cost = cost_dict[costkey] 

            #add arcs from each orig-VM to potential-destination-PMs 

            newPMid = pmID+offset 

            min_cost_flow.AddArcWithCapacityAndUnitCost(k,newPMid,thisvmsize,cost) 

            if newPMid not in finalsetdict: 

                finalsetdict[newPMid] = 0 #value doesnt matter here, storing the key does 

                pm_remaining_space = mcf_pmDict[pmID][2] - mcf_pmDict[pmID][1]#maxSpace - usedSpace 

                #generate arcs from each potential-destination-PM to the super sink 

                

min_cost_flow.AddArcWithCapacityAndUnitCost(newPMid,superSinkID,pm_remaining_space,0) 

 

    #vm_table holds information about MCF equivalent cost choices for each VM 

 

    if min_cost_flow.Solve() == min_cost_flow.OPTIMAL: 

        vm_table = [] 

#        print('Minimum cost:', min_cost_flow.OptimalCost(),end='  ') 

        mcf_flowcost = min_cost_flow.OptimalCost() 

        copyid=0 

        for i in range(min_cost_flow.NumArcs()): 

            cost = min_cost_flow.Flow(i) * min_cost_flow.UnitCost(i) 

            if min_cost_flow.Flow(i) > 0 and cost > 0: 

                

#a,b,c,d,e=min_cost_flow.Tail(i),min_cost_flow.Head(i),min_cost_flow.Flow(i),min_cost_flow.Capacity(i),c

ost 

                origVMid,destinationPMid=min_cost_flow.Tail(i),min_cost_flow.Head(i) 

                destinationPMid -= offset 

                #vm_table will have structure of: [copyID, origVMid, orig PM, destination PM, sunk cost] 

                vm_table.append([copyid,origVMid,mcf_vmDict[origVMid][2],destinationPMid,cost]) 

                copyid+=1 

                #update the pm dict to show a vm was replicated to the destination PM 

                pmvalues = mcf_pmDict[destinationPMid] 

                pmvalues.append(mcf_vmDict[origVMid]) 

                pmvalues[1] += mcf_vmDict[origVMid][1] #update pm-space-used 

                mcf_pmDict[destinationPMid] = deepcopy(pmvalues) 

                 

    else: 

        errorcount+=1 
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        pass #pass, this shouldnt happen. could sys.exit 

        #print('Error: There was an issue with the min cost flow input.') 

 

 

    mcf_pmList=[] 

    numMCFActivePM = 0 

    for v in mcf_pmDict.values(): 

        if len(v) > 3: 

            numMCFActivePM+=1#tally up active PMs 

        mcf_pmList.append(v) 

    #print('num-active-PMs:',numMCFActivePM) 

    #printPM(mcf_pmList) 

 

    #EQUIVALENT-COST-DESTINATION-PM-CHOICE TABLE HERE 

    #print('replicaID,origVMid,origPM,destPM,flowcost,equiv-cost-choice-PMs') 

    for vm in vm_table: 

        #filter the cost_dict for equivalent cost choices, using origPM and cost 

        #append the list of equivalent-cost-choice-PMs to each replicaVM 

        #origpm,cost = vm[2],vm[4] 

        filtered_list = [k[1] for k,v in cost_dict.items() if (k[0] == vm[2]) and v == vm[4]] 

        vm.append(filtered_list) 

         

        #print out the replica-vm-table 

    #    for y in vm:  

    #        print(y,'\t',end='  ') 

    #    print() 

 

    rffPMdict = deepcopy(pmDict) 

 

    #Replacement first fit, consolidation heuristic 

    #print('\nReplacement First Fit - MCF cost considered, MCF placement disregarded') 

    #acts as though all vms are unplaced but mcf cost is known, then first fit places them according to 

equivalent mcf cost per copy 

 

    def RFFcheckPMcontainsVM(pmID,vmID): 

        for vm in rffPMdict[pmID][3:]: 

            if vm[0] == vmID: 

                return True 

        return False 

 

    for vm in vm_table: 

        for choice in vm[5]: 

            #check if pm contains this vm already. replication constraint. 

            vmID = vm[1] 

            #pmID = choice 

            if RFFcheckPMcontainsVM(choice,vmID): 

                continue 

            #pm-space-max  = rffPMdict[pmID][2] 

            #pm-space-used = rffPMdict[pmID][1] 
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            #pm-space-remaining = max - used 

            if (rffPMdict[choice][2] - rffPMdict[choice][1]) >= vmDict[vmID][1]:#pm has enough space, we can 

place 

                pmvalues = rffPMdict[choice] 

                vmSize = vmDict[vmID][1]#vmID = vm[1] 

                addVM = [vmID,vmSize,vm[2]]#vmOrigPM = vm[2] or vmDict[vmID][2] 

                pmvalues[1] += vmSize 

                pmvalues.append(addVM) 

                rffPMdict[choice] = deepcopy(pmvalues) #[x for x in pmvalues] 

                break 

 

    #find active PMs and visualize rff solution         

    rff_pmList=[] 

    numRFFactivePM = 0 

    for v in rffPMdict.values(): 

        if len(v) > 3: 

            numRFFactivePM+=1#tally up active PMs 

        rff_pmList.append(v) 

    #print('num-active-PMs:',numRFFactivePM) 

    #printPM(rff_pmList) 

 

    #First fit consolidation heuristic 

    #Keeps mcf placement, tries to firstfit consolidate from there, using mcf-equivalent-cost for each copy 

    #will only transfer if destination-PM is not empty 

 

    #print('\nFirst Fit Consolidation - from MCF solution, \nEach VM jumps to a same-cost, lowest-id PM') 

 

    #before transfer dictionary 

    ffnotemptyDict = {k:v for k,v in mcf_pmDict.items()} 

 

    def FFcheckPMcontainsVM(pmID,vmID): 

        for vm in ffnotemptyDict[pmID][3:]: 

            if vm[0] == vmID: 

                return True 

        return False 

 

    #print('replicaID,origVMid,origPM,destPM,flowcost,equiv-cost-choice-PMs') 

    for vm in vm_table: 

        for choice in vm[5]: 

            vmID = vm[1] 

            #pmID = choice 

            if len(ffnotemptyDict[choice]) == 3: #pm is empty, dont transfer 

                continue 

            if choice == vm[3]: 

                continue #dest-pm is same as mcf solution, dont transfer 

            if FFcheckPMcontainsVM(choice,vmID): 

                continue #dest-pm contains a copy of this vm already, dont transfer 

            #pm-space-max  = ffnotemptyDict[pmID][2] 

            #pm-space-used = ffnotemptyDict[pmID][1] 
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            #pm-space-remaining = max - used 

            if (ffnotemptyDict[choice][2] - ffnotemptyDict[choice][1]) >= vmDict[vmID][1]: 

                #pm has enough space, we can transfer 

                pmvalues = [x for x in ffnotemptyDict[choice]] 

                vmSize = vmDict[vmID][1]#vmID = vm[1] 

                #add vm to chosen dest PM 

                addVM = [vmID,vmSize,vm[2]]#vmOrigPM = vm[2] or vmDict[vmID][2] 

                pmvalues[1] += vmSize 

                pmvalues.append(addVM) 

                ffnotemptyDict[choice] = [x for x in pmvalues] #[x for x in pmvalues] 

 

                #remove vm from previous dest PM 

                ffnotemptyDict[vm[3]] = [x for x in ffnotemptyDict[vm[3]] if x != addVM] 

                ffnotemptyDict[vm[3]][1] -= vmSize 

                break 

 

    #find num-active-PMs and visualize ff solution         

    ff_pmList=[] 

    numFFactivePM = 0 

    howmanyvms = 0 

    for v in ffnotemptyDict.values(): 

        if len(v) > 3: 

            numFFactivePM+=1#tally up active PMs 

            for vm in v[3:]: 

                howmanyvms+=1 

        ff_pmList.append(v) 

    #print('num-active-PMs:',numFFactivePM) 

    #printPM(ff_pmList) 

 

    #implement original post-MCF consolidation as described in Dr. Tang's paper 

    #look at PMs with 1 VM in arbitrary order. for each PM, check if all its containing VMs can be moved 

elsewhere to a set of TPM. if yes, move them all. if no, dont move any. 

    #repeat with PMs with 2 VMs, then PMs with 3 VMs, until you reach max possible VM #. 

 

    #start_time = time.time() 

    ''' 

    def printDict(anydict, label = '\nprinting some dict'): 

        print(label) 

        for k,v in anydict.items(): 

            print(k,v) 

        print() 

    ''' 

    #copy mcf solution dict but sort by number of vms 

    #bestconsolidationheuristicDict = {k:v for k,v in sorted(mcf_pmDict.items(), key = lambda x: len(x[1]))} 

    #printDict(bestconsolidationheuristicDict) 

             

    #print('Best consolidation heuristic, tries to move all PMs containing') 

    #print('1 VM, then 2 VM, then 3 VM, ... only if all VMs can be moved') 

    #start_time = time.time() 
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    #if PM contains original vm, cant move 

    #if destinationPM is VM's origPM, cant move 

    #cost-equivalent 

    #destinationPM cannot be empty 

    #check replica constraint 

    #check PMhasspace 

    #update space 

    #add vm to new pm 

    #remove vm from old pm 

    bestheurDict = {k:v for k,v in sorted(pmDict.items(), key = lambda x: len(x[1]))} 

    #exclude PMs which contain the original VMs 

    excludelist = [v[2] for v in vmList] 

    bestheurResult = {k:v for k,v in mcf_pmDict.items()} #final positions will be saved here 

 

    vm_tableDict = {} #this is the dict equivalent of vm_table 

 

    #build pm-dict using replica ids, not just orig vm ids, for lookup 

    for vm in vm_table: 

        #add vm to dest pm 

        #origvmSize = vmDict[vm[1]][1] 

        #destpm = vm[3] 

        pmvalues = bestheurDict[vm[3]] 

        pmvalues.append(vm[0]) #add the replicaID to the destPM 

 

        #since we're looping through the list, build a dict for later 

        vm_tableDict[vm[0]] = [x for x in vm] 

         

 

    sortbynumcontainedVMs={} 

 

    for k,v in bestheurDict.items(): 

        if k in excludelist: 

            #dont bother trying to consolidate PMs which contain- 

            #an original vm 

            #print('skipping',k) 

            continue 

        sortbynumcontainedVMs[k] = [x for x in v[3:]] 

 

    #print('replicaID,origVMid,origPM,destPM,flowcost,equiv-cost-choice-PMs') 

    sortbynumcontainedVMs = sorted(sortbynumcontainedVMs, key = lambda 

x:len(sortbynumcontainedVMs[x])) #sort PM-ids by number of contained vms 

    #print(sortbynumcontainedVMs) 

    #we try to consolidate starting from PMs containing the fewest replica VMs 

    #skipping PMs which contain no VMs 

    #skipping PMs which contain an original VM 

    #skipping PMs in which not all VMs can be moved 

    #valid alternate PM must be: not empty, same cost, contain no other copies of that vm, has enough 

space 
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    ''' 

                #check if alternate choice has space 

                #pmMax - pmUsed >= originatingVMsize 

                #pmMax  = tpmvalues[2] 

                #pmUsed = tpmvalues[1] 

                #originating-vm-size = vmDict[choicedata[1]][1] 

 

                    #print('size data',tpmvalues[2],tpmvalues[1],vmDict[choicedata[1]][1]) 

                    #print(tpmvalues,'has space for',vm_tableDict[replica]) 

                    #print(choice,'has space for',replica) 

                    #store the data 

                    #set success flag 

                    #if you try an implementation that stores all the valid moves before making any, it wont save 

any calculations 

                    #due to some replicas picking the same target pm. updating the space on those target pms is 

                    #the same amount of calculations as to just make the move, and revert if not all replicas were 

able to move. 

                    #print('moving vm x from pm y to pm z', vmDict[choicedata[1]], 

bestheurResult[pmID],bestheurResult[choice]) 

                 

 

    ''' 

    for pmID in sortbynumcontainedVMs: 

        pmvalues = [x for x in bestheurDict[pmID]] #trying to consolidate this PM 

        #print('\npmvalues',pmvalues) 

        #print('lenpmvalues3:',len(pmvalues[3:])) #num of replica copies on this pm 

        #print('PMID',pmID) 

        canmoveall = True 

        movesmade = [] 

        #beforemove = {k:v for k,v in bestheurResult.items()} #save state before attempting moves 

        for replica in pmvalues[3:]: #check if each replica can be moved. PMs that have no replicas are 

skipped here. 

            choicedata = [x for x in vm_tableDict[replica]] 

            #choicedata is replicaID,origVMid,origPM,destPM,flowcost,equiv-cost-choice-PMs 

            #print('choicedata',choicedata) 

            #we are looking at each replica copy's choices now 

            canmove = False 

            for choice in choicedata[5]: #these are the equiv-cost-PMs 

                #print('choice',choice) 

                #check that new dest is not same as old dest 

                if choice == choicedata[3]: #cant move, new pm is same as old pm 

                    #print('dest pm is same as old dest', choice, choicedata[3]) 

                    continue 

                 

                tpmvalues = [x for x in bestheurResult[choice]] #makes a copy instead of a reference to 

targetPM 

                #print('tpmvalues',tpmvalues) 

                #check that dest pm is not empty. we wont transfer to an empty pm 

                if len(tpmvalues) == 3: 
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                    #print(tpmvalues,'is empty, cant move') 

                    continue 

                 

                #check if alternate pm choice contains any copy of this vm 

                containsflag = False 

                for containedvm in tpmvalues[3:]: 

                    if containedvm[0] == choicedata[1]: #found match for this vm, cant move 

                        #print('vm match, cant move', containedvm[0],choicedata[1]) 

                        containsflag = True 

                        break 

                if containsflag == True: 

                    continue #skip to next possible choice, dont place here. 

 

                if (tpmvalues[2] - tpmvalues[1]) >= vmDict[choicedata[1]][1]: #has space to accept this replica 

copy 

 

                    canmove = True 

                    #remove vm from old dest pm 

                    #update old pm space-used 

                    #print('old pm bef',bestheurResult[pmID]) 

                    bestheurResult[pmID] = [x for x in bestheurResult[pmID] if x != vmDict[choicedata[1]]] 

                    bestheurResult[pmID][1] -= vmDict[choicedata[1]][1] #subtract vm-size from space-used, on 

old dest pm 

                    #print('old pm aft',bestheurResult[pmID]) 

                     

                    #print('new pm bef',bestheurResult[choice]) 

                    #add vm to new dest pm 

                    #update new pm space-used 

                    bestheurResult[choice].append(vmDict[choicedata[1]]) 

                    bestheurResult[choice][1] += vmDict[choicedata[1]][1] #add vm-size to space-used, on new 

dest pm 

                    #print('new pm aft',bestheurResult[choice]) 

                    #print() 

                    movesmade.append([ vmDict[choicedata[1]], bestheurResult[pmID], bestheurResult[choice] ] 

)#save orig-vm-data, old-dest-pm, new-dest-pm 

                    break 

            if canmove == False: 

                canmoveall = False 

        if canmoveall == False: 

            #revert 

            #bestheurResult = {k:v for k,v in beforemove.items()} 

            for move in movesmade: 

                #vmsize = move[0][1] 

                #print('reverting',move[0]) 

                #vm, oldpm, newpm 

                #print('before revert',move) 

                move[2].remove(move[0]) 

                move[2][1] -= move[0][1] #update pm-used, subtract vm-size 

                move[1].append(move[0]) 
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                move[1][1] += move[0][1] #update pm-used, add vm-size 

                #print('after  revert',move) 

 

    #print('calculation time =',time.time() - start_time) 

    bestheurList = [] 

    numactivePM_bestheurList = 0 

    for v in bestheurResult.values(): 

        bestheurList.append(v) 

        if len(v) > 3: 

            numactivePM_bestheurList +=1 

    #print('best heuristic, numactivePM:',numactivePM_bestheurList) 

    #printPM(bestheurList)  

 

 

    def updatePMspaceused(pmlist): 

        pmlistcopy = deepcopy(pmlist) 

        for pm in pmlistcopy: 

            if len(pm) > 3: #contains VMs 

                vms = pm[3:] 

                spaceused = 0 

                for v in vms: 

                    spaceused += v[1] 

                pm[1] = spaceused 

            else: 

                pm[1] = 0 

        return pmlistcopy 

 

    #use google's OR-Tools to optimally solve consolidation 

    #as a bin packing problem w constraints 

    #constraint 1: choices are limited to mcf solution equivalent cost choices 

    #constraint 2: replication constraint (copies of a particular vm cannot share a pm) 

    #constraint 3: capacity constraint of each pm 

 

    optimalbinpack = deepcopy(pmList) 

    optimalbinpack = [pm[:3] for pm in optimalbinpack] #remove orig vms 

    optimalbinpack = [[a[0],0,a[2]] for a in optimalbinpack] #set used space=0 

 

    #print('\n Optimal bin packing solution:') 

    #print('\t constraints:') 

    #print('\t PM capacity, replication, MCF equivalent cost choice\n') 

    vmdict = {} 

    for v in vmList: 

        vmdict[v[0]] = (v[1],v[2]) #key: vmID, value: (vmSize,pmLocation) 

 

    data = {} 

    #add the weights, which is the size of each vm copy 

    weights=[] 

    items=[] 

    itemnumber = 0 
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    for vm in vmdict: 

        for r in range(numCopies): 

            weights.append(vmdict[vm][0]) #append vm size 

            items.append(itemnumber) #originating vmID = itemnumber // numCopies 

            itemnumber += 1 

             

    data['weights'] = weights 

    data['items'] = items 

    data['bins'] = list(range(numPM)) 

    bin_capacity = [pm[2] for pm in optimalbinpack] 

    #dont need pm[2] - pm[1], no space used, orig vms are temporarily removed 

    data['bin_capacity'] = bin_capacity 

 

    def mutex(vm1,vm2): #vm1 cannot go in same pm as vm2 

        for j in data['bins']: 

            solver.Add(x[vm1,j] + x[vm2,j] <= 1) 

        return 

 

    #Instantiate MIP solver with CBC backend 

    solver = pywraplp.Solver('simple_mip_program', 

                           pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING) 

 

    # Variables 

    # x[i, j] = 1 if vm i is packed in pm j. 

    x = {} 

    for i in data['items']: 

        for j in data['bins']: 

            x[(i, j)] = solver.IntVar(0, 1, 'x_%i_%i' % (i, j)) 

            #x[(i, j)] = solver.IntVar(0, 1, '') #testing blank name 

    # y[j] = 1 if pm j is used. 

    y = {} 

    for j in data['bins']: 

        y[j] = solver.IntVar(0, 1, 'y[%i]' % j) 

        #y[j] = solver.IntVar(0, 1, '') 

    # Constraints 

    # Each vm must be in exactly one pm. 

    for i in data['items']: 

        solver.Add(sum(x[i, j] for j in data['bins']) == 1) 

         

    #constrain each PM to its remaining space capacity 

    for j in data['bins']: 

        solver.Add( 

        sum(x[(i, j)] * data['weights'][i] for i in data['items']) <= y[j] * data['bin_capacity'][j]) 

    ''' 

    multiplying by y[j] forces y[j] to equal 1 if any vm is packed in pm j. 

    if y[j] were 0, the right side of the inequality would be 0, while the pm-space-used on the left side would 

be greater than 0, 

    violating the constraint. 

    the solver minimizes the number of pms where y[j] is 1. 
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    ''' 

    ''' 

    #constrain each vm replica copy to avoid originating pm 

    for i in data['items']: 

        vmID = i//replicaCopies #vmcopy i is a replica of vmID 

        avoidPM = vmdict[vmID][1] #gets originating pm id 

        solver.Add(x[i,avoidPM] == 0) #vmcopy i avoids originating pm 

        if avoidPM == 0: 

            print(i,'avoids',avoidPM) 

    ''' 

    #vm table format: vmid (non uniq), originating pm id, destination pm, cost, equivalent cost choices 

    choices_table = [x[1:] for x in vm_table] 

    #vmList format: vmid, size, orig pm 

    for v in vmList: 

        pretendchoice = [v[0],v[2],v[2],0,[v[2]]] 

        choices_table.append(pretendchoice) 

    choices_table=sorted(choices_table, key = lambda x: (x[0],len(x[4]))) #sort by vm id first, number of 

choices second 

    #constrain replica copies of the same vm to avoid other copies of that vm 

    exdict={} 

    for i in data['items']: 

        vmID = i//numCopies 

        startvalue = vmID * numCopies 

        for r in range(startvalue,startvalue+numCopies): 

            if i == r: #do not mutually exclude itself 

                continue 

            if (r,i) in exdict.keys(): #already did this combination 

                continue 

            mutex(i,r) #but DO mutex other copies of the vm 

            exdict[(i,r)] = 1 

            #print(r,'avoids',i,r//numCopies,i//numCopies) 

 

    def vmXgoesinpmY(vmid,pmid): 

        strexp = 'x[' + str(vmid) + ',' + str(pmid) + ']' 

        return strexp 

 

    #constrain choices to mcf equivalent cost choices 

    for v in range(len(choices_table)): 

        choicelist = choices_table[v][4] 

        totalexp = '' 

        for c in choicelist: #build constraint expression as string, then eval 

            totalexp = totalexp + vmXgoesinpmY(v,c) + ' + ' 

        totalexp = totalexp[:-3] #truncate last 3 chars, the extra ' + ' 

        totalexp += ' == 1' 

        totalexp = eval(totalexp) #eval lets us eval the string as an expression 

        solver.Add(totalexp) 

 

    pmdict = {} 

    for pm in optimalbinpack: #translate list into dict for faster lookups 
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        pmdict[pm[0]] = pm[1:] #key is pmid, value is rest of pm attributes 

      

    # Objective: minimize the number of PMs used. 

    solver.Minimize(solver.Sum([y[j] for j in data['bins']])) 

    status = solver.Solve() 

 

    #format output for the optimal solution, print optimal solution 

    if status == pywraplp.Solver.OPTIMAL: 

        num_bins = 0. 

        for j in data['bins']: 

            if y[j].solution_value() == 1: 

                bin_items = [] 

                bin_weight = 0 

                for i in data['items']: 

                    if x[i, j].solution_value() > 0: 

                        vmid = i//numCopies 

                        bin_items.append(vmid) 

                        #add vm to pm in pmdict [vmid, size, origpmID] 

                        addvm = [vmid, vmdict[vmid][0],vmdict[vmid][1]] 

                        pmdict[j].append(addvm) 

                        bin_weight += data['weights'][i] 

                if bin_weight > 0: 

                    num_bins += 1 

                    #print(' %-5d  %-8d %-10d'%(pm[0],pm[1],pm[2]),end=' ') 

    #                print('\t PM # %-5d' %(j), end = ' ') 

    #                print(' stores VMs:', bin_items) 

                    #print('           using:', bin_weight, 'space') 

    #    print() 

        #print('PMs used:', int(num_bins)) 

        #print('\tOptimal Bin Packing calculation time = ', solver.WallTime(), ' milliseconds') 

    else: 

        errorcount+=1 

        pass#this should never happen, could sys.exit() 

    #    print('No optimal solution is possible.') 

         

    optimalbinpack = [] #rebuild pm list from dict 

    numactive_optimalbinpack=0 

    for key,values in pmdict.items(): 

        pm = [] 

        pm.append(key) 

        if len(values)>2: 

            numactive_optimalbinpack+=1 

        for v in values: 

            pm.append(v) 

        optimalbinpack.append(pm) 

 

    optimalbinpack = updatePMspaceused(optimalbinpack) 

 

    firstFitFlowCost_list.append(firstFitFlowCost) 
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    firstfit_pms_used_list.append(firstfit_pms_used) 

    greedyFlowCost_list.append(greedyFlowCost) 

    greedy_pms_used_list.append(greedy_pms_used) 

    mcf_flowcost_list.append(mcf_flowcost) 

 

    numMCFActivePM_list.append(numMCFActivePM) 

    numRFFactivePM_list.append(numRFFactivePM) 

    numFFactivePM_list.append(numFFactivePM) 

    numactivePM_bestheurList_list.append(numactivePM_bestheurList) 

    numactive_optimalbinpack_list.append(numactive_optimalbinpack) 

 

    if numactive_optimalbinpack < numactivePM_bestheurList: 

        improvementAmountList.append(numactivePM_bestheurList-numactive_optimalbinpack) 

        improvementcount+=1 

 

    if numactive_optimalbinpack > numactivePM_bestheurList: 

        errorcount+=1000000 #this is a joke 

 

    if numactive_optimalbinpack == numactivePM_bestheurList: 

        samecount+=1 

 

################################LOOP ENDS HERE 

def writelistoneline(alist): 

    for a in alist: 

        fout.write('%-4s'%(str(a))+' ') 

    fout.write('\n') 

with open('fattreeresults.txt','w') as fout: 

    fout.write('\t\t         k '+str(fattreek)) 

    fout.write('\n\t\t     numVM '+str(numVM)) 

    fout.write('\n\t\t minVMsize '+str(minVMsize)) 

    fout.write('\n\t\t maxVMsize '+str(maxVMsize)) 

    fout.write('\n\t\t numCopies '+str(numCopies)) 

    fout.write('\n\t\t minPMsize '+str(minPMsize)) 

    fout.write('\n\t\t maxPMsize '+str(maxPMsize)) 

    fout.write('\n\t\t   numRuns '+str(numRuns)+'\n\n') 

                

    fout.write('          FirstFitFlowCost ') 

    writelistoneline(firstFitFlowCost_list ) 

    fout.write('            GreedyFlowCost ') 

    writelistoneline(greedyFlowCost_list ) 

    fout.write('               MinFlowCost ') 

    writelistoneline(mcf_flowcost_list ) 

    fout.write('\n') 

     

    fout.write('          FirstFitActivePM ') 

    writelistoneline(firstfit_pms_used_list ) 

    fout.write('            GreedyActivePM ') 

    writelistoneline(greedy_pms_used_list ) 

    fout.write('               MCFActivePM ') 
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    writelistoneline(numMCFActivePM_list ) 

    fout.write('\n') 

     

    fout.write('               RFFActivePM ') 

    writelistoneline(numRFFactivePM_list ) 

    fout.write(' mcfPlacedFirstFitActivePM ') 

    writelistoneline(numFFactivePM_list ) 

    fout.write('      BestConsAlgoActivePM ') 

    writelistoneline(numactivePM_bestheurList_list ) 

 

    fout.write('       optimalbinpack_list ') 

    writelistoneline(numactive_optimalbinpack_list ) 

    fout.write('\n') 

    ''' 

    print('                            error count:',errorcount)     

    print('                         number of runs:',numRuns) 

    print('         optimal matches best heuristic:',samecount) 

    print('     optimal outperforms best heuristic:',improvementcount,'times') 

    ''' 

    heuravg = sum(numactivePM_bestheurList_list) / len(numactivePM_bestheurList_list) 

    heuravg = round(heuravg,2) 

 

 

 

    #print('        avg servers used,best heuristic:', heuravg) 

 

    optavg = sum(numactive_optimalbinpack_list) / len(numactive_optimalbinpack_list) 

    optavg = round(optavg,2) 

    #print('            avg servers used in optimal:', optavg) 

     

    fout.write('          bestheur avg PMs '+str(heuravg)) 

    fout.write('\n           optimal avg PMs '+str(optavg)) 

    fout.write('\n      optimal matches best '+str(samecount)) 

    fout.write('\n  optimal outperforms best '+str(improvementcount)) 

    mag=0 

    if improvementAmountList: 

        mag = sum(improvementAmountList)/len(improvementAmountList) 

        mag = round(mag,2) 

    #    print('       average magnitude of improvement:',mag,'additional servers') 

 

    fout.write('\n       avg mag improvement '+str(mag)) 

 

#os.startfile('C:\\Users\\alext\\Desktop\\csc\\fattreeresults.txt') 

 

 


