
i

EFFICIENT VIRTUAL MACHINE REPLICATION AND SERVER CONSOLIDATION

USING MINIMUM COST FLOW AND BIN PACKING

A Project

Presented

to the Faculty of

California State University, Dominguez Hills

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

 Computer Science

by

Alexander Toneff

Spring 2020

ii

PROJECT: EFFICIENT VIRTUAL MACHINE REPLICATION AND SERVER
CONSOLIDATION USING MINIMUM COST FLOW AND BIN PACKING

AUTHOR: ALEXANDER TONEFF

APPROVED:

Bin Tang, Ph.D.

Project Committee Chair

Jack Han, Ph.D.

Committee Member

Mohsen Beheshti, Ph.D.

Department Chair, Committee Member

iii

ACKNOWLEDGEMENTS

 This work is built entirely on Professor Bin Tang’s work. Thank you to Dr. Tang

for patiently explaining the concepts to me. Thank you to Dr. Han, Dr. Beheshti, for

taking the time to offer feedback and support me through this process. An additional

thank you to all the professors and wonderful staff at the CSUDH Computer Science

Department who make learning a joy.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS………………………..…………………………………………….iii

TABLE OF CONTENTS…………………………………..……………………………………iv

LIST OF FIGURES…………………………………………...…………………………………v

ABSTRACT……………………………………………..………………………………………vii

Chapter 1: INTRODUCTION……………..………………..……………..……………………1

Chapter 2: RELATED WORK………………………………………….………………………3

Chapter 3: ALGORITHMS…………….…………………………….………….…………….10

Chapter 4: IMPLEMENTATION………..……..……………………..….……………………15

Chapter 5: RESULTS………………..……………..………………….............……………..26

Chapter 6: FUTURE DIRECTIONS ……………………………………….……….……..…32

REFERENCES…………………………………………………………………………………35

APPENDIX………………………………………………………………………..……………36

v

LIST OF FIGURES

1. Figure 1 Review of fat tree topology ...3

2. Figure 2 Initial VM placement example ..4

3. Figure 3 Minimum cost flow solution example ...5

4. Figure 4 Khani, Tang, et. al graph transformation ...6

5. Figure 5 Pseudocode for Algorithm 1 ..10

6. Figure 6 Pseudocode for Algorithm 2 ..11

7. Figure 7 Pseudocode for Algorithm 4 ..12

8. Figure 8 Pseudocode for Algorithm 5 ..12

9. Figure 9 High level program flow ...15

10. Figure 10 Initial settings text file ...15

11. Figure 11 Two hop example ..17

12. Figure 12 Four hop example ..17

13. Figure 13 Sample MCF output ..19

14. Figure 14 Pre-consolidation table, MCF result ..20

15. Figure 15 Optimal bin packing output ...24

16. Figure 16 Visualized bin packing output ...25

17. Figure 17 Flow cost results, variable VMs ..26

18. Figure 18 Flow cost results, variable copies ..27

19. Figure 19 Consolidation results, variable VMs ...27

20. Figure 20 Example, optimal outperforms greedy ..28

21. Figure 21 Sample MCF output, 14 servers used ..30

22. Figure 22 Sample Khani output, 11 servers used ..30

23. Figure 23 Sample optimal output, 10 servers used ..31

24. Figure 24 Summary results from 1000 runs ..31

file:///C:/Users/at/Desktop/masters%20project%20spring2020%20csudh%20atoneff1.docx%23_Toc45735261
file:///C:/Users/at/Desktop/masters%20project%20spring2020%20csudh%20atoneff1.docx%23_Toc45735262

vi

25. Figure 25 Review of Khani et. al original graph transformation32

26. Figure 26 Modified graph transformation, single stage optimization................................33

vii

ABSTRACT

This project shows a complete solution for efficient VM replication in a fat tree data

center, modeled as a minimum cost flow problem for optimal replication flow, and then

modeled as a bin packing problem for optimal server consolidation. Previously, both

optimizations have not been shown in a single work. Using Python 3.6+ and the Google

OR-Tools linear solver, results show the optimal algorithms outperform the best

heuristics. Future work indicates a model where flow and consolidation can be

optimized in a single algorithm, as well as a need for examination of non-linear factors

(sensitivity analysis) and the use of machine learning for energy optimization.

1

Chapter 1: INTRODUCTION

With the explosive growth of cloud infrastructure and worldwide network usage,

minimizing the cost of virtual machine replication and data center energy usage has

been a topic of interest for practical optimization. In data centers, the problem of moving

around data efficiently has been modeled as a minimum cost flow problem [7].

The problem of efficient virtual machine replication in data centers is typically

approached by considering the following sub-problems: minimizing flow costs,

maximizing server consolidation, and fulfilling service level agreements.

In order to minimize flow cost (i.e., transferring copies of a virtual machine across a

network), the topology of the data center is modeled as a graph problem. Like others

[7], this paper assumes the fat tree topology for the model.

Maximizing server consolidation involves converting the network topology into a graph

as well, and then solving it as a bin packing problem. Both of these types of optimization

problems can be solved using linear programming. Linear optimization problems are a

large class of problems which are most widely solved by applications of Dantzig’s

simplex algorithm, devised in 1947 [6].

Besides minimum cost flow and bin packing, other interesting applications of the

simplex algorithm include: routing problems (i.e. traveling salesman or delivery

optimization), assignment, scheduling, and large classes of linear, constraint, and

integer optimizations. Examples of these can be found at [5].

The format of this paper first discusses related work, and why they are different from the

2

solution being addressed here. Then the 7 algorithms used are explained. There are

two stages to the optimization, some algorithms concern the first stage where sum of

network flow is minimized (Algorithms 1, 2, 3), and the other algorithms are used in the

second stage where server consolidation is maximized (Algorithms 4, 5, 6, 7). To clarify,

an optimal solution would only require Algorithm 3 (minimum cost flow) and Algorithm 7

(bin packing with constraints). The others are for comparison to the optimal.

There are often multiple optimal flow solutions, from these we use algorithms to

maximize server consolidation. In the two-stage optimization design, the set of

consolidation solutions is dependent on the set of optimal flow solutions. In other words,

the second stage is searching through flow solutions which are equivalent in flow-cost to

the minimum cost flow solution, in order to find an optimal flow solution which uses the

least number of servers (maximizes consolidation).

In each of these two stages (flow, consolidation), the optimal algorithms are compared

to greedy heuristics. Algorithms (1, 2, 4, 5, 6) are greedy heuristics meant for

comparison against the optimal algorithms (3, 7). Greedy heuristics are simpler to

understand and implement, but only the optimal algorithms are guaranteed to produce

the best solution every time.

After the analysis of the algorithms, we look at implementation. The Implementation

section explains the program logic. Each critical piece of logic is discussed, in the order

that it executes in the program. The complete code is attached in the appendix. The

results show why and how optimal outperforms heuristic, and at the very end there is

discussion on direction of future work.

3

Chapter 2: RELATED WORK

In "Power-efficient virtual machine replication in data centers," P. Khani, B. Tang, J.

Han, and M. Beheshti showed the details of the graph transformation of a fat tree

topology data center, in order to model virtual machine replication as a minimum cost

flow problem with an optimal solution [7]. For reference, a figure diagramming an

example fat tree topology where k=4 (k is the arity of the fat tree and determines the

magnitude of its structure):

Figure 1 Review of fat tree topology

More information on how the fat tree structure is generated from ‘k’ and why it is a

useful network topology structure can be found outside this paper.

The “efficient virtual machine replication” problem was formulated as follows: there are

several virtual machines sitting on physical machines in the fat tree topology. Each

4

‘original’ virtual machine wants to send R replica copies of itself to other physical

machines, using the shortest network routing paths possible. Minimizing the sum of flow

cost of all selected routing paths was the primary objective, subject to the following

constraints: for safety, no two copies of a virtual machine could ever occupy the same

physical machine; physical machines were modeled to have a limited space capacity.

Figure 2 Initial VM placement example

In the illustration above, the original virtual machines 0, 1, 2, 3 are initially located at

physical machines 12, 13, 7, 15 respectively (physical machines are labeled 0 - 15).

5

Figure 3 Minimum cost flow solution example

In the illustration above, we see an example minimum cost flow solution for the previous

figure. Each VM replicates 9 times (red numbers). Virtual machine replica copies are

indicated by the red numbers corresponding with their original virtual machine id: 0, 1, 2,

or 3. The black numbers 0, 1, 2, 3 are the original virtual machines which never moved.

For a detailed explanation of replica choices, please see Figure 17 on page 16.

Khani et al.’s results compare the optimal flow cost of the minimum cost flow solution to

some simple greedy heuristics, such as a heuristic where each virtual machine copy

‘chooses’ its cheapest routing path. The heuristic is quite good, performing almost as

well as optimal in most cases, but it is not as good as optimal because the order in

which each virtual machine copy can pick is arbitrary. In more complex conditions,

6

sometimes one virtual machine copy will greedily choose a destination physical

machine that could have been used more efficiently by a different virtual machine copy.

Khani et al. ran into a problem when it came to server consolidation: the minimum cost

flow solution gave them an arbitrary number of destination physical machines [7]. For

example, imagine a minimum flow cost solution where total flow cost is 60, and 10

physical machines end up holding virtual machines. Compare this to a solution where

total flow cost is still 60, but 8 physical machines end up being used. Even though a

solution using fewer physical machines is more desirable (because unused machines

can be slept to save power), the minimum cost flow algorithm would arbitrarily choose

any solution which minimized flow cost. This is due to the way the problem was

modeled, see Figure 4. There was no modeled cost representing activation of a server.

Figure 4 Khani, Tang, et. al graph transformation

As a side note, when modeling assignment (assign each virtual machine copy to a

destination physical machine) as a minimum cost flow problem, it is common to use a

“super sink” and a “super source” node to aggregate all the supply and demand into just

7

1 source node and 1 sink node. This makes the problem compatible with a larger class

of solvers than those which can handle multiple source and sink nodes.

As the illustration of their graph transformation shows, there is no cost on the final set of

edges from each physical machine to the super sink node, effectively making it ‘free’ to

use an arbitrary number of servers in the solution. While this graph transformation

allows a solver to minimize flow cost, it does not address server consolidation.

After the minimum cost flow algorithm produces an optimal flow cost solution, Khani et

al. then used a second ‘consolidation stage’ to try to consolidate servers used by

reexamining choices made by the minimum cost flow solution. Their consolidation

algorithms were greedy heuristics which were not optimal, thus leaving room for

improvement. However, this problem can be solved optimally by being modeled as a bin

packing problem with constraints, which is what this paper does.

H. Goudarzi and M. Pedram have the most cited work concerning efficient virtual

machine replication, in their paper "Energy-Efficient Virtual Machine Replication and

Placement in a Cloud Computing System," (2012) [2]. Their paper focuses on fulfilling

service level agreements in a cloud environment, which means ensuring the correct

amount of CPU and memory are allocated to each virtual machine. In addition, they

focus on server consolidation of virtual machines. Their work does not consider using

virtual machine replicas as backup copies for safety, nor is flow cost ever considered.

8

X. Dai, J. M. Wang and B. Bensaou, in "Energy-Efficient Virtual Machines Scheduling in

Multi-Tenant Data Centers," (2016) [9] have a paper similar to Goudarzi and Pedram

concerning the fulfillment of service level agreements and server consolidation in cloud

computing. They concluded an optimal solution would take too long to be practical, and

they compared their greedy heuristic algorithms for server consolidation to an optimal

one achieved by Gurobi (a privatized linear solver). Again, their work does not consider

flow cost.

In “Improved Filtering for the Bin-Packing with Cardinality Constraint” [8], Derval, R’egin,

Schaus show how to prune the search tree of bin packing solutions, using a “too-big”,

“too-small” concept, reducing computation time spent on impossible assignments. There

is no mention of network flow cost or efficient VM replication, thus the scope of their

paper is different than this one. However, their work has potential to reduce the bin

packing time calculation.

In “Minimum Cost Maximum Flow Algorithm for Dynamic Resource Allocation in Clouds”

[10], Hadji and Zeghlache simplify VM assignment by assuming all costs are known by

the cloud provider. The big idea of their paper is to predict future cloud resource

allocation based on past usage. There are no mentions of network flow cost at all. They

claim their algorithm “matches the global optimum most of the time”, which is a

contradiction, as an optimal algorithm should guarantee the best solution, every time, all

sets of cases considered. They use a simplified cost function where cost is inversely

proportional to current usage of that PM. This means no concrete results data on PM

9

space capacity, etc., as VMs are only classified by “type”, ex: small, medium, large.

They exclusively use minimum cost flow or bin packing to solve a simplified graph

transformation of the problem. This project uses both MCF and bin packing in

sequence.

Currently, it seems that no single research paper produces both optimal network flow

and optimal server consolidation together. There may also be a lack of organized data

on sensitivity analysis: which factors are truly significant in optimizing data center

energy usage? This would involve analysis of whether it is worth the cost of running

optimal solutions against simpler greedy heuristics, frequency of recalculation

(depending on how dynamic the environment is), actual measurable amount of energy

saved, and whether there are other important factors to consider.

This paper details an experiment with an optimal minimum cost flow solution and an

optimal server consolidation solution used together. There is some discussion at the

end on how to combine these two stages into one, for future work.

10

Chapter 3: ALGORITHMS AND THEIR ANALYSIS

Algorithm 1: First Fit. Each replica VM goes to the lowest ID available PM without

considering flow cost, which is why it achieves maximum consolidation. Available

means there is both enough PM space and there are no other copies of this VM already

on the target PM. First Fit algorithm is used as a benchmark for maximum consolidation,

without any consideration of flow. Pseudocode:

Figure 5 Pseudocode for Algorithm 1

First Fit time complexity: assuming feasibility, in the worst case, each replica VM must

search through all the PMs, checking: if each PM already contains any copy of that VM,

if that PM has enough space remaining. This means O(numReplicaCopies * numPMs) *

(the constant which represents the time it takes to perform the checks for space and

any other copies of this VM).

Algorithm 2: Greedy. A greedy heuristic where each VM chooses the lowest flow-cost

available destination PM, in arbitrary order. Pseudocode:

11

Figure 6 Pseudocode for Algorithm 2

Greedy performance often matches or comes close to minimum cost flow solutions in

terms of flow-cost, but it has no consideration of consolidation, and it is not an optimal

flow-cost solution due to allowing the replica VMs to choose in arbitrary order, this can

lead to one replica VM arbitrarily preventing a later replica VM’s optimal choice[1].

Greedy time complexity: each replica VM must sort the list of PMs by ascending flow-

cost. It must check each PM for space and whether that PM contains any other copies

of this VM. Worst case, this leads to O(numReplicaCopies * (numPM * log numPM) *

numPM), where each replicaVM has to sort the list of PMs by flow-cost and doesn’t

place until the last PM on its sorted list.

Algorithm 3: Minimum Cost Flow. This is the optimal flow algorithm which can guarantee

the minimum total flow cost every time. The minimum cost flow algorithm is

implemented in Google’s OR-Tools in C++, using Goldberg’s method, with O(V^2 * E).

In this graph transformation, the number of vertices will be numReplicaCopies + numPM

, plus 2 (the supersource and supersink). The number of edges is numReplicaCopies +

numPM + numReplicaCopies * (numPM-1). See the graph transformation figures.

Algorithm 4: RFF, or ReplacementFirstFit, is a consolidation heuristic which limits each

replica VM to a set of target PMs that are equivalent in flow cost to the minimum cost

flow solution. This ensures the consolidation solution always has the same flow cost as

12

MCF’s solution(Algorithm 3). Replica VMs are placed in the lowest-id available PM,

where “available” means: flow cost to target PM is the same as MCF, PM has enough

space, and no other copy of that VM is on the target PM. Pseudocode:

Figure 7 Pseudocode for Algorithm 4

ReplacementFirstFit’s time complexity: Since optimal flow costs are already given as a

result of the MCF solution, each replica copy only searches for the lowest-ID-available-

PM from a list of target PMs which are equivalent in flow cost to the MCF solution, while

also considering whether the target PM has enough space and whether there is already

a replica copy of that VM on the target PM. The worst case is O(numReplicaCopies *

numPMs).

Algorithm 5: MCF-Placed-FirstFit, just like Algorithm 4 RFF, is a consolidation heuristic

which starts from the minimum cost flow solution and examines each PM to try to move

any VMs to the lowest-id available PM, while respecting equivalent flow-costs. The key

difference is that Algorithm 5 keeps the MCF placement as a starting point and attempts

to transfer to lower ID PMs, whereas RFF redoes all placements. Pseudocode:

Figure 8 Pseudocode for Algorithm 5

13

Algorithm 6: Khani et al.’s best consolidation heuristic is described as follows:

(1) Look at each PM holding exactly 1 VM, in arbitrary order.

(2) For each of these PMs, check if each of its contained VMs can be moved

elsewhere (if the move is equivalent in cost to the MCF solution).

(3) If all contained VMs can be moved, move them all. If not, don't move any.

(4) Then repeat steps 1-3 with PMs holding 2 VMs, then repeat steps 1-3 with PMs

with 3 VMs, ...until you reach the maximum possible number of VM per PM.

Algorithm 6 outperforms Algorithms 4 and 5, because it starts by trying to consolidate

the PMs holding the lowest number of VMs; intuitively, PMs containing the fewest VMs

are the most likely to be consolidated. They are the “low-hanging fruit” for consolidation.

At worst case, the algorithm will run numReplicaCopies times over all PMs that do not

contain an original VM, checking each replicaVM for valid alternative PM choices

(numReplica * numPM). This means a worst possible runtime of O (numReplicaCopies

* (numReplicaVMs * numPMs)). In the above implementation, to try to speed up the

algorithm, PMs containing an original VM are excluded from VM examination, and the

remaining list of PMs is sorted ascending by number of contained VMs.

Algorithm 7: the optimal bin packing solution has no known polynomial time algorithm. It

is based on Dantzig’s simplex algorithm, the most efficient algorithm commonly used to

solve linear programming problems. There are different variations of implementations of

Dantzig’s simplex algorithm, however these can always be shown to have a class of

problems for which the runtime is exponential.

When setting stress is relatively low, there is usually no way for the optimal flow and

14

consolidation algorithms to outperform the heuristics, as choices are not constrained

enough for a greedy heuristic to be forced into a local optimum while missing the global

optimum of flow and consolidation.

Additionally, when setting stress is relatively high, it becomes so difficult for a solution to

meet the constraints that there may be no room left over for any intelligent decision

making in which optimal outperforms the heuristics.

We will see that in low or high stress conditions, optimal does not offer any

improvement over Algorithm 6. There is a ‘sweet spot’ of stress where conditions are

stressful enough that heuristics make mistakes, but not so stressful that there is no

room for intelligent decision making to prevail after meeting the constraints. This ‘sweet

spot’ of stress is where optimal most notably outperforms heuristics. This observation

applies to both the flow-optimization-stage and the server-consolidation stage.

15

Chapter 4: IMPLEMENTATION

Figure 9 High level program flow

Above is a high level flow chart of the program. Initialization involves reading in the

settings.

Figure 10 Initial settings text file

In the settings, k is the arity of the fat tree, which can be any positive even integer. A

k=4 fat tree has 16 PMs, a k=8 fat tree has 128 PMs. Generalized, the fat tree will have

((k^3) / 4) PMs. numVM is the number of original VMs, which have randomized

placement. The min and max VM size are the allowed inclusive range for randomized

VM size. numCopies is the total number of copies of each VM, including the original and

16

replica copies. Min and max PM size are the allowed inclusive range for randomized PM

space capacity. numRuns is used by the write-only version (no monitor output) of the

program, used for comparing X number of runs results in a table which is outputted in

fattreeresults.txt.

As the high level flow chart indicates, the minimum cost flow solution is turned into a

table representing equivalent flow-cost PM choices for each replica VM copy. This table

of choices is used as input to each of the various consolidation algorithms, which are

described later in this paper.

In order to model these types of problems, some environment setup is required. The

least amount of setup is using Google’s OR-Tools, a free, open-source set of linear

solvers that can handle a wide variety of optimization problems. Google’s OR-Tools can

be installed with python “version 3.5+ on Linux, or 3.6+ on Mac OS or Windows” [3]. A

64 bit system is required. Once Python 3.6+ and pip are installed, the easiest way is to

pip install using the command:

python -m pip install --upgrade --user ortools

More information detailing the installation process as well as OR-Tools solving

capabilities can be found on google’s developer website [3][4]. Example optimization

problems are included with explanations of how to solve them using OR-Tools. OR-

Tools also has the option to be built from source with any other linear solver engine

placed on top of it: OR-tools, Gurobi, SCIP, GLPK.

Once Python 3.6+ and OR-Tools are successfully installed, in order to input the

17

topology into the minimum cost flow solver, we will need to define the graph as follows:

(start-node, end-node, capacity, unit-cost) for each arc(a.k.a. edge) in the graph. The

unit-cost, a.k.a. flow-cost, can be easily calculated by observing the following properties

about the fat tree structure: for any positive even integer k, PMs (physical machines)

which share the same edge switch are 2 network ‘hops’ apart.

Above, illustration of a 2-hop path, through edge switch, in k=4 fat treePMs which share

the same pod, but not the same edge switch, are always 4 network ‘hops’ apart:

Above, example of a 4-hop path, k=4, using aggregate switch (yellow).

Figure 11 Two hop example

Figure 12 Four hop example

18

PMs which do not share the same edge switch and do not share the same pod are

always 6 ‘hops’ apart, and must route through a core switch. This observation allows us

to define every possible routing cost from any PM to any other PM by knowing ‘k’.

Labeling each PM starting from 0, some index math allows us to identify whether PMs

are connected most closely by the same edge switch, aggregate switch, or require a

core switch, and thus assign either 2, 4, or 6 network ‘hops’ as their respective routing

cost. These are compiled into a dictionary (aka hash map) structure for faster lookups.

Key = (pm1 ID, pm2 ID). Value = Flow-cost between the two PMs.

We define the super source and super sink nodes, giving them an index number that

does not conflict with the assigned PM ids, and set their supply and demand to be

opposites of each other. The supply will be the sum of sizes of all replica copies being

transferred, since original VMs are never moved. The demand will be supply * -1.

Following the transformation in Khani et al., we generate arcs from the super source

node to each original VM, accounting for each VM’s size. Next we generate an arc from

each source PM to any other PM that can be a potential destination PM (excluding

itself): The capacity of each of these arcs is set to 1, ensuring that no PM ever receives

more than 1 copy of a given VM, satisfying the replication constraint.

Finally, each potential destination PM is connected to the super sink node. The capacity

of each of these arcs is set to that destination PM’s remaining space capacity, satisfying

the PM capacity constraint.

From here it is just a matter of letting OR-Tools do all the work in computing a solution

19

and organizing its output into human readable form: which arcs were used, to exactly

what capacity, along with the total flow-cost of the solution. After processing, we want to

see which PMs now contain copies of which VMs.

Figure 13 Sample MCF output

While we have found an optimal flow-cost solution using the minimum cost flow solver,

we have not yet optimized server consolidation. Like Khani et al., we can reexamine the

choices made by the optimal minimum cost flow solution and come up with a list of

equivalent cost choices for each VM replica copy that was moved. Once again, we

leverage our observation of how routing costs in the fat tree structure will always

predictably be 2, 4, or 6 network ‘hops’ and, once more, we make use of the cost

dictionary we compiled earlier.

Doing so allows us to form a pre-consolidation table detailing each replica VM copy’s

20

journey, where we can see: the originating VM id of that replica copy, the destination

PM it was assigned by the minimum cost flow solution, the routing/flow cost of that

assignment (always 2, 4, or 6 ‘hops’), and a list of destination PMs that would be the

same cost as the MCF solution (including the one chosen by the MCF solution):

Figure 14 Pre-consolidation table, MCF result

In the above example, note how for some VM replica copies, there is only 1 choice. This

21

is the case where the minimum cost flow solution had a PM send a replica copy to its

edge-switch-neighbor PM, at a cost of 2 network hops. In a k=4 fat tree, each edge

switch only holds 2 PMs: therefore, there can be no other equivalent cost choice for that

replica copy (sending a copy to itself is never an option). In a k=8 fat tree, each edge

switch holds 3 PMs, therefore the minimum number of choices would be 2 instead of 1.

As dictated by the minimum cost flow solution, the “medium length” (2 choices, in the

above example) list of choices comes from choosing a destination PM in the same pod,

but not the same edge-switch-neighbor, at a cost of 4 hops. The maximum length list of

choices comes from being unable to choose an edge-switch-neighbor nor a pod-

neighbor, being forced to route through a core switch at a cost of 6 hops.

Now that we have our list of minimum flow cost equivalent PM choices for each VM

replica copy, we can use this as input to Khani et al.’s best consolidation heuristic and

as input for our own optimal bin packing solution.

In order to use a linear solver for our optimal bin packing solution, we must define the

variables and constraints, using the minimum cost flow solution to help us define our

choices. Each VM copy will be an “item” to be packed in a “bin” (a PM that meets

constraints). The “weight” of a VM copy will be its size, ensuring we do not overpack a

PM with more VMs than it can hold.

Next we instantiate the solver and define the variables as follows: there are only two

possible values concerning VM assignment: x[i, j] = 1 means VM copy i is packed in

PM j. x[i, j] = 0 means VM copy i is not packed in PM j.

22

Similarly, y[j] = 1 means bin j is used. Y[j] = 0 means bin j is not used. “Used” means the

PM holds at least 1 VM.

With the variables defined, we move on to defining constraints. Our first constraint is

ensuring that each VM copy is in exactly one PM. In other words, for each item i, its

sum in all bins must equal 1.

Our next constraint ensures we do not violate the space capacity of any PM. In other

words, the sum of VMs in each PM (bin), must be less than or equal to that PM’s (bin’s)

capacity. Recall that y[j] is binary: 0 if a bin is not used, or 1 if a bin is used. If y[j] were

0, the sum of sizes of all VMs packed in that bin can only be 0 as well. If y[j] were 1,

then the sum of sizes of all VMs packed in that PM should be less than or equal to that

PM’s capacity. Later, we will define our objective to have the solver minimize the

number of PMs where y[j] is 1.

Next we have a more complex constraint: VM copies cannot share a PM with any other

copies of that same VM (including the original). For example, this means a copy of VM

#1 can never be held in the same PM which contains any other copy of VM #1. To help

us define this constraint, we look at a simple example where we define that “item 1

cannot go in the same bin as item 2”:

for j in data['bins']:

 solver.Add((x[1,j] + x[2,j]) <= 1)

The inequality ensures that either item 1(1 + 0 <= 1), or item 2 (0 + 1 <= 1), or neither (0

+ 0 <= 1), can go in any given bin, but any given bin will never contain both at once (the

23

left side of the inequality would equal 2, violating the constraint). Using this, we write a

helper function to mutually exclude any 2 given items, which we call the mutex function.

Using the mutex function, we can then exclude each VM copy from every other copy of

that same VM. For example, if we have 4 original VMs, with 10 total copies each, then

we have 40 items. Copies of VM #0 will be assigned as items 0-9, copies of VM #1 will

be 10-19, copies of VM #2 will be 20-29, and copies of VM #3 will be 30-39. This allows

us to do integer division to figure out the originating VM id. 0 through 9 // 10 will all equal

0. 10 through 19 // 10 will all equal 1...

The final constraint involves limiting each VM copy to its minimum cost flow equivalent

choices. Here are some examples of how to constrain an item to a specific set of bins:

#item 5 must go in bin 9

solver.Add(x[5,9] == 1)

Here is another example of how to constrain an item to 2 specific bins:

#item 5 must go in bins 9 or 10

solver.Add((x[5,9] + x[5,10]) == 1)

An example of constraining an item to 3 specific bins:

#item 5 must go in bins 8 or 9 or 10

solver.Add((x[5,8] + x[5,9] + x[5,10]) == 1)

We use the above examples to construct a string for each item, composed of its

24

minimum cost flow equivalent choice PMs. Once the string is constructed we can then

use eval() to add it as an expression to the solver. Construction involves referencing the

equivalent cost choices table from earlier.

With all our necessary constraints defined, we invoke the solver with the objective of

minimizing the number of PMs (bins) used. With some manipulation of the solver’s

output, we can achieve a more human readable output indicating which PMs contain

which VMs:

Figure 15 Optimal bin packing output

With more output manipulation, we can construct a diagram similar to the one we used

to view the output of the minimum cost flow solution, which used an arbitrary number of

PMs:

25

Figure 16 Visualized bin packing output

In the above example, the optimal bin packing method produced by the linear solver has

used 10 PMs in its solution, as opposed to 11 by Khani et al.’s best heuristic, and 14 as

arbitrarily done by the minimum cost flow solution. Substantial consolidation

improvement over the best heuristic is somewhat rare, but the linear solution is

guaranteed to be optimal.

26

Chapter 5: RESULTS

FirstFit (Algorithm 1) is just a benchmark, what we are interested in the flow stage is

comparing greedy (Algorithm 2) to optimal (Algorithm 3 MCF), to show that optimal

always matches or outperforms greedy. We can see as the number of VMs increases,

there is a greater difference in flow costs between the greedy flow heuristic (page 33 for

details) and the optimal minimum cost flow. This verifies Khani et al.’s work. The FirstFit

flow heuristic (see page 32 for details) will always have an extremely high flow cost

because it disregards flow cost in its solution.

Figure 17 Flow cost results, variable VMs

We can also see that as the number of replica copies increases, there is again greater

differentiation between the best flow heuristic and the optimal solution:

27

Figure 18 Flow cost results, variable copies

Rather than cherry-pick examples where optimal consolidation outperforms the

heuristics, we use the same settings we tested the flow algorithms with:

Figure 19 Consolidation results, variable VMs

The number of active PMs do not normally show much differentiation between the

consolidation algorithms except under unusually specific conditions, discussed later.

The only exception being that FirstFit ignores flow cost, thus it deviates significantly

from the number of active PMs used by other algorithms, which are restricted by

28

considering flow cost. To clarify, the FirstFit benchmark is not outperforming the optimal,

it is simply not subject to the constraint of considering flow-cost.

It is clear that an optimal algorithm will always match or outperform a heuristic, but the

question is how exactly does optimal outperform a greedy heuristic in this problem?

Consider the following example:

Figure 20 Example, optimal outperforms greedy

VM “b” can place a copy on either PM 0 or PM 1 for a flow-cost of 4 ‘hops’. However,

VM “a” has a more important choice: place a copy of VM “a” on PM 0 for a cost of 2, or

be forced to pay more to replicate elsewhere. If VM “b” is allowed to choose first, and

arbitrarily chooses PM 0 instead of PM 1, this blocks VM “a” from making its optimal

choice; this is an example of how the greedy heuristics often fail, they allow arbitrary

order of choice and have no mechanism for backtracking. This type of heuristic mistake

29

happens more often under “stressful conditions”.

What is meant by “stressful” conditions? As stated before, there is a sweet spot in

parameter stress where optimal notably outperforms greedy, rather than simply

matching it. With low numbers of copies, or lots of extra PM space compared to the total

size of VMs, it is easy to find a solution which satisfies the constraints, there will not be

significant differentiation between optimal and greedy. There will not be many places for

the greedy algorithm to make a mistake, like in the previous example with Figure 20.

Likewise, under very stressful conditions, such as where the PMs are filled nearly to

capacity for any possible solution, there will not be much differentiation between greedy

and optimal, as the difficulty in satisfying the constraints alone leaves almost no room

for ‘intelligent’ decision making, because there are a very limited number of possible

solutions which satisfy the constraints.

What about the sweet spot of moderately stressful conditions? The following settings

where k=4, 4 original VMs, 10 total copies of each, PM size of 10, are considered

moderately stressful, a higher number of VM copies approaches the limit as defined by

the replication constraint; with k=4, there are only 16 PMs, at least 10 different PMs are

required to hold all 10 the copies of any given VM, even before considering flow cost

and space capacity.

We now look at an example where optimal Algorithm 7 outperformed the Algorithm 6

consolidation heuristic. The minimum cost flow solution produces a solution using 14

servers:

30

Figure 21 Sample MCF output, 14 servers used

Algorithm 6 reduces the number of servers from 14 to 11:

Figure 22 Sample Khani output, 11 servers used

The optimal solution saves 1 additional server over the best heuristic:

31

Figure 23 Sample optimal output, 10 servers used

Even under “moderately stressful” conditions, improvement is somewhat uncommon:

Figure 24 Summary results from 1000 runs

Out of 1000 runs under those same settings, k=4, 4 VMs, 10 copies each, 10 PM size,

optimal outperformed the best heuristic 34 times.

On average, the best heuristic used 12.23 servers, whereas optimal used 12.19 servers

in a flow-cost-equivalent solution. When there was improvement to be found, the

magnitude of improvement averaged an additional 1.09 servers consolidated.

32

Chapter 6: FUTURE DIRECTIONS

Rather than first optimizing flow and then optimizing consolidation in a secondary

calculation, it is possible to avoid a consolidation stage altogether, simply by adding in a

server activation cost to the initial model before flow cost is optimized.

Recall the initial graph transformation, as specified by Khani et al.:

Figure 25 Review of Khani et. al original graph transformation

Note that the final set of edges connecting each potential destination PM to the super

sink have a cost of 0. This is the reason why the minimum cost flow solution chooses an

arbitrary number of servers. If this cost was changed to represent a one-time cost, or

constant cost, of activating a server, there would be no need for a separate

consolidation phase, as the model could be solved for both flow and consolidation at the

same time:

33

Figure 26 Modified graph transformation, single stage optimization

However, this cannot be done without understanding the difference between

representing a typical flow-cost vs. a one-time cost in the flow balance equations. In

order to plug this into a linear solver, the equations would have to be adjusted to

represent an additional one-time, or constant, cost on the final set of edges, not simply

a flow-cost.

Sensitivity analysis is needed. Adding in a one-time or constant cost to represent the

energy required to turn on a server also presents some additional complexity: what if

the energy of an active but empty server is much greater in magnitude than the flow

cost? Then an optimal solution would seek to prioritize server consolidation over flow-

cost. How much energy would we save in each case? What if we approach the problem

asynchronously, more realistically, rather than assuming all VMs are being copied and

transferred at once? These types of questions can only be answered by a sensitivity

analysis using real world data centers, to determine what the most important factors in

34

data center energy savings really are.

In a more realistic scenario, there are certainly factors outside of flow and consolidation

to consider, including nonlinear considerations as well. To this end, Google has given its

artificial intelligence “DeepMind” administrative level access to its data centers in order

to optimize energy costs, claiming an energy savings of 40%, although the analysis as

to how and the details as to what factors it prioritizes are still unknown [1]. The machine

learning approach seems able to adjust for factors that may be nonlinear in nature.

35

REFERENCES

[1] “DeepMind reduces cooling bill by 40%” https://deepmind.com/blog/article/deepmind-

ai-reduces-google-data-centre-cooling-bill-40

[2] H. Goudarzi and M. Pedram, "Energy-Efficient Virtual Machine Replication and

Placement in a Cloud Computing System," 2012 IEEE Fifth International
Conference on Cloud Computing, Honolulu, HI, 2012, pp. 750-757.

[3] https://developers.google.com/optimization/install

[4] https://developers.google.com/optimization/lp/lp

[5] https://developers.google.com/optimization/introduction/python

[6] https://news.stanford.edu/news/2005/may25/dantzigobit-052505.html

[7] P. Khani, B. Tang, J. Han and M. Beheshti, "Power-efficient virtual machine

replication in data centers," 2016 IEEE International Conference on
Communications (ICC), Kuala Lumpur, 2016, pp. 1-7.

[8] Schaus, Regin, Derval, “Improved Filtering for the Bin-Packing with Cardinality
Constraint”. Available at https://www.info.ucl.ac.be/~pschaus/assets/publi/constraints-
cp17-binpacking.pdf, checked 7/15/2020.

[9] X. Dai, J. M. Wang and B. Bensaou, "Energy-Efficient Virtual Machines Scheduling

in Multi-Tenant Data Centers," in IEEE Transactions on Cloud Computing, vol. 4,
no. 2, pp. 210-221, 1 April-June 2016.

[10] Zeghlache, Hadji. “Minimum Cost Maximum Flow Algorithm for Dynamic Resource

Allocation in Clouds”. Available at
http://makhlouf.hadji.free.fr/Publications/Dynamic_resources-Hadji.pdf, checked
7/15/2020.

https://www.info.ucl.ac.be/~pschaus/assets/publi/constraints-cp17-binpacking.pdf
https://www.info.ucl.ac.be/~pschaus/assets/publi/constraints-cp17-binpacking.pdf
http://makhlouf.hadji.free.fr/Publications/Dynamic_resources-Hadji.pdf

36

APPENDIX

Code requires python 3.6+, 64 bit system, Google OR-tools to run. The fattree.py

version of the program prints out visualizations of the PM states to the screen, use this

for k=4 simulations when you want to see what is happening. The fattree_writeonly.py

version has no screen printing, it writes a summary of all results to fattreeresults.txt.

Both versions read in the simulation settings from fattreesettings.txt, which looks like:

k 4

numVM 4

minVMsize 1

maxVMsize 1

numCopies 5

minPMsize 30

maxPMsize 30

numRuns 20

You can change the integer values to whatever you wish (k should be a positive even

integer). For small simulations (k=4, 4 VMs, 10 copies) it takes less than 1 second per

run. It gets slow (10 minutes) at high settings, such as 300+ VMs, 10+ copies each on

k=8 fat tree due to a lack of optimization on the data structures storing PM and VM data.

Link to full code folder:

https://drive.google.com/drive/folders/1D4qHIxmuf4c30e9dy9mTLX1mWwzRrtxc?usp=s

haring

Copy of code for fattree.py (screen printing version):

import random #used to randomize initial pm and vm placement

from copy import deepcopy #used for saving pm states before each algorithm

from ortools.graph import pywrapgraph #used for mcf optimal solver

from ortools.linear_solver import pywraplp #used for bin packing optimal solver

#import time #used to time algorithms

import sys

def calcPMtoPMcost(pm1,pm2):

 pm1=int(pm1)

 pm2=int(pm2)

 if pm1 == pm2: #pm to itself costs 0

 return 0

 pmPerEdge=int(numPM / totalEdge)

 pm1Edge=int(pm1 / pmPerEdge)

 pm2Edge=int(pm2 / pmPerEdge)

 if pm1Edge == pm2Edge: #pms on same edge switch costs 2

 return 2

https://drive.google.com/drive/folders/1D4qHIxmuf4c30e9dy9mTLX1mWwzRrtxc?usp=sharing
https://drive.google.com/drive/folders/1D4qHIxmuf4c30e9dy9mTLX1mWwzRrtxc?usp=sharing

37

 pm1Pod=int(pm1Edge / numEdgePerPod)

 pm2Pod=int(pm2Edge / numEdgePerPod)

 if pm1Pod == pm2Pod: #pms on same pod costs 4

 return 4

 return 6 #routing through core switch costs 6

with open('fattreesettings.txt','r') as f:

 settings=[]

 for line in f:

 line=line.strip().split()

 settings.append(line)

#read in settings saved from txt file

k= int(settings[0][1])

numVM= int(settings[1][1])

minVMsize= int(settings[2][1])

maxVMsize= int(settings[3][1])

numCopies= int(settings[4][1]) #replica + original

minPMsize= int(settings[5][1])

maxPMsize= int(settings[6][1])

numRuns= int(settings[7][1])

#how many runs to simulate,

#only used in write-only version for data collection

#calculate number of switches and edges

numPod=int(k)

numCore=int((k/2)**2)

numAggPerPod=int(k/2)

numEdgePerPod=int(k/2)

totalAgg=numAggPerPod * numPod

totalEdge=numEdgePerPod * numPod

numPM=int((k**3) / 4)

totalSwitches=int(numCore + totalAgg + totalEdge)

totalNode=totalSwitches + numPM

totalEdges=numPM * 3

def printl(label,variable):

 print('%30s:' %(str(label)),variable)

printl('Core switches',numCore)

printl('Number of pods',numPod)

printl('Aggregation switches per pod',numAggPerPod)

printl('Edge switches per pod',numEdgePerPod)

printl('Number of Physical Machines',numPM)

printl('Total aggregate switches',totalAgg)

printl('Total edge switches',totalEdge)

38

printl('Total Switches',totalSwitches)

printl('Total Switches + PMs',totalNode)

printl('Total Edges',totalEdges)

#assign ID to each switch and PM

v= [x for x in range(totalNode)]

vc=[x for x in range(totalNode - numCore,totalNode)]

va=[x for x in range(numPM + totalEdge, totalNode - numCore)]

ve=[x for x in range(numPM, totalNode - numCore - totalEdge)]

pmDict={}

#pmDict has [[pmID, space-used, max-space] ,

#[containedVM1-id, vm-size, originatingPM-id], [containedVM2-id...]]

totalPMCapacity = 0

for x in range(numPM):

 randomPMsize = random.randint(minPMsize,maxPMsize)

 totalPMCapacity+=randomPMsize

 pmDict[x] = [x,0,randomPMsize]

def printv(label,vlist):

 print('%30s:' %(str(label)),vlist[0],'...',vlist[-1])

print()

print('%37s'%('PM IDs: 0 ...'),numPM-1)

printv('PMs and all switches IDs', v)

printv('Core switch IDs', vc)

printv('Aggregation switch IDs',va)

printv('Edge switch IDs',ve)

print()

#creating cost dictionary for later reference

cost_dict={}

for x in range(numPM):

 for y in range(x):

 costkey=(x,y)

 costvalue=calcPMtoPMcost(x,y)

 cost_dict[costkey]=costvalue

 reversecostkey = (y,x) #reverse pair has same cost

 cost_dict[reversecostkey]=costvalue

for x in range(numPM): #pm to itself is 0

 costkey = (x,x)

 cost_dict[costkey] = 0

vmList = []

totalOrigVMsize = 0

totalOrigPlusReplicaSize = 0

vmDict = {}

#key: vmID

39

#value: [vm-id, vm-size, originating-PM-id]

for x in range(numVM):

 randomVMsize = random.randint(minVMsize,maxVMsize)

 totalOrigVMsize += randomVMsize

 totalOrigPlusReplicaSize += (randomVMsize * numCopies)

 #find a PM to place this VM on

 placed = False

 allPMids = [y for y in range(numPM)]

 #random.shuffle(allPMids) #not necessary to shuffle since we pop randomly

 for p in range(len(allPMids)):

 randomPM = allPMids.pop(random.randint(0,len(allPMids)-1))

 randomPM = pmDict[randomPM]

 randomPMspaceremaining = randomPM[2] - randomPM[1] #max - used

 if randomPMspaceremaining >= randomVMsize:

 randomPMid = randomPM[0]

 placed = True

 thisvm = [x,randomVMsize,randomPMid]

 vmList.append(thisvm) #add to vm list

 vmDict[x]=thisvm #add to vm dict

 pmDict[randomPMid].append(thisvm)

 pmDict[randomPMid][1] += randomVMsize #update pm used space

 break

 if placed == False: #never placed the VM

 print('warning, VM',x,' could not be placed')

 sys.exit()

replicaSize = totalOrigPlusReplicaSize - totalOrigVMsize

print('VM-ID, VM-Size, PM-location')

for x in vmList:

 print('%5s %6s %5s' %(str(x[0]),str(x[1]),str(x[2])))

pmList= []

for k,v in pmDict.items():

 pmList.append(v)

def printPM(pmList):

 print('\nPM- | PM-space | PM-max- | Assigned-')

 print('ID | used | capacity | VM(s)')

 print('-'*50)

 for pm in pmList:

 print(' %-5d %-8d %-10d'%(pm[0],pm[1],pm[2]),end=' ')

 for vm in pm[3:]:

 print('%-3d'%(vm[0]),end=' ')

 print()

 print()

40

print('\nInitial, random original VM placement')

printPM(pmList)

####################### nonrandom pmlist and vmlist for testing purposes

#pmList = [[0, 0, 30], [1, 0, 30], [2, 0, 30], [3, 0, 30], [4, 0, 30], [5, 0, 30], [6, 0, 30], [7, 1, 30, [2, 1, 7]], [8, 0,

30], [9, 0, 30], [10, 0, 30], [11, 0, 30], [12, 1, 30, [0, 1, 12]], [13, 1, 30, [1, 1, 13]], [14, 0, 30], [15, 1, 30, [3,

1, 15]]]

#vmList = [[0, 1, 12], [1, 1, 13], [2, 1, 7], [3, 1, 15]]

#######################

#first fit flow heuristic. in arbitrary order, each VM replica copy chooses the lowest ID available PM. flow

cost ignored.

firstFitDict = deepcopy(pmDict)

firstFit_pmList=deepcopy(pmList) #deep copy pmList for different solutions

firstFitFlowCost = 0

def pmXcontainsvmY(pmx,vmy):

 for x in firstFitDict[pmx[0]][3:]:

 if x[0] == vmy[0]:

 return True

 return False

replicaCopies=numCopies-1

if replicaCopies > 0:

 for vm in vmList:

 needtoplace = replicaCopies

 placed = 0

 transferCost = 0

 for pm in firstFit_pmList:

 if placed==replicaCopies: #already placed enough replica copies

 break

 if pmXcontainsvmY(pm,vm):

 continue

 pmvalues = firstFitDict[pm[0]]

 if pmvalues[2] - pmvalues[1] >= vm[1]: #pm-max - pm-used >= vm-size

 needtoplace-=1

 placed+=1

 pmvalues[1] += vm[1] #update space used

 pmvalues.append(vm)

 firstFitDict[pm[0]] = deepcopy(pmvalues)

 costkey = (pm[0],vm[2])

 transferCost += (cost_dict[costkey] * vm[1])

 if needtoplace != 0:

 print('warning: didnt place all copies of VM',vm[0])

 firstFitFlowCost+=transferCost

firstfitPMlist = []

firstfit_pms_used = 0

41

for k,v in firstFitDict.items():

 firstfitPMlist.append(v)

 if len(v) > 3:

 firstfit_pms_used+=1

print('\nFirstFit, flowcost:',firstFitFlowCost,' num-active-PMs:',firstfit_pms_used)

printPM(firstfitPMlist)

#greedy: each vm seeks its lowest flow-cost available PM

greedy_pmList=deepcopy(pmList)

greedy_pmDict=deepcopy(pmDict)

greedyFlowCost=0

def greedycheckPMcontainsVM(pmx,vmy):

 for x in greedy_pmDict[pmx[0]][3:]:

 if x[0] == vmy[0]:

 return True

 return False

greedyFlowCost=0

for v in vmList:

 for y in range (replicaCopies):

 choices=[]

 for pm in greedy_pmList:#calc flow cost from origPM to all other PMs

 #pmID=pm[0]

 #origPM=v[2]

 costkey = (v[2],pm[0])

 #cost = cost_dict[costkey]

 choice_tuple=(pm[0],cost_dict[costkey])

 choices.append(choice_tuple)

 choices=sorted(choices, key = lambda x: x[1]) #sort by cost of choices, lowest cost first

 transferCost=0

 for choice in choices:

 #pmID=choice[0], vmID=v[0]

 if greedycheckPMcontainsVM(choice,v):

 continue #if pm contains this vm already

 pmvalues = greedy_pmDict[choice[0]]

 #vmSize=v[1]

 if pmvalues[2] - pmvalues[1] >= v[1]: #pm-max - pm-used >= vm-size

 pmvalues[1] += v[1] #update space used

 pmvalues.append(v)

 greedy_pmDict[choice[0]] = deepcopy(pmvalues)

 costkey = (choice[0],v[2])

 transferCost += (cost_dict[costkey] * v[1])

 break #stop trying to place in more choices PMs

 greedyFlowCost+=transferCost

greedy_pmList = []

greedy_pms_used = 0

42

for k,v in greedy_pmDict.items():

 greedy_pmList.append(v)

 if len(v) > 3:

 greedy_pms_used+=1

print('\nGreedy, flowcost:',greedyFlowCost,' num-active-PMs:',greedy_pms_used)

printPM(greedy_pmList)

#Minimum Cost Flow Solution

mcf_pmDict=deepcopy(pmDict)

mcf_vmDict=deepcopy(vmDict)

#Instantiate an OR-Tools SimpleMinCostFlow solver

min_cost_flow = pywrapgraph.SimpleMinCostFlow()

print('Minimum Cost Flow Solution: Pre-Consolidation')

superSourceID = numVM

superSinkID = numVM+1

offset = numVM+2 #PM ids will be offset by this number, to avoid conflict

superSourceSupply=replicaSize #set source supply to sum of replica sizes

min_cost_flow.SetNodeSupply(superSourceID,superSourceSupply)

superSinkDemand=superSourceSupply * -1 #set sink demand

min_cost_flow.SetNodeSupply(superSinkID,superSinkDemand)

#generate arcs from super source to each orig vm

#min_cost_flow.AddArcWithCapacityAndUnitCost parameters are

(start-node, end-node, capacity, unit-cost)

finalsetdict={}

for k in range(numVM):

 thisvmsize = mcf_vmDict[k][1] #get size of this vm

 #add arcs from super-source to each original VM

 min_cost_flow.AddArcWithCapacityAndUnitCost(superSourceID,k,replicaCopies*thisvmsize,0)

 thisvmorigPM = mcf_vmDict[k][2]

 for pmID in mcf_pmDict.keys():

 if pmID == thisvmorigPM: #dont create arc to originating-PM

 continue

 costkey = (thisvmorigPM,pmID)

 cost = cost_dict[costkey]

 #add arcs from each orig-VM to potential-destination-PMs

 newPMid = pmID+offset

 min_cost_flow.AddArcWithCapacityAndUnitCost(k,newPMid,thisvmsize,cost)

 if newPMid not in finalsetdict:

 finalsetdict[newPMid] = 0 #value doesnt matter here, storing the key does

 pm_remaining_space = mcf_pmDict[pmID][2] - mcf_pmDict[pmID][1]#maxSpace - usedSpace

 #generate arcs from each potential-destination-PM to the super sink

 min_cost_flow.AddArcWithCapacityAndUnitCost(newPMid,superSinkID,pm_remaining_space,0)

#vm_table holds information about MCF equivalent cost choices for each VM

43

if min_cost_flow.Solve() == min_cost_flow.OPTIMAL:

 vm_table = []

 print('Minimum cost:', min_cost_flow.OptimalCost(),end=' ')

 copyid=0

 for i in range(min_cost_flow.NumArcs()):

 cost = min_cost_flow.Flow(i) * min_cost_flow.UnitCost(i)

 if min_cost_flow.Flow(i) > 0 and cost > 0:

#a,b,c,d,e=min_cost_flow.Tail(i),min_cost_flow.Head(i),min_cost_flow.Flow(i),min_cost_flow.Capacity(i),c

ost

 origVMid,destinationPMid=min_cost_flow.Tail(i),min_cost_flow.Head(i)

 destinationPMid -= offset

 #vm_table will have structure of: [copyID, origVMid, orig PM, destination PM, sunk cost]

 vm_table.append([copyid,origVMid,mcf_vmDict[origVMid][2],destinationPMid,cost])

 copyid+=1

 #update the pm dict to show a vm was replicated to the destination PM

 pmvalues = mcf_pmDict[destinationPMid]

 pmvalues.append(mcf_vmDict[origVMid])

 pmvalues[1] += mcf_vmDict[origVMid][1] #update pm-space-used

 mcf_pmDict[destinationPMid] = deepcopy(pmvalues)

else:

 print('Error: There was an issue with the min cost flow input.')

mcf_pmList=[]

numMCFActivePM = 0

for v in mcf_pmDict.values():

 if len(v) > 3:

 numMCFActivePM+=1#tally up active PMs

 mcf_pmList.append(v)

print('num-active-PMs:',numMCFActivePM)

printPM(mcf_pmList)

#EQUIVALENT-COST-DESTINATION-PM-CHOICE TABLE HERE

print('replicaID,origVMid,origPM,destPM,flowcost,equiv-cost-choice-PMs')

for vm in vm_table:

 #filter the cost_dict for equivalent cost choices, using origPM and cost

 #append the list of equivalent-cost-choice-PMs to each replicaVM

 #origpm,cost = vm[2],vm[4]

 filtered_list = [k[1] for k,v in cost_dict.items() if (k[0] == vm[2]) and v == vm[4]]

 vm.append(filtered_list)

 #print out the replica-vm-table

 for y in vm:

 print(y,'\t',end=' ')

 print()

44

rffPMdict = deepcopy(pmDict)

#Replacement first fit, consolidation heuristic

print('\nReplacement First Fit - MCF cost considered, MCF placement disregarded')

#acts as though all vms are unplaced but mcf cost is known, then first fit places them according to

equivalent mcf cost per copy

def RFFcheckPMcontainsVM(pmID,vmID):

 for vm in rffPMdict[pmID][3:]:

 if vm[0] == vmID:

 return True

 return False

for vm in vm_table:

 for choice in vm[5]:

 #check if pm contains this vm already. replication constraint.

 vmID = vm[1]

 #pmID = choice

 if RFFcheckPMcontainsVM(choice,vmID):

 continue

 #pm-space-max = rffPMdict[pmID][2]

 #pm-space-used = rffPMdict[pmID][1]

 #pm-space-remaining = max - used

 if (rffPMdict[choice][2] - rffPMdict[choice][1]) >= vmDict[vmID][1]:#pm has enough space, we can

place

 pmvalues = rffPMdict[choice]

 vmSize = vmDict[vmID][1]#vmID = vm[1]

 addVM = [vmID,vmSize,vm[2]]#vmOrigPM = vm[2] or vmDict[vmID][2]

 pmvalues[1] += vmSize

 pmvalues.append(addVM)

 rffPMdict[choice] = deepcopy(pmvalues) #[x for x in pmvalues]

 break

#find active PMs and visualize rff solution

rff_pmList=[]

numRFFactivePM = 0

for v in rffPMdict.values():

 if len(v) > 3:

 numRFFactivePM+=1#tally up active PMs

 rff_pmList.append(v)

print('num-active-PMs:',numRFFactivePM)

printPM(rff_pmList)

#First fit consolidation heuristic

#Keeps mcf placement, tries to firstfit consolidate from there, using mcf-equivalent-cost for each copy

#will only transfer if destination-PM is not empty

print('\nFirst Fit Consolidation - from MCF solution, \nEach VM jumps to a same-cost, lowest-id PM')

45

#before transfer dictionary

ffnotemptyDict = {k:v for k,v in mcf_pmDict.items()}

def FFcheckPMcontainsVM(pmID,vmID):

 for vm in ffnotemptyDict[pmID][3:]:

 if vm[0] == vmID:

 return True

 return False

#print('replicaID,origVMid,origPM,destPM,flowcost,equiv-cost-choice-PMs')

for vm in vm_table:

 for choice in vm[5]:

 vmID = vm[1]

 #pmID = choice

 if len(ffnotemptyDict[choice]) == 3: #pm is empty, dont transfer

 continue

 if choice == vm[3]:

 continue #dest-pm is same as mcf solution, dont transfer

 if FFcheckPMcontainsVM(choice,vmID):

 continue #dest-pm contains a copy of this vm already, dont transfer

 #pm-space-max = ffnotemptyDict[pmID][2]

 #pm-space-used = ffnotemptyDict[pmID][1]

 #pm-space-remaining = max - used

 if (ffnotemptyDict[choice][2] - ffnotemptyDict[choice][1]) >= vmDict[vmID][1]:

 #pm has enough space, we can transfer

 pmvalues = [x for x in ffnotemptyDict[choice]]

 vmSize = vmDict[vmID][1]#vmID = vm[1]

 #add vm to chosen dest PM

 addVM = [vmID,vmSize,vm[2]]#vmOrigPM = vm[2] or vmDict[vmID][2]

 pmvalues[1] += vmSize

 pmvalues.append(addVM)

 ffnotemptyDict[choice] = [x for x in pmvalues] #[x for x in pmvalues]

 #remove vm from previous dest PM

 ffnotemptyDict[vm[3]] = [x for x in ffnotemptyDict[vm[3]] if x != addVM]

 ffnotemptyDict[vm[3]][1] -= vmSize

 break

#find num-active-PMs and visualize ff solution

ff_pmList=[]

numFFactivePM = 0

howmanyvms = 0

for v in ffnotemptyDict.values():

 if len(v) > 3:

 numFFactivePM+=1#tally up active PMs

 for vm in v[3:]:

 howmanyvms+=1

 ff_pmList.append(v)

print('num-active-PMs:',numFFactivePM)

46

printPM(ff_pmList)

#implement original post-MCF consolidation as described in Dr. Tang's paper

#look at PMs with 1 VM in arbitrary order. for each PM, check if all its containing VMs can be moved

elsewhere to a set of TPM. if yes, move them all. if no, dont move any.

#repeat with PMs with 2 VMs, then PMs with 3 VMs, until you reach max possible VM #.

#start_time = time.time()

def printDict(anydict, label = '\nprinting some dict'):

 print(label)

 for k,v in anydict.items():

 print(k,v)

 print()

#copy mcf solution dict but sort by number of vms

#bestconsolidationheuristicDict = {k:v for k,v in sorted(mcf_pmDict.items(), key = lambda x: len(x[1]))}

#printDict(bestconsolidationheuristicDict)

print('Best consolidation heuristic, tries to move all PMs containing')

print('1 VM, then 2 VM, then 3 VM, ... only if all VMs can be moved')

#start_time = time.time()

#if PM contains original vm, cant move

#if destinationPM is VM's origPM, cant move

#cost-equivalent

#destinationPM cannot be empty

#check replica constraint

#check PMhasspace

#update space

#add vm to new pm

#remove vm from old pm

bestheurDict = {k:v for k,v in sorted(pmDict.items(), key = lambda x: len(x[1]))}

#exclude PMs which contain the original VMs

excludelist = [v[2] for v in vmList]

bestheurResult = {k:v for k,v in mcf_pmDict.items()} #final positions will be saved here

vm_tableDict = {} #this is the dict equivalent of vm_table

#build pm-dict using replica ids, not just orig vm ids, for lookup

for vm in vm_table:

 #add vm to dest pm

 #origvmSize = vmDict[vm[1]][1]

 #destpm = vm[3]

 pmvalues = bestheurDict[vm[3]]

 pmvalues.append(vm[0]) #add the replicaID to the destPM

 #since we're looping through the list, build a dict for later

 vm_tableDict[vm[0]] = [x for x in vm]

47

sortbynumcontainedVMs={}

for k,v in bestheurDict.items():

 if k in excludelist:

 #dont bother trying to consolidate PMs which contain-

 #an original vm

 #print('skipping',k)

 continue

 sortbynumcontainedVMs[k] = [x for x in v[3:]]

#print('replicaID,origVMid,origPM,destPM,flowcost,equiv-cost-choice-PMs')

sortbynumcontainedVMs = sorted(sortbynumcontainedVMs, key = lambda

x:len(sortbynumcontainedVMs[x])) #sort PM-ids by number of contained vms

#print(sortbynumcontainedVMs)

#we try to consolidate starting from PMs containing the fewest replica VMs

#skipping PMs which contain no VMs

#skipping PMs which contain an original VM

#skipping PMs in which not all VMs can be moved

#valid alternate PM must be: not empty, same cost, contain no other copies of that vm, has enough space

for pmID in sortbynumcontainedVMs:

 pmvalues = [x for x in bestheurDict[pmID]] #trying to consolidate this PM

 #print('\npmvalues',pmvalues)

 #print('lenpmvalues3:',len(pmvalues[3:])) #num of replica copies on this pm

 #print('PMID',pmID)

 canmoveall = True

 movesmade = []

 #beforemove = {k:v for k,v in bestheurResult.items()} #save state before attempting moves

 for replica in pmvalues[3:]: #check if each replica can be moved. PMs that have no replicas are skipped

here.

 choicedata = [x for x in vm_tableDict[replica]]

 #choicedata is replicaID,origVMid,origPM,destPM,flowcost,equiv-cost-choice-PMs

 #print('choicedata',choicedata)

 #we are looking at each replica copy's choices now

 canmove = False

 for choice in choicedata[5]: #these are the equiv-cost-PMs

 #print('choice',choice)

 #check that new dest is not same as old dest

 if choice == choicedata[3]: #cant move, new pm is same as old pm

 #print('dest pm is same as old dest', choice, choicedata[3])

 continue

 tpmvalues = [x for x in bestheurResult[choice]] #makes a copy instead of a reference to targetPM

 #print('tpmvalues',tpmvalues)

 #check that dest pm is not empty. we wont transfer to an empty pm

 if len(tpmvalues) == 3:

 #print(tpmvalues,'is empty, cant move')

 continue

 #check if alternate pm choice contains any copy of this vm

48

 containsflag = False

 for containedvm in tpmvalues[3:]:

 if containedvm[0] == choicedata[1]: #found match for this vm, cant move

 #print('vm match, cant move', containedvm[0],choicedata[1])

 containsflag = True

 break

 if containsflag == True:

 continue #skip to next possible choice, dont place here.

 #check if alternate choice has space

 #pmMax - pmUsed >= originatingVMsize

 #pmMax = tpmvalues[2]

 #pmUsed = tpmvalues[1]

 #originating-vm-size = vmDict[choicedata[1]][1]

 if (tpmvalues[2] - tpmvalues[1]) >= vmDict[choicedata[1]][1]: #has space to accept this replica

copy

 #print('size data',tpmvalues[2],tpmvalues[1],vmDict[choicedata[1]][1])

 #print(tpmvalues,'has space for',vm_tableDict[replica])

 #print(choice,'has space for',replica)

 #store the data

 #set success flag

 #if you try an implementation that stores all the valid moves before making any, it wont save

any calculations

 #due to some replicas picking the same target pm. updating the space on those target pms is

 #the same amount of calculations as to just make the move, and revert if not all replicas were

able to move.

 #print('moving vm x from pm y to pm z', vmDict[choicedata[1]],

bestheurResult[pmID],bestheurResult[choice])

 canmove = True

 #remove vm from old dest pm

 #update old pm space-used

 #print('old pm bef',bestheurResult[pmID])

 bestheurResult[pmID] = [x for x in bestheurResult[pmID] if x != vmDict[choicedata[1]]]

 bestheurResult[pmID][1] -= vmDict[choicedata[1]][1] #subtract vm-size from space-used, on old

dest pm

 #print('old pm aft',bestheurResult[pmID])

 #print('new pm bef',bestheurResult[choice])

 #add vm to new dest pm

 #update new pm space-used

 bestheurResult[choice].append(vmDict[choicedata[1]])

 bestheurResult[choice][1] += vmDict[choicedata[1]][1] #add vm-size to space-used, on new

dest pm

 #print('new pm aft',bestheurResult[choice])

 #print()

 movesmade.append([vmDict[choicedata[1]], bestheurResult[pmID], bestheurResult[choice]]

)#save orig-vm-data, old-dest-pm, new-dest-pm

 break

 if canmove == False:

49

 canmoveall = False

 if canmoveall == False:

 #revert

 #bestheurResult = {k:v for k,v in beforemove.items()}

 for move in movesmade:

 #vmsize = move[0][1]

 #print('reverting',move[0])

 #vm, oldpm, newpm

 #print('before revert',move)

 move[2].remove(move[0])

 move[2][1] -= move[0][1] #update pm-used, subtract vm-size

 move[1].append(move[0])

 move[1][1] += move[0][1] #update pm-used, add vm-size

 #print('after revert',move)

 #print()

#print('calculation time =',time.time() - start_time)

bestheurList = []

numactivePM_bestheurList = 0

for v in bestheurResult.values():

 bestheurList.append(v)

 if len(v) > 3:

 numactivePM_bestheurList +=1

print('best heuristic, numactivePM:',numactivePM_bestheurList)

printPM(bestheurList)

def updatePMspaceused(pmlist):

 pmlistcopy = deepcopy(pmlist)

 for pm in pmlistcopy:

 if len(pm) > 3: #contains VMs

 vms = pm[3:]

 spaceused = 0

 for v in vms:

 spaceused += v[1]

 pm[1] = spaceused

 else:

 pm[1] = 0

 return pmlistcopy

#use google's OR-Tools to optimally solve consolidation

#as a bin packing problem w constraints

#constraint 1: choices are limited to mcf solution equivalent cost choices

#constraint 2: replication constraint (copies of a particular vm cannot share a pm)

#constraint 3: capacity constraint of each pm

optimalbinpack = deepcopy(pmList)

optimalbinpack = [pm[:3] for pm in optimalbinpack] #remove orig vms

optimalbinpack = [[a[0],0,a[2]] for a in optimalbinpack] #set used space=0

50

print('\n Optimal bin packing solution:')

print('\t constraints:')

print('\t PM capacity, replication, MCF equivalent cost choice\n')

vmdict = {}

for v in vmList:

 vmdict[v[0]] = (v[1],v[2]) #key: vmID, value: (vmSize,pmLocation)

data = {}

#add the weights, which is the size of each vm copy

weights=[]

items=[]

itemnumber = 0

for vm in vmdict:

 for r in range(numCopies):

 weights.append(vmdict[vm][0]) #append vm size

 items.append(itemnumber) #originating vmID = itemnumber // numCopies

 itemnumber += 1

data['weights'] = weights

data['items'] = items

data['bins'] = list(range(numPM))

bin_capacity = [pm[2] for pm in optimalbinpack]

#dont need pm[2] - pm[1], no space used, orig vms are temporarily removed

data['bin_capacity'] = bin_capacity

def mutex(vm1,vm2): #vm1 cannot go in same pm as vm2

 for j in data['bins']:

 solver.Add(x[vm1,j] + x[vm2,j] <= 1)

 return

#Instantiate MIP solver with CBC backend

solver = pywraplp.Solver('simple_mip_program',

 pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING)

Variables

x[i, j] = 1 if vm i is packed in pm j.

x = {}

for i in data['items']:

 for j in data['bins']:

 x[(i, j)] = solver.IntVar(0, 1, 'x_%i_%i' % (i, j))

 #x[(i, j)] = solver.IntVar(0, 1, '') #testing blank name

y[j] = 1 if pm j is used.

y = {}

for j in data['bins']:

 y[j] = solver.IntVar(0, 1, 'y[%i]' % j)

 #y[j] = solver.IntVar(0, 1, '')

Constraints

Each vm must be in exactly one pm.

51

for i in data['items']:

 solver.Add(sum(x[i, j] for j in data['bins']) == 1)

#constrain each PM to its remaining space capacity

for j in data['bins']:

 solver.Add(

 sum(x[(i, j)] * data['weights'][i] for i in data['items']) <= y[j] * data['bin_capacity'][j])

'''

multiplying by y[j] forces y[j] to equal 1 if any vm is packed in pm j.

if y[j] were 0, the right side of the inequality would be 0, while the pm-space-used on the left side would be

greater than 0,

violating the constraint.

the solver minimizes the number of pms where y[j] is 1.

'''

'''

#constrain each vm replica copy to avoid originating pm

for i in data['items']:

 vmID = i//replicaCopies #vmcopy i is a replica of vmID

 avoidPM = vmdict[vmID][1] #gets originating pm id

 solver.Add(x[i,avoidPM] == 0) #vmcopy i avoids originating pm

 if avoidPM == 0:

 print(i,'avoids',avoidPM)

'''

#vm table format: vmid (non uniq), originating pm id, destination pm, cost, equivalent cost choices

choices_table = [x[1:] for x in vm_table]

#vmList format: vmid, size, orig pm

for v in vmList:

 pretendchoice = [v[0],v[2],v[2],0,[v[2]]]

 choices_table.append(pretendchoice)

choices_table=sorted(choices_table, key = lambda x: (x[0],len(x[4]))) #sort by vm id first, number of

choices second

#constrain replica copies of the same vm to avoid other copies of that vm

exdict={}

for i in data['items']:

 vmID = i//numCopies

 startvalue = vmID * numCopies

 for r in range(startvalue,startvalue+numCopies):

 if i == r: #do not mutually exclude itself

 continue

 if (r,i) in exdict.keys(): #already did this combination

 continue

 mutex(i,r) #but DO mutex other copies of the vm

 exdict[(i,r)] = 1

 #print(r,'avoids',i,r//numCopies,i//numCopies)

def vmXgoesinpmY(vmid,pmid):

 strexp = 'x[' + str(vmid) + ',' + str(pmid) + ']'

 return strexp

52

#constrain choices to mcf equivalent cost choices

for v in range(len(choices_table)):

 choicelist = choices_table[v][4]

 totalexp = ''

 for c in choicelist: #build constraint expression as string, then eval

 totalexp = totalexp + vmXgoesinpmY(v,c) + ' + '

 totalexp = totalexp[:-3] #truncate last 3 chars, the extra ' + '

 totalexp += ' == 1'

 totalexp = eval(totalexp) #eval lets us eval the string as an expression

 solver.Add(totalexp)

pmdict = {}

for pm in optimalbinpack: #translate list into dict for faster lookups

 pmdict[pm[0]] = pm[1:] #key is pmid, value is rest of pm attributes

Objective: minimize the number of PMs used.

solver.Minimize(solver.Sum([y[j] for j in data['bins']]))

status = solver.Solve()

if status == pywraplp.Solver.OPTIMAL:

 num_bins = 0.

 for j in data['bins']:

 if y[j].solution_value() == 1:

 bin_items = []

 bin_weight = 0

 for i in data['items']:

 if x[i, j].solution_value() > 0:

 vmid = i//numCopies

 bin_items.append(vmid)

 #add vm to pm in pmdict [vmid, size, origpmID]

 addvm = [vmid, vmdict[vmid][0],vmdict[vmid][1]]

 pmdict[j].append(addvm)

 bin_weight += data['weights'][i]

 if bin_weight > 0:

 num_bins += 1

 #print(' %-5d %-8d %-10d'%(pm[0],pm[1],pm[2]),end=' ')

 print('\t PM # %-5d' %(j), end = ' ')

 print(' stores VMs:', bin_items)

 #print(' using:', bin_weight, 'space')

 print()

 #print('PMs used:', int(num_bins))

 print('\tOptimal Bin Packing calculation time = ', solver.WallTime(), ' milliseconds')

else:

 print('No optimal solution is possible.')

optimalbinpack = [] #rebuild pm list from dict

numactive_optimalbinpack=0

for key,values in pmdict.items():

 pm = []

53

 pm.append(key)

 if len(values)>2:

 numactive_optimalbinpack+=1

 for v in values:

 pm.append(v)

 optimalbinpack.append(pm)

optimalbinpack = updatePMspaceused(optimalbinpack)

printPM(optimalbinpack)

print(numMCFActivePM,'PMs used by MCF')

print(numRFFactivePM, 'replacement firstfit consolidation method')

print(numFFactivePM, 'firstFit consolidation heuristic')

print(numactivePM_bestheurList,'best consolidation heuristic')

print(numactive_optimalbinpack,'linear solver method')

'''

if checkNumActivePM(optimalbinpack) < checkNumActivePM(originalconsolidationpmlist):

 print('\n')

 print(pmList)

 print(vmList)

'''

'''

def mutex (i1, i2): #i1 and i2 become mutually exclusive in any given bin

 for j in data['bins']:

 solver.Add((x[i1,j] + x[i2,j]) <= 1)

 return

Useful examples of adding constraints:

#item 1 can't go in bin 6

solver.Add((x[1, 6] == 0))

#item 1 can't go in the same bin as item 2

#for j in data['bins']:

solver.Add((x[1,j] + x[2,j]) <= 1)

#item 0 can't go in the same bin as any other item

for jk in range(all bin numbers):

 if jk != 0: #avoid excluding itself from itself

 mutex(0,jk)

#item 5 must go in bins 9 or 10

solver.Add((x[5,9] + x[5,10]) == 1)

'''

#sort dictionary example

#x = {1: 2, 3: 4, 4: 3, 2: 1, 0: 0}

#print(x)

#x= {k: v for k, v in sorted(x.items(), key=lambda item: item[1])}

54

Copy of fattree_writeonly.py (no screen printing, writes summary of results to fattreeresults.txt):

import random #used to randomize initial pm and vm placement

from copy import deepcopy #used for saving pm states before each algorithm

from ortools.graph import pywrapgraph #used for mcf optimal solver

from ortools.linear_solver import pywraplp #used for bin packing optimal solver

#import time #used to time algorithms

import sys

import os

def calcPMtoPMcost(pm1,pm2):

 pm1=int(pm1)

 pm2=int(pm2)

 if pm1 == pm2: #pm to itself costs 0

 return 0

 pmPerEdge=int(numPM / totalEdge)

 pm1Edge=int(pm1 / pmPerEdge)

 pm2Edge=int(pm2 / pmPerEdge)

 if pm1Edge == pm2Edge: #pms on same edge switch costs 2

 return 2

 pm1Pod=int(pm1Edge / numEdgePerPod)

 pm2Pod=int(pm2Edge / numEdgePerPod)

 if pm1Pod == pm2Pod: #pms on same pod costs 4

 return 4

 return 6 #routing through core switch costs 6

with open('fattreesettings.txt','r') as f:

 settings=[]

 for line in f:

 line=line.strip().split()

 settings.append(line)

#read in settings saved from txt file

k= int(settings[0][1])

numVM= int(settings[1][1])

minVMsize= int(settings[2][1])

maxVMsize= int(settings[3][1])

numCopies= int(settings[4][1]) #replica + original

minPMsize= int(settings[5][1])

maxPMsize= int(settings[6][1])

numRuns= int(settings[7][1])

fattreek = k

#how many runs to simulate,

#only used in write-only version for data collection

'''

fattreesettings.txt should be in this format:

k 4

numVM 4

minVMsize 1

55

maxVMsize 1

numCopies 5

minPMsize 30

maxPMsize 30

'''

#calculate number of switches and edges

#this doesn't change with randomized placements. can leave outside of loop

numPod=int(k)

numCore=int((k/2)**2)

numAggPerPod=int(k/2)

numEdgePerPod=int(k/2)

totalAgg=numAggPerPod * numPod

totalEdge=numEdgePerPod * numPod

numPM=int((k**3) / 4)

totalSwitches=int(numCore + totalAgg + totalEdge)

totalNode=totalSwitches + numPM

totalEdges=numPM * 3

#set of lists for tracking the stats of each algorithm per run ###################################

firstFitFlowCost_list = []

firstfit_pms_used_list = []

greedyFlowCost_list = []

greedy_pms_used_list = []

mcf_flowcost_list = []

numMCFActivePM_list = []

numRFFactivePM_list = []

numFFactivePM_list = []

numactivePM_bestheurList_list = []

numactive_optimalbinpack_list = []

improvementAmountList = []

improvementcount=0

errorcount=0

samecount=0

##################LOOP STARTS HERE##

for number in range(numRuns):

 pmDict={}

 #pmDict has [[pmID, space-used, max-space] ,

 #[containedVM1-id, vm-size, originatingPM-id], [containedVM2-id...]]

 totalPMCapacity = 0

 for x in range(numPM):

 randomPMsize = random.randint(minPMsize,maxPMsize)

 totalPMCapacity+=randomPMsize

 pmDict[x] = [x,0,randomPMsize]

56

 #creating cost dictionary for later reference

 cost_dict={}

 for x in range(numPM):

 for y in range(x):

 costkey=(x,y)

 costvalue=calcPMtoPMcost(x,y)

 cost_dict[costkey]=costvalue

 reversecostkey = (y,x) #reverse pair has same cost

 cost_dict[reversecostkey]=costvalue

 for x in range(numPM): #pm to itself is 0

 costkey = (x,x)

 cost_dict[costkey] = 0

 vmList = []

 totalOrigVMsize = 0

 totalOrigPlusReplicaSize = 0

 vmDict = {}

 #key: vmID

 #value: [vm-id, vm-size, originating-PM-id]

 for x in range(numVM):

 randomVMsize = random.randint(minVMsize,maxVMsize)

 totalOrigVMsize += randomVMsize

 totalOrigPlusReplicaSize += (randomVMsize * numCopies)

 #find a PM to place this VM on

 placed = False

 allPMids = [y for y in range(numPM)]

 #random.shuffle(allPMids) #not necessary to shuffle since we pop randomly

 for p in range(len(allPMids)):

 randomPM = allPMids.pop(random.randint(0,len(allPMids)-1))

 randomPM = pmDict[randomPM]

 randomPMspaceremaining = randomPM[2] - randomPM[1] #max - used

 if randomPMspaceremaining >= randomVMsize:

 randomPMid = randomPM[0]

 placed = True

 thisvm = [x,randomVMsize,randomPMid]

 vmList.append(thisvm) #add to vm list

 vmDict[x]=thisvm #add to vm dict

 pmDict[randomPMid].append(thisvm)

 pmDict[randomPMid][1] += randomVMsize #update pm used space

 break

 if placed == False: #never placed the VM

 print('warning, VM',x,' could not be placed')

 errorcount+=1

 sys.exit() #being unable to place an orig vm is a serious error. it implies there is absolutely no

space for replication.

57

 replicaSize = totalOrigPlusReplicaSize - totalOrigVMsize

 #print('VM-ID, VM-Size, PM-location')

 #for x in vmList:

 # print('%5s %6s %5s' %(str(x[0]),str(x[1]),str(x[2])))

 pmList= []

 for k,v in pmDict.items():

 pmList.append(v)

 '''

 def printPM(pmList):

 print('\nPM- | PM-space | PM-max- | Assigned-')

 print('ID | used | capacity | VM(s)')

 print('-'*50)

 for pm in pmList:

 print(' %-5d %-8d %-10d'%(pm[0],pm[1],pm[2]),end=' ')

 for vm in pm[3:]:

 print('%-3d'%(vm[0]),end=' ')

 print()

 print()

 print('\nInitial, random original VM placement')

 printPM(pmList)

 '''

 ####################### nonrandom pmlist and vmlist for testing purposes

 #pmList = [[0, 0, 30], [1, 0, 30], [2, 0, 30], [3, 0, 30], [4, 0, 30], [5, 0, 30], [6, 0, 30], [7, 1, 30, [2, 1, 7]], [8,

0, 30], [9, 0, 30], [10, 0, 30], [11, 0, 30], [12, 1, 30, [0, 1, 12]], [13, 1, 30, [1, 1, 13]], [14, 0, 30], [15, 1, 30,

[3, 1, 15]]]

 #vmList = [[0, 1, 12], [1, 1, 13], [2, 1, 7], [3, 1, 15]]

 #######################

 #first fit flow heuristic. in arbitrary order, each VM replica copy chooses the lowest ID available PM. flow

cost ignored.

 firstFitDict = deepcopy(pmDict)

 firstFit_pmList=deepcopy(pmList) #deep copy pmList for different solutions

 firstFitFlowCost = 0

 def pmXcontainsvmY(pmx,vmy):

 for x in firstFitDict[pmx[0]][3:]:

 if x[0] == vmy[0]:

 return True

 return False

 replicaCopies=numCopies-1

 if replicaCopies > 0:

 for vm in vmList:

 needtoplace = replicaCopies

 placed = 0

 transferCost = 0

58

 for pm in firstFit_pmList:

 if placed==replicaCopies: #already placed enough replica copies

 break

 if pmXcontainsvmY(pm,vm):

 continue

 pmvalues = firstFitDict[pm[0]]

 if pmvalues[2] - pmvalues[1] >= vm[1]: #pm-max - pm-used >= vm-size

 needtoplace-=1

 placed+=1

 pmvalues[1] += vm[1] #update space used

 pmvalues.append(vm)

 firstFitDict[pm[0]] = deepcopy(pmvalues)

 costkey = (pm[0],vm[2])

 transferCost += (cost_dict[costkey] * vm[1])

 if needtoplace != 0:

 print('warning: didnt place all copies of VM',vm[0])

 sys.exit()#this should never happen,

 #but just exit instead of continuing all calculations

 errorcount+=1

 firstFitFlowCost+=transferCost

 firstfitPMlist = []

 firstfit_pms_used = 0

 for k,v in firstFitDict.items():

 firstfitPMlist.append(v)

 if len(v) > 3:

 firstfit_pms_used+=1

 #print('\nFirstFit, flowcost:',firstFitFlowCost,' num-active-PMs:',firstfit_pms_used)

 #printPM(firstfitPMlist)

 #greedy: each vm seeks its lowest flow-cost available PM

 greedy_pmList=deepcopy(pmList)

 greedy_pmDict=deepcopy(pmDict)

 greedyFlowCost=0

 def greedycheckPMcontainsVM(pmx,vmy):

 for x in greedy_pmDict[pmx[0]][3:]:

 if x[0] == vmy[0]:

 return True

 return False

 greedyFlowCost=0

 for v in vmList:

 for y in range (replicaCopies):

 choices=[]

 for pm in greedy_pmList:#calc flow cost from origPM to all other PMs

 #pmID=pm[0]

 #origPM=v[2]

 costkey = (v[2],pm[0])

59

 #cost = cost_dict[costkey]

 choice_tuple=(pm[0],cost_dict[costkey])

 choices.append(choice_tuple)

 choices=sorted(choices, key = lambda x: x[1]) #sort by cost of choices, lowest cost first

 transferCost=0

 for choice in choices:

 #pmID=choice[0], vmID=v[0]

 if greedycheckPMcontainsVM(choice,v):

 continue #if pm contains this vm already

 pmvalues = greedy_pmDict[choice[0]]

 #vmSize=v[1]

 if pmvalues[2] - pmvalues[1] >= v[1]: #pm-max - pm-used >= vm-size

 pmvalues[1] += v[1] #update space used

 pmvalues.append(v)

 greedy_pmDict[choice[0]] = deepcopy(pmvalues)

 costkey = (choice[0],v[2])

 transferCost += (cost_dict[costkey] * v[1])

 break #stop trying to place in more choices PMs

 greedyFlowCost+=transferCost

 greedy_pmList = []

 greedy_pms_used = 0

 for k,v in greedy_pmDict.items():

 greedy_pmList.append(v)

 if len(v) > 3:

 greedy_pms_used+=1

 #print('\nGreedy, flowcost:',greedyFlowCost,' num-active-PMs:',greedy_pms_used)

 #printPM(greedy_pmList)

 #Minimum Cost Flow Solution

 mcf_pmDict=deepcopy(pmDict) #copy over dicts so we dont change the originals

 mcf_vmDict=deepcopy(vmDict)

 #Instantiate an OR-Tools SimpleMinCostFlow solver

 min_cost_flow = pywrapgraph.SimpleMinCostFlow()

 #print('Minimum Cost Flow Solution: Pre-Consolidation')

 superSourceID = numVM

 superSinkID = numVM+1

 offset = numVM+2 #PM ids will be offset by this number, to avoid conflict

 superSourceSupply=replicaSize #set source supply to sum of replica sizes

 min_cost_flow.SetNodeSupply(superSourceID,superSourceSupply)

 superSinkDemand=superSourceSupply * -1 #set sink demand

 min_cost_flow.SetNodeSupply(superSinkID,superSinkDemand)

 #generate arcs from super source to each orig vm

60

 #min_cost_flow.AddArcWithCapacityAndUnitCost parameters are

 # (start-node, end-node, capacity, unit-cost)

 finalsetdict={}

 for k in range(numVM):

 thisvmsize = mcf_vmDict[k][1] #get size of this vm

 #add arcs from super-source to each original VM

 min_cost_flow.AddArcWithCapacityAndUnitCost(superSourceID,k,replicaCopies*thisvmsize,0)

 thisvmorigPM = mcf_vmDict[k][2]

 for pmID in mcf_pmDict.keys():

 if pmID == thisvmorigPM: #dont create arc to originating-PM

 continue

 costkey = (thisvmorigPM,pmID)

 cost = cost_dict[costkey]

 #add arcs from each orig-VM to potential-destination-PMs

 newPMid = pmID+offset

 min_cost_flow.AddArcWithCapacityAndUnitCost(k,newPMid,thisvmsize,cost)

 if newPMid not in finalsetdict:

 finalsetdict[newPMid] = 0 #value doesnt matter here, storing the key does

 pm_remaining_space = mcf_pmDict[pmID][2] - mcf_pmDict[pmID][1]#maxSpace - usedSpace

 #generate arcs from each potential-destination-PM to the super sink

min_cost_flow.AddArcWithCapacityAndUnitCost(newPMid,superSinkID,pm_remaining_space,0)

 #vm_table holds information about MCF equivalent cost choices for each VM

 if min_cost_flow.Solve() == min_cost_flow.OPTIMAL:

 vm_table = []

print('Minimum cost:', min_cost_flow.OptimalCost(),end=' ')

 mcf_flowcost = min_cost_flow.OptimalCost()

 copyid=0

 for i in range(min_cost_flow.NumArcs()):

 cost = min_cost_flow.Flow(i) * min_cost_flow.UnitCost(i)

 if min_cost_flow.Flow(i) > 0 and cost > 0:

#a,b,c,d,e=min_cost_flow.Tail(i),min_cost_flow.Head(i),min_cost_flow.Flow(i),min_cost_flow.Capacity(i),c

ost

 origVMid,destinationPMid=min_cost_flow.Tail(i),min_cost_flow.Head(i)

 destinationPMid -= offset

 #vm_table will have structure of: [copyID, origVMid, orig PM, destination PM, sunk cost]

 vm_table.append([copyid,origVMid,mcf_vmDict[origVMid][2],destinationPMid,cost])

 copyid+=1

 #update the pm dict to show a vm was replicated to the destination PM

 pmvalues = mcf_pmDict[destinationPMid]

 pmvalues.append(mcf_vmDict[origVMid])

 pmvalues[1] += mcf_vmDict[origVMid][1] #update pm-space-used

 mcf_pmDict[destinationPMid] = deepcopy(pmvalues)

 else:

 errorcount+=1

61

 pass #pass, this shouldnt happen. could sys.exit

 #print('Error: There was an issue with the min cost flow input.')

 mcf_pmList=[]

 numMCFActivePM = 0

 for v in mcf_pmDict.values():

 if len(v) > 3:

 numMCFActivePM+=1#tally up active PMs

 mcf_pmList.append(v)

 #print('num-active-PMs:',numMCFActivePM)

 #printPM(mcf_pmList)

 #EQUIVALENT-COST-DESTINATION-PM-CHOICE TABLE HERE

 #print('replicaID,origVMid,origPM,destPM,flowcost,equiv-cost-choice-PMs')

 for vm in vm_table:

 #filter the cost_dict for equivalent cost choices, using origPM and cost

 #append the list of equivalent-cost-choice-PMs to each replicaVM

 #origpm,cost = vm[2],vm[4]

 filtered_list = [k[1] for k,v in cost_dict.items() if (k[0] == vm[2]) and v == vm[4]]

 vm.append(filtered_list)

 #print out the replica-vm-table

 # for y in vm:

 # print(y,'\t',end=' ')

 # print()

 rffPMdict = deepcopy(pmDict)

 #Replacement first fit, consolidation heuristic

 #print('\nReplacement First Fit - MCF cost considered, MCF placement disregarded')

 #acts as though all vms are unplaced but mcf cost is known, then first fit places them according to

equivalent mcf cost per copy

 def RFFcheckPMcontainsVM(pmID,vmID):

 for vm in rffPMdict[pmID][3:]:

 if vm[0] == vmID:

 return True

 return False

 for vm in vm_table:

 for choice in vm[5]:

 #check if pm contains this vm already. replication constraint.

 vmID = vm[1]

 #pmID = choice

 if RFFcheckPMcontainsVM(choice,vmID):

 continue

 #pm-space-max = rffPMdict[pmID][2]

 #pm-space-used = rffPMdict[pmID][1]

62

 #pm-space-remaining = max - used

 if (rffPMdict[choice][2] - rffPMdict[choice][1]) >= vmDict[vmID][1]:#pm has enough space, we can

place

 pmvalues = rffPMdict[choice]

 vmSize = vmDict[vmID][1]#vmID = vm[1]

 addVM = [vmID,vmSize,vm[2]]#vmOrigPM = vm[2] or vmDict[vmID][2]

 pmvalues[1] += vmSize

 pmvalues.append(addVM)

 rffPMdict[choice] = deepcopy(pmvalues) #[x for x in pmvalues]

 break

 #find active PMs and visualize rff solution

 rff_pmList=[]

 numRFFactivePM = 0

 for v in rffPMdict.values():

 if len(v) > 3:

 numRFFactivePM+=1#tally up active PMs

 rff_pmList.append(v)

 #print('num-active-PMs:',numRFFactivePM)

 #printPM(rff_pmList)

 #First fit consolidation heuristic

 #Keeps mcf placement, tries to firstfit consolidate from there, using mcf-equivalent-cost for each copy

 #will only transfer if destination-PM is not empty

 #print('\nFirst Fit Consolidation - from MCF solution, \nEach VM jumps to a same-cost, lowest-id PM')

 #before transfer dictionary

 ffnotemptyDict = {k:v for k,v in mcf_pmDict.items()}

 def FFcheckPMcontainsVM(pmID,vmID):

 for vm in ffnotemptyDict[pmID][3:]:

 if vm[0] == vmID:

 return True

 return False

 #print('replicaID,origVMid,origPM,destPM,flowcost,equiv-cost-choice-PMs')

 for vm in vm_table:

 for choice in vm[5]:

 vmID = vm[1]

 #pmID = choice

 if len(ffnotemptyDict[choice]) == 3: #pm is empty, dont transfer

 continue

 if choice == vm[3]:

 continue #dest-pm is same as mcf solution, dont transfer

 if FFcheckPMcontainsVM(choice,vmID):

 continue #dest-pm contains a copy of this vm already, dont transfer

 #pm-space-max = ffnotemptyDict[pmID][2]

 #pm-space-used = ffnotemptyDict[pmID][1]

63

 #pm-space-remaining = max - used

 if (ffnotemptyDict[choice][2] - ffnotemptyDict[choice][1]) >= vmDict[vmID][1]:

 #pm has enough space, we can transfer

 pmvalues = [x for x in ffnotemptyDict[choice]]

 vmSize = vmDict[vmID][1]#vmID = vm[1]

 #add vm to chosen dest PM

 addVM = [vmID,vmSize,vm[2]]#vmOrigPM = vm[2] or vmDict[vmID][2]

 pmvalues[1] += vmSize

 pmvalues.append(addVM)

 ffnotemptyDict[choice] = [x for x in pmvalues] #[x for x in pmvalues]

 #remove vm from previous dest PM

 ffnotemptyDict[vm[3]] = [x for x in ffnotemptyDict[vm[3]] if x != addVM]

 ffnotemptyDict[vm[3]][1] -= vmSize

 break

 #find num-active-PMs and visualize ff solution

 ff_pmList=[]

 numFFactivePM = 0

 howmanyvms = 0

 for v in ffnotemptyDict.values():

 if len(v) > 3:

 numFFactivePM+=1#tally up active PMs

 for vm in v[3:]:

 howmanyvms+=1

 ff_pmList.append(v)

 #print('num-active-PMs:',numFFactivePM)

 #printPM(ff_pmList)

 #implement original post-MCF consolidation as described in Dr. Tang's paper

 #look at PMs with 1 VM in arbitrary order. for each PM, check if all its containing VMs can be moved

elsewhere to a set of TPM. if yes, move them all. if no, dont move any.

 #repeat with PMs with 2 VMs, then PMs with 3 VMs, until you reach max possible VM #.

 #start_time = time.time()

 '''

 def printDict(anydict, label = '\nprinting some dict'):

 print(label)

 for k,v in anydict.items():

 print(k,v)

 print()

 '''

 #copy mcf solution dict but sort by number of vms

 #bestconsolidationheuristicDict = {k:v for k,v in sorted(mcf_pmDict.items(), key = lambda x: len(x[1]))}

 #printDict(bestconsolidationheuristicDict)

 #print('Best consolidation heuristic, tries to move all PMs containing')

 #print('1 VM, then 2 VM, then 3 VM, ... only if all VMs can be moved')

 #start_time = time.time()

64

 #if PM contains original vm, cant move

 #if destinationPM is VM's origPM, cant move

 #cost-equivalent

 #destinationPM cannot be empty

 #check replica constraint

 #check PMhasspace

 #update space

 #add vm to new pm

 #remove vm from old pm

 bestheurDict = {k:v for k,v in sorted(pmDict.items(), key = lambda x: len(x[1]))}

 #exclude PMs which contain the original VMs

 excludelist = [v[2] for v in vmList]

 bestheurResult = {k:v for k,v in mcf_pmDict.items()} #final positions will be saved here

 vm_tableDict = {} #this is the dict equivalent of vm_table

 #build pm-dict using replica ids, not just orig vm ids, for lookup

 for vm in vm_table:

 #add vm to dest pm

 #origvmSize = vmDict[vm[1]][1]

 #destpm = vm[3]

 pmvalues = bestheurDict[vm[3]]

 pmvalues.append(vm[0]) #add the replicaID to the destPM

 #since we're looping through the list, build a dict for later

 vm_tableDict[vm[0]] = [x for x in vm]

 sortbynumcontainedVMs={}

 for k,v in bestheurDict.items():

 if k in excludelist:

 #dont bother trying to consolidate PMs which contain-

 #an original vm

 #print('skipping',k)

 continue

 sortbynumcontainedVMs[k] = [x for x in v[3:]]

 #print('replicaID,origVMid,origPM,destPM,flowcost,equiv-cost-choice-PMs')

 sortbynumcontainedVMs = sorted(sortbynumcontainedVMs, key = lambda

x:len(sortbynumcontainedVMs[x])) #sort PM-ids by number of contained vms

 #print(sortbynumcontainedVMs)

 #we try to consolidate starting from PMs containing the fewest replica VMs

 #skipping PMs which contain no VMs

 #skipping PMs which contain an original VM

 #skipping PMs in which not all VMs can be moved

 #valid alternate PM must be: not empty, same cost, contain no other copies of that vm, has enough

space

65

 '''

 #check if alternate choice has space

 #pmMax - pmUsed >= originatingVMsize

 #pmMax = tpmvalues[2]

 #pmUsed = tpmvalues[1]

 #originating-vm-size = vmDict[choicedata[1]][1]

 #print('size data',tpmvalues[2],tpmvalues[1],vmDict[choicedata[1]][1])

 #print(tpmvalues,'has space for',vm_tableDict[replica])

 #print(choice,'has space for',replica)

 #store the data

 #set success flag

 #if you try an implementation that stores all the valid moves before making any, it wont save

any calculations

 #due to some replicas picking the same target pm. updating the space on those target pms is

 #the same amount of calculations as to just make the move, and revert if not all replicas were

able to move.

 #print('moving vm x from pm y to pm z', vmDict[choicedata[1]],

bestheurResult[pmID],bestheurResult[choice])

 '''

 for pmID in sortbynumcontainedVMs:

 pmvalues = [x for x in bestheurDict[pmID]] #trying to consolidate this PM

 #print('\npmvalues',pmvalues)

 #print('lenpmvalues3:',len(pmvalues[3:])) #num of replica copies on this pm

 #print('PMID',pmID)

 canmoveall = True

 movesmade = []

 #beforemove = {k:v for k,v in bestheurResult.items()} #save state before attempting moves

 for replica in pmvalues[3:]: #check if each replica can be moved. PMs that have no replicas are

skipped here.

 choicedata = [x for x in vm_tableDict[replica]]

 #choicedata is replicaID,origVMid,origPM,destPM,flowcost,equiv-cost-choice-PMs

 #print('choicedata',choicedata)

 #we are looking at each replica copy's choices now

 canmove = False

 for choice in choicedata[5]: #these are the equiv-cost-PMs

 #print('choice',choice)

 #check that new dest is not same as old dest

 if choice == choicedata[3]: #cant move, new pm is same as old pm

 #print('dest pm is same as old dest', choice, choicedata[3])

 continue

 tpmvalues = [x for x in bestheurResult[choice]] #makes a copy instead of a reference to

targetPM

 #print('tpmvalues',tpmvalues)

 #check that dest pm is not empty. we wont transfer to an empty pm

 if len(tpmvalues) == 3:

66

 #print(tpmvalues,'is empty, cant move')

 continue

 #check if alternate pm choice contains any copy of this vm

 containsflag = False

 for containedvm in tpmvalues[3:]:

 if containedvm[0] == choicedata[1]: #found match for this vm, cant move

 #print('vm match, cant move', containedvm[0],choicedata[1])

 containsflag = True

 break

 if containsflag == True:

 continue #skip to next possible choice, dont place here.

 if (tpmvalues[2] - tpmvalues[1]) >= vmDict[choicedata[1]][1]: #has space to accept this replica

copy

 canmove = True

 #remove vm from old dest pm

 #update old pm space-used

 #print('old pm bef',bestheurResult[pmID])

 bestheurResult[pmID] = [x for x in bestheurResult[pmID] if x != vmDict[choicedata[1]]]

 bestheurResult[pmID][1] -= vmDict[choicedata[1]][1] #subtract vm-size from space-used, on

old dest pm

 #print('old pm aft',bestheurResult[pmID])

 #print('new pm bef',bestheurResult[choice])

 #add vm to new dest pm

 #update new pm space-used

 bestheurResult[choice].append(vmDict[choicedata[1]])

 bestheurResult[choice][1] += vmDict[choicedata[1]][1] #add vm-size to space-used, on new

dest pm

 #print('new pm aft',bestheurResult[choice])

 #print()

 movesmade.append([vmDict[choicedata[1]], bestheurResult[pmID], bestheurResult[choice]]

)#save orig-vm-data, old-dest-pm, new-dest-pm

 break

 if canmove == False:

 canmoveall = False

 if canmoveall == False:

 #revert

 #bestheurResult = {k:v for k,v in beforemove.items()}

 for move in movesmade:

 #vmsize = move[0][1]

 #print('reverting',move[0])

 #vm, oldpm, newpm

 #print('before revert',move)

 move[2].remove(move[0])

 move[2][1] -= move[0][1] #update pm-used, subtract vm-size

 move[1].append(move[0])

67

 move[1][1] += move[0][1] #update pm-used, add vm-size

 #print('after revert',move)

 #print('calculation time =',time.time() - start_time)

 bestheurList = []

 numactivePM_bestheurList = 0

 for v in bestheurResult.values():

 bestheurList.append(v)

 if len(v) > 3:

 numactivePM_bestheurList +=1

 #print('best heuristic, numactivePM:',numactivePM_bestheurList)

 #printPM(bestheurList)

 def updatePMspaceused(pmlist):

 pmlistcopy = deepcopy(pmlist)

 for pm in pmlistcopy:

 if len(pm) > 3: #contains VMs

 vms = pm[3:]

 spaceused = 0

 for v in vms:

 spaceused += v[1]

 pm[1] = spaceused

 else:

 pm[1] = 0

 return pmlistcopy

 #use google's OR-Tools to optimally solve consolidation

 #as a bin packing problem w constraints

 #constraint 1: choices are limited to mcf solution equivalent cost choices

 #constraint 2: replication constraint (copies of a particular vm cannot share a pm)

 #constraint 3: capacity constraint of each pm

 optimalbinpack = deepcopy(pmList)

 optimalbinpack = [pm[:3] for pm in optimalbinpack] #remove orig vms

 optimalbinpack = [[a[0],0,a[2]] for a in optimalbinpack] #set used space=0

 #print('\n Optimal bin packing solution:')

 #print('\t constraints:')

 #print('\t PM capacity, replication, MCF equivalent cost choice\n')

 vmdict = {}

 for v in vmList:

 vmdict[v[0]] = (v[1],v[2]) #key: vmID, value: (vmSize,pmLocation)

 data = {}

 #add the weights, which is the size of each vm copy

 weights=[]

 items=[]

 itemnumber = 0

68

 for vm in vmdict:

 for r in range(numCopies):

 weights.append(vmdict[vm][0]) #append vm size

 items.append(itemnumber) #originating vmID = itemnumber // numCopies

 itemnumber += 1

 data['weights'] = weights

 data['items'] = items

 data['bins'] = list(range(numPM))

 bin_capacity = [pm[2] for pm in optimalbinpack]

 #dont need pm[2] - pm[1], no space used, orig vms are temporarily removed

 data['bin_capacity'] = bin_capacity

 def mutex(vm1,vm2): #vm1 cannot go in same pm as vm2

 for j in data['bins']:

 solver.Add(x[vm1,j] + x[vm2,j] <= 1)

 return

 #Instantiate MIP solver with CBC backend

 solver = pywraplp.Solver('simple_mip_program',

 pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING)

 # Variables

 # x[i, j] = 1 if vm i is packed in pm j.

 x = {}

 for i in data['items']:

 for j in data['bins']:

 x[(i, j)] = solver.IntVar(0, 1, 'x_%i_%i' % (i, j))

 #x[(i, j)] = solver.IntVar(0, 1, '') #testing blank name

 # y[j] = 1 if pm j is used.

 y = {}

 for j in data['bins']:

 y[j] = solver.IntVar(0, 1, 'y[%i]' % j)

 #y[j] = solver.IntVar(0, 1, '')

 # Constraints

 # Each vm must be in exactly one pm.

 for i in data['items']:

 solver.Add(sum(x[i, j] for j in data['bins']) == 1)

 #constrain each PM to its remaining space capacity

 for j in data['bins']:

 solver.Add(

 sum(x[(i, j)] * data['weights'][i] for i in data['items']) <= y[j] * data['bin_capacity'][j])

 '''

 multiplying by y[j] forces y[j] to equal 1 if any vm is packed in pm j.

 if y[j] were 0, the right side of the inequality would be 0, while the pm-space-used on the left side would

be greater than 0,

 violating the constraint.

 the solver minimizes the number of pms where y[j] is 1.

69

 '''

 '''

 #constrain each vm replica copy to avoid originating pm

 for i in data['items']:

 vmID = i//replicaCopies #vmcopy i is a replica of vmID

 avoidPM = vmdict[vmID][1] #gets originating pm id

 solver.Add(x[i,avoidPM] == 0) #vmcopy i avoids originating pm

 if avoidPM == 0:

 print(i,'avoids',avoidPM)

 '''

 #vm table format: vmid (non uniq), originating pm id, destination pm, cost, equivalent cost choices

 choices_table = [x[1:] for x in vm_table]

 #vmList format: vmid, size, orig pm

 for v in vmList:

 pretendchoice = [v[0],v[2],v[2],0,[v[2]]]

 choices_table.append(pretendchoice)

 choices_table=sorted(choices_table, key = lambda x: (x[0],len(x[4]))) #sort by vm id first, number of

choices second

 #constrain replica copies of the same vm to avoid other copies of that vm

 exdict={}

 for i in data['items']:

 vmID = i//numCopies

 startvalue = vmID * numCopies

 for r in range(startvalue,startvalue+numCopies):

 if i == r: #do not mutually exclude itself

 continue

 if (r,i) in exdict.keys(): #already did this combination

 continue

 mutex(i,r) #but DO mutex other copies of the vm

 exdict[(i,r)] = 1

 #print(r,'avoids',i,r//numCopies,i//numCopies)

 def vmXgoesinpmY(vmid,pmid):

 strexp = 'x[' + str(vmid) + ',' + str(pmid) + ']'

 return strexp

 #constrain choices to mcf equivalent cost choices

 for v in range(len(choices_table)):

 choicelist = choices_table[v][4]

 totalexp = ''

 for c in choicelist: #build constraint expression as string, then eval

 totalexp = totalexp + vmXgoesinpmY(v,c) + ' + '

 totalexp = totalexp[:-3] #truncate last 3 chars, the extra ' + '

 totalexp += ' == 1'

 totalexp = eval(totalexp) #eval lets us eval the string as an expression

 solver.Add(totalexp)

 pmdict = {}

 for pm in optimalbinpack: #translate list into dict for faster lookups

70

 pmdict[pm[0]] = pm[1:] #key is pmid, value is rest of pm attributes

 # Objective: minimize the number of PMs used.

 solver.Minimize(solver.Sum([y[j] for j in data['bins']]))

 status = solver.Solve()

 #format output for the optimal solution, print optimal solution

 if status == pywraplp.Solver.OPTIMAL:

 num_bins = 0.

 for j in data['bins']:

 if y[j].solution_value() == 1:

 bin_items = []

 bin_weight = 0

 for i in data['items']:

 if x[i, j].solution_value() > 0:

 vmid = i//numCopies

 bin_items.append(vmid)

 #add vm to pm in pmdict [vmid, size, origpmID]

 addvm = [vmid, vmdict[vmid][0],vmdict[vmid][1]]

 pmdict[j].append(addvm)

 bin_weight += data['weights'][i]

 if bin_weight > 0:

 num_bins += 1

 #print(' %-5d %-8d %-10d'%(pm[0],pm[1],pm[2]),end=' ')

 # print('\t PM # %-5d' %(j), end = ' ')

 # print(' stores VMs:', bin_items)

 #print(' using:', bin_weight, 'space')

 # print()

 #print('PMs used:', int(num_bins))

 #print('\tOptimal Bin Packing calculation time = ', solver.WallTime(), ' milliseconds')

 else:

 errorcount+=1

 pass#this should never happen, could sys.exit()

 # print('No optimal solution is possible.')

 optimalbinpack = [] #rebuild pm list from dict

 numactive_optimalbinpack=0

 for key,values in pmdict.items():

 pm = []

 pm.append(key)

 if len(values)>2:

 numactive_optimalbinpack+=1

 for v in values:

 pm.append(v)

 optimalbinpack.append(pm)

 optimalbinpack = updatePMspaceused(optimalbinpack)

 firstFitFlowCost_list.append(firstFitFlowCost)

71

 firstfit_pms_used_list.append(firstfit_pms_used)

 greedyFlowCost_list.append(greedyFlowCost)

 greedy_pms_used_list.append(greedy_pms_used)

 mcf_flowcost_list.append(mcf_flowcost)

 numMCFActivePM_list.append(numMCFActivePM)

 numRFFactivePM_list.append(numRFFactivePM)

 numFFactivePM_list.append(numFFactivePM)

 numactivePM_bestheurList_list.append(numactivePM_bestheurList)

 numactive_optimalbinpack_list.append(numactive_optimalbinpack)

 if numactive_optimalbinpack < numactivePM_bestheurList:

 improvementAmountList.append(numactivePM_bestheurList-numactive_optimalbinpack)

 improvementcount+=1

 if numactive_optimalbinpack > numactivePM_bestheurList:

 errorcount+=1000000 #this is a joke

 if numactive_optimalbinpack == numactivePM_bestheurList:

 samecount+=1

################################LOOP ENDS HERE

def writelistoneline(alist):

 for a in alist:

 fout.write('%-4s'%(str(a))+' ')

 fout.write('\n')

with open('fattreeresults.txt','w') as fout:

 fout.write('\t\t k '+str(fattreek))

 fout.write('\n\t\t numVM '+str(numVM))

 fout.write('\n\t\t minVMsize '+str(minVMsize))

 fout.write('\n\t\t maxVMsize '+str(maxVMsize))

 fout.write('\n\t\t numCopies '+str(numCopies))

 fout.write('\n\t\t minPMsize '+str(minPMsize))

 fout.write('\n\t\t maxPMsize '+str(maxPMsize))

 fout.write('\n\t\t numRuns '+str(numRuns)+'\n\n')

 fout.write(' FirstFitFlowCost ')

 writelistoneline(firstFitFlowCost_list)

 fout.write(' GreedyFlowCost ')

 writelistoneline(greedyFlowCost_list)

 fout.write(' MinFlowCost ')

 writelistoneline(mcf_flowcost_list)

 fout.write('\n')

 fout.write(' FirstFitActivePM ')

 writelistoneline(firstfit_pms_used_list)

 fout.write(' GreedyActivePM ')

 writelistoneline(greedy_pms_used_list)

 fout.write(' MCFActivePM ')

72

 writelistoneline(numMCFActivePM_list)

 fout.write('\n')

 fout.write(' RFFActivePM ')

 writelistoneline(numRFFactivePM_list)

 fout.write(' mcfPlacedFirstFitActivePM ')

 writelistoneline(numFFactivePM_list)

 fout.write(' BestConsAlgoActivePM ')

 writelistoneline(numactivePM_bestheurList_list)

 fout.write(' optimalbinpack_list ')

 writelistoneline(numactive_optimalbinpack_list)

 fout.write('\n')

 '''

 print(' error count:',errorcount)

 print(' number of runs:',numRuns)

 print(' optimal matches best heuristic:',samecount)

 print(' optimal outperforms best heuristic:',improvementcount,'times')

 '''

 heuravg = sum(numactivePM_bestheurList_list) / len(numactivePM_bestheurList_list)

 heuravg = round(heuravg,2)

 #print(' avg servers used,best heuristic:', heuravg)

 optavg = sum(numactive_optimalbinpack_list) / len(numactive_optimalbinpack_list)

 optavg = round(optavg,2)

 #print(' avg servers used in optimal:', optavg)

 fout.write(' bestheur avg PMs '+str(heuravg))

 fout.write('\n optimal avg PMs '+str(optavg))

 fout.write('\n optimal matches best '+str(samecount))

 fout.write('\n optimal outperforms best '+str(improvementcount))

 mag=0

 if improvementAmountList:

 mag = sum(improvementAmountList)/len(improvementAmountList)

 mag = round(mag,2)

 # print(' average magnitude of improvement:',mag,'additional servers')

 fout.write('\n avg mag improvement '+str(mag))

#os.startfile('C:\\Users\\alext\\Desktop\\csc\\fattreeresults.txt')

