
  

 

 

Computer Science Department 

College of Natural and Behavioral Sciences 

California State University, Dominguez Hills 

 

DAO: Data Aggregation and Offloading in 

Sensor Networks 

 

 

 

 

 

 

 

 

 
Basil Alhakami 

Computer Science Department 

California State University Dominguez Hills 
 

 
 



THESIS: DAO: DATA AGGREGATION AND OFFLOADING IN SENSOR NETWORKS 

 

AUTHOR: BASIL ALHAKAMI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPROVED 

 

 

 

___________________________ 

DR. Mohsen Beheshti        

Department Chair and Committee Member 

 

 

 

___________________________ 

DR. Jianchao “Jack” Han     

Graduate Program Coordinator and Committee Member 

                                                                               

 

 

 

___________________________ 

DR. Bin Tang        

Committee Chair and Advisor 

                                                                               



Acknowledgments  
 

 

 

 

 

This work was supported in part by NSF Grant CNS-1116849. 

 

I would like to thank Dr. Bin Tang for his support. This thesis would not be possible without his 

guidelines. 

 

I would like to also thank Dr.Jack Han and Dr. Mohsen Behesthi for their valuable advice. 

 

Finally I dedicate my thesis to my father, mother, my sister Hind, and to my brothers: Mohammed, 

Khalid, and Mohannad. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

When sensor networks are deployed in an inaccessible or inhospitable region, or under extreme 

weather, it is not usually viable to install a long-term base station in the field to collect data. The 

generated sensory data is therefore stored inside the network first. However, when more data is 

generated than available storage spaces in the entire network can possibly store, data loss arises. 

This problem is referred to as the overall storage overflow in sensor networks. In this thesis, a new 

algorithmic problem called the data aggregation and offloading problem (DAO), is used to 

overcome overall storage overflow. By taking advantages of data spatial correlation that 

commonly exists among sensory data, the DAO aggregates overflow data to the size that can be 

accommodated by the available storage capacity in the network, and then offloads the aggregated 

data inside the network to be stored. The goal of the DAO is to minimize energy consumption 

incurred in the above data aggregation and data offloading process. The research shows that the 

DAO is NP-hard. To solve the DAO, a naive two-stage solution is first proposed, which is referred 

to as DAO-N, wherein data offloading strictly follows data aggregation. A more unified method 

that is based upon data replication techniques, referred to as DAO-R, is proposed in order to further 

reduce energy consumption. Specifically, a series of data replication algorithms is designed to 

integrate data aggregation and data offloading. A sufficient condition to solve DAO-R optimally 

is also provided. The research shows via extensive simulations that DAO-R outperforms DAO-N 

by approximately 20% in terms of energy consumption, under different network parameters.  

 

 Keywords – data aggregation, data offloading, overall storage overflow, sensor networks, 

energy efficiency 

 

 



TABLE OF CONTENTS 

 

Chapter                                                                                                                                        Page 

  

1.  INTRODUCTION           1 

  

 1.1  Background and motivation           1 

  

      1.2 Thesis Organization           3 

  

2. RELATED WORK           4 

  

3. DATA AGGREGATION AND OFFLOADING PROBLEM (DAO)            6 

  

     3.1 Network Model and Data Correlation Model           7 

  

     3.2 Problem Formulation of DAO           9 

  

     3.3 NP- Hardness of DAO          11 

  

4. DAO-N A NAIVE TWO-STAGE APPROACH          12 

  

     4.1 Data Aggregation Approximation Algorithm          12 

  

     4.2 Data Offloading Algorithm          13 

  

     4.3 Limitations of Naïve Two-Staged Approach          14 

  

5. DAO-R INTEGERATING DATA AGGREGATION AND DATA 

OFFLOADING VIA REPLICATION 

         16 

  

     5.1 Problem Formulation of DOA-R           16 

  

     5.2 Global Replication Algorithm           18 

  

     5.3 Localized Replication Algorithm           20 

  

6. PERFORMANCE EVALUATION          24 

  

7. CONCLUSION AND FUTURE WORK          28 



1 

 

Chapter 1 

INTRODUCTION 

1.1 Background and Motivation 

In this thesis, the focus is on some emerging sensor networks, such as underwater sensor 

networks [12], wind and solar harvesting [10, 18], and ecological monitoring [16, 22]. A common 

characteristic of such networks is that they are all deployed in inaccessible or inhospitable regions, 

or under extreme weather, to constantly collect data from the physical environments for a long 

period of time. Due to the inaccessible and hostile environments, it is not viable to deploy base 

stations (with power outlets) to collect data in or near the sensor fields. Therefore, data generated 

have to be stored inside the sensor network for some period of time and then be collected by 

periodic visits of robots or data mules [9], or by low-rate satellite links [17]. Meanwhile, storage 

is still a serious resource constraint of sensor nodes, despite the advances in energy-efficient flash 

storage [4, 19] with good compression algorithms (data is compressed before stored) and good 

aging algorithms (fidelity of older data is reduced to make space for newer data). As a consequence 

of this resource constraint, the massive sensory data could soon overflow data storage of sensor 

nodes and cause data loss. Below, two levels of data overflow and their corresponding solutions 

are outlined: 

 Node storage overflow. The first level of data overflow is node storage overflow, wherein 

some data-generating sensor nodes deplete their own storage spaces, causing data loss. 

These sensor nodes with depleted storage spaces, while still generating data, are referred 

to as data nodes. The newly-generated data that can no longer be stored in data nodes is 

called overflow data. The solution to avoid such data loss is simple: the overflow data is 

offloaded to other nodes with available storages (referred to as storage nodes). Different 



2 

 

data offloading techniques have been proposed with the goal of either minimizing the total 

energy consumption during data offloading [20], or maximizing the minimum remaining 

energy of storage nodes to prolong network lifetime [8], or offloading the most useful 

information, considering data could have different priorities [25]. However, these 

techniques do not address the second level of data overflow, which is overall storage 

overflow, explained below. 

 Overall storage overflow. This happens when the total size of the overflow data is larger 

than the total size of the available storage in the network. Data offloading alone cannot 

solve this problem; discarding data becomes inevitable if no action is taken. This is a more 

severe problem compared to node storage overflow. For the large amount of overflow data 

generated in the sensor networks, figuring out how to store as much useful information as 

possible using the available storage of the network becomes a new challenge. 

In order to achieve fine-grain monitoring in a wide variety of applications, it usually requires dense 

sensor nodes deployment in wireless sensor networks. Due to the high density of nodes, spatially 

proximal sensor observations are highly correlated [11]. The spatially redundant or correlated data 

provides an opportunity to solve the aforesaid overall storage overflow problem—it allows for 

aggregation and reduces the size of overflow data without sacrificing information loss. 

Formulating a new algorithmic problem, referred to as Data Aggregation and Offloading (DAO) 

exploits such advantages brought by spatial correlation among sensor data. First is a naive, two-

stage approach called DAO-N. This approach treats data aggregation and data offloading as two 

independent stages, and solves each separately. That is, it first aggregates and reduces the size of 

overflow data such that it can be accommodated by the available storage in the network, then it 

offloads the data into the network. In particular, an approximation algorithm [21] is presented to 



3 

 

solve this data aggregation problem. The data offloading stage can be solved optimally, by 

showing that it is equivalent to a minimum cost-flow problem [20]. Second, demonstrating that 

solving each stage independently and combining the results together does not necessarily achieve 

best performance. Third, a unified approach, called DAO-R, is presented to leverage the synergies 

existing between data aggregation and data offloading. Specifically, a series of data replication 

algorithms is designed, wherein data is replicated in the way of data aggregation. The novelty of 

DAO-R is that replicating data along aggregation paths achieves the effect of “offloading” 

overflow data to storage nodes, without introducing extra energy cost. A sufficient condition that 

solves DAO-R optimally is also given. Finally, the research shows via extensive simulations that 

DAO-R outperforms DAO-N by approximately 20% in terms of energy consumption, under 

different network parameters. 

1.2 Thesis Organization.  

The rest of the thesis is organized as follows: Chapter 2 discusses state-of-the-art and 

related work, to give context of the contribution of the work. In Chapter 3, the overall storage 

problem is introduced, presenting the network, data correlation, and energy models, and the 

formulation of the data aggregation and offloading (DAO) problem. Chapter 4 presents DAO-N, 

a naive, two-stage approach for DAO. In Chapter 5, a more energy-efficient and unified approach 

to solve DAO called DAO-R is presented, by designing a suite of data replication algorithms to 

integrate data aggregation and offloading. Also provided is an efficient condition under which 

DAO-R can be solved optimally. In Chapter 6, all of the different algorithms under different 

network dynamics are compared, and the simulation results are discussed. Chapter 7 concludes the 

thesis with possible future research. 



4 

 

Chapter 2 

RELATED WORK 

Figuring out how to preserve data in sensor networks in the absence of the base station has 

become part of active research in recent years. In particular, Tang et al. [20] addressed the energy-

efficient data redistribution problem in data-intensive sensor networks. Hou et al. [8] studied how 

to maximize the minimum remaining energy of the nodes that finally store the data, in order to 

store the data for long period of time. Xue et al. [25] considered that sensory data from different 

source nodes have a different importance, and they studied how to preserve data with the highest 

importance. However, none of the works addresses the overall storage overflow problem. Tang 

and Ma [21] recently studied the overall storage overflow problem by solving the problem of 

aggregating data and reducing its size so that it can be accommodated by the available storage. 

However, important research problems such as how to offload the aggregated data to storage nodes 

and how to integrate data aggregation and data offloading to further save energies are not 

addressed, which is the topic of this thesis. Ganesan et al. [4] adopted data aggregation techniques 

to tackle the storage constraint of sensor networks. They proposed wavelet compression techniques 

to construct summaries for data at different spatial resolutions, as well as a progressive aging 

scheme, wherein older data gets more aggressively summarized to save storage space for newer 

data. The summarization is based on a hierarchical grid-based overlay, in which summaries at each 

higher level of the hierarchy encompass larger spatial scales but are lossier overall. In contrast, our 

approach does not rely upon any hierarchy of overlays. Traditional data aggregation in sensor 

networks collects sensor data by combining the data from different sensor nodes on the way to the 

base station, in order to eliminate redundancy and to reduce energy consumption during data 

collection. As a result, the underlying routing structures for data aggregation are usually trees 



5 

 

rooted at the base station. Data aggregation techniques have been designed for different purposes. 

Some are used to maximize the network lifetime (the time until the first node depletes its energy) 

[15, 23], some are used to minimize the total energy consumption or communication cost [13, 14], 

and some are used to reduce the delay of data gathering [24]. In contrast, the overall storage 

overflow problem studied in this thesis takes place when the base station does not exist and there 

is not enough storage to store all the overflow data. Consequently, data aggregation in the DAO 

has a very different goal compared to traditional data aggregation. It is to aggregate the overflow 

data so that their size can be reduced and accommodated by the storage spaces available in the 

network, in order to prevent data loss caused by overall storage overflow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

Chapter 3 

DATA AGGREGATION AND OFFLOADING PROBLEM (DAO) 

In this chapter, the DAO is illustrated with an example. Presented next is its network model, data 

spatial correlation model, and energy model. Finally, the DAO is formally formulated. 

 

 

 

The sensor network studied consists of data nodes (with overflow data) and storage nodes 

(with available storage spaces), as shown in Figure 1. The total size of the overflow data from the 

data nodes exceeds the total size of the storage spaces from the storage nodes, resulting in overall 

storage overflow. To start aggregating data, one or multiple data nodes (called initiators) send their 

whole overflow data to the other data nodes. When a data node (called an aggregator) receives the 

data, it aggregates its own overflow data (each aggregator can aggregate its data only once). After 

that, the aggregator forwards the initiators’ overflow data to another data node, which then 

becomes an aggregator and aggregates its own overflow data, and so on and so forth. This 

continues until enough aggregators are visited such that the total size of the overflow data after 

aggregation equals to or is slightly less than the total available storage in the network. At this point, 

there is zero amount of overflow data on each initiator; the last aggregator being visited by each 

initiator has both its own aggregated data and the whole data from the initiator, and all other 



7 

 

aggregators have their own aggregated overflow data. If a data node is not involved in data 

aggregation (i.e., not an initiator and not an aggregator), its overflow data is not aggregated. After 

aggregation, all the overflow data (aggregated or not) are then offloaded to storage nodes. Figure 

1 shows both data aggregation and data offloading. Our goal is to minimize the total energy 

consumption in the entire process. 

3.1 Network Model and Data Correlation Model  

The sensor network is represented as a graph𝐺(𝑉, 𝐸), where 𝑉 =  {1, 2, … . , |𝑉 |} is the set 

of |𝑉 | sensor nodes uniformly distributed inside the network, and 𝐸 is the set of |𝐸 | edges. All 

the nodes have the same transmission range; an edge exists between two nodes if their distance is 

within the transmission range. There are p data nodes (denoted as𝑉𝑑); each has R bits of overflow 

data. The other |V | - p nodes are storage nodes, denoted as 𝑉𝑠, each of which has m bits of available 

storage spaces (this work can be extended to cases of varying data and storage size). 

The data correlation model adopted is proposed in [3]. 𝐻 (𝑋|𝑌) denotes the conditional entropy of 

a random variable 𝑋 given that random variable 𝑌 is known. Overflow data at data node 𝑖 is 

represented as an entropy 𝐻 (𝑖)  =  𝑅  bits if no side information is available from other data nodes; 

𝑎𝑛𝑑 𝐻(𝑖 | 𝑗1, … . ,  𝑗𝑝)  =  𝑟 ≤  𝑅 bits, 𝑗𝑘  ∈  𝑉 𝑑 ∧  𝑗𝑘  ≠  𝑖, 1 ≤  𝑘 ≤  𝑝, if data node 𝑖 has available 

side information from at least another data node. In other words, if a data node receives data from 

at least another data node, its overflow data can be aggregated and reduced from R to r. This 

correlation model is adopted because a) it is a simple and distributed coding strategy, making it 

easy to implement in large-scale sensor network application and b) it is a realistic model that 

approximates the case where the correlation function between two nodes decreases with their 

distance [3]. 



8 

 

First Order Radio Energy Model [7]. For node u sending R-bit data to its one-hop 

neighbor v over their distance 𝑙𝑢,𝑣, the transmission energy cost at u is 𝐸𝑡(𝑅,  𝑙𝑢,𝑣)  =  𝐸𝑒𝑙𝑒𝑐  ×

  𝑅 +  𝜖𝑎𝑚𝑝  ×  𝑅 ×  𝑙𝑢,𝑣
2 , the receiving energy cost at 𝑣 is 𝐸𝑟(𝑅) = 𝐸𝑒𝑙𝑒𝑐 ×  𝑅. Here, 𝐸𝑒𝑙𝑒𝑐 =

 100𝑛𝐽/𝑏𝑖𝑡 is the energy consumption per bit on the transmitter circuit and receiver circuit, and 

𝜖𝑎𝑚𝑝  =  100𝑝𝐽/𝑏𝑖𝑡/𝑚2 calculates the energy consumption per bit on the transmit amplifier. 

Let 𝑤(𝑅, 𝑢, 𝑣)  =  𝐸𝑡(𝑅, 𝑙𝑢,𝑣)  +  𝐸𝑟(𝑅). Let 𝑊 =  {𝑣1, 𝑣2, . . . , 𝑣𝑛} be a sequence of n nodes with 

(𝑣𝑖, 𝑣𝑖+1 ) ∈  𝐸, 1 ≤  𝑖 ≤  𝑛 −  1 and 𝑣1  ≠  𝑣𝑛. If all the nodes in W are distinct, W is a path; 

otherwise, it is a walk. Let 𝑐(𝑑, 𝑊)= ∑ 𝑤(𝑑, 𝑣𝑖,
𝑛−1
𝑖=1 𝑣𝑖+1 ) denote the energy consumption of 

sending d-bit of data along W. Next, the differences of energy consumptions between data 

aggregation and data offloading stages are explained. In the data aggregation stage, the route that 

the R-bit overflow data at each initiator traverses could be either a path or a walk, because enough 

of a number of aggregators needs to be visited in order to reduce overflow data size. Let 𝑐(𝑅, 𝑊) 

denote the aggregation cost of R-bit data traversing along path/walk W starting from its initiator. 

In the data offloading stage, however, the route that the overflow data traverses is always a path, 

in order to minimize the total offloading cost. Besides, in the data offloading stage, each offloaded 

overflow data unit is not necessarily in sizes of R or r. Instead, for the purpose of energy efficiency, 

the overflow data at each data node can be split into smaller units, each of which can be offloaded 

to different storage nodes. Let the size of each smaller unit be x-bit, then 𝑐(𝑥, 𝑊) is the offloading 

cost of offloading this x-bit data from its data node 𝑣1 to a storage node 𝑣𝑛, along path W. It is 

assumed that there exists a contention-free MAC protocol to avoid overhearing and collision (e.g. 

[2]), so that the energy consumption contains only two parts: transmitting data and receiving data. 

Feasible Overall Storage Overflow. Feasible overall storage overflow refers to the 

conditions that a) there is an overall storage overflow, b) there are enough numbers of aggregators 



9 

 

to visit in order to reduce the data size, and c) the data after aggregation can fit in the available 

storage in the network. For a), we have 𝑝 ×  𝑅 >  (|𝑉 |  −  𝑝)  ×  𝑚 which is 𝑝 >
|𝑉|𝑚

𝑚+𝑅
. For b) and 

c), since the size of overflow data that needs to be reduced is  𝑝 × 𝑅 > (|𝑉 | − 𝑝) × 𝑚 =  𝑝 × (𝑅 +

𝑚) − |𝑉 | × 𝑚  , and visiting one aggregator reduces its overflow data size by (R - r), the number 

of needed aggregators, denoted as q, is 

𝑞 =  ⌈
𝑝 × 𝑅 − (|𝑉| − 𝑝) × 𝑚

𝑅 − 𝑟
⌉ = ⌈

𝑝 × (𝑅 + 𝑚) − |𝑉| × 𝑚

𝑅 − 𝑟
⌉ . (1) 

Among all the p data nodes, since at least one needs to be an initiator (therefore cannot be an 

aggregator), there is 𝑞 ≤ 𝑝 − 1. Plug in Equation 1, and 𝑝 ≤ ⌊
|𝑉|𝑚−𝑅+𝑟

𝑚+𝑟
⌋ therefore, the valid range 

of p for feasible overall storage overflow is  

|𝑉|𝑚

𝑚 + 𝑅
< 𝑝 ≤ ⌊

|𝑉|𝑚 − 𝑅 + 𝑟

𝑚 + 𝑟
⌋ . (2) 

Given p and q, at most (p - q) data nodes can be selected as initiators. 

3.2 Problem Formulation of DAO. 

 Let 𝐷 =  {𝐷1, 𝐷2, . . . , 𝐷|𝐷|} denote the set of |D| overflow data after aggregation, each is x-bit. Let 

𝑠(𝑖), where 1 ≤  𝑖 ≤  |𝐷|, denote the data node of data unit 𝐷𝑖. Given an instance of feasible 

overall storage overflow, the DAO decides: 

 a set of 𝑙 (1 ≤  𝑙 ≤  (𝑝 −  𝑞)) initiators 𝐼 ⊂  𝑉𝑑, and a corresponding set of l aggregation 

paths/walks: 𝑊1
𝑎, 𝑊2

𝑎, … , 𝑊𝑗
𝑎,, where 𝑊𝑗

𝑎 (1 ≤  𝑗 ≤  𝑙) starts from a distinct initiator 

𝐼𝑗 ∈  𝐼, 𝑎𝑛𝑑 |⋃ {𝑊𝑗
𝑎  −  {𝐼𝑗}  −  𝐺𝑗}𝑖

𝑗=1 |  =  𝑞 (𝐺𝑗  is the set of storage nodes in 𝑊𝑗
𝑎), and  



10 

 

 an offloading function o : D → Vs, to offload data unit Di ∈ D from its data node 𝑠(𝑖)  ∈

 𝑉𝑑  to storage node 𝑜(𝑖)  ∈  𝑉𝑠; or equivalently, a set of |𝐷| offloading paths:  

𝑊1
𝑜 , 𝑊2

𝑜 , … , 𝑊|𝐷|
𝑜 , where 𝑊𝑖

𝑜 , (1 ≤  𝑖 ≤  |𝐷|) starts from 𝑠(𝑖) and ends with 𝑜(𝑖). 

The goal of the DAO is to minimize the total energy cost in aggregation and offloading: 

𝐶𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑐(𝑅, 𝑊𝑗
𝑎) + ∑ 𝑐(𝑥, 𝑊𝑗

𝑜),   

𝑖≤𝑗≤|𝐷|𝑖≤𝑗≤𝑙

 (3) 

under the constraint that the size of overflow data offloaded to any storage node cannot exceed its 

available storage capacity |{𝑗|1 ≤  𝑗 ≤  |𝐷|, 𝑜(𝑗)  =  𝑖}|  ×  𝑥 ≤  𝑚, ∀𝑖 ∈  𝑉𝑠. 

 

Fig. 2. A sensor network with overall storage overflow problem. 

EXAMPLE 1: Fig. 2 illustrates the overall storage problem with a linear sensor network of five 

nodes. Nodes B, D, and E are data nodes, while A and C are storage nodes. Numbers in parentheses 

are the overflow data sizes R. The energy consumption along any edge is one per unit of data. 

There are a total of 3 units of overflow data, while there are only 2 units of available storage, 

causing overall storage overflow. Number of aggregators q is calculated as 2 using Equation 1. 

This leaves one data node to be an initiator. Chapter 4 shows how to select the initiator and 

corresponding aggregation path to solve this overall storage overflow problem. □ 

 



11 

 

3.3 NP-Hardness of DAO. 

 The DAO is NP-hard, since its constituent data aggregation problem itself is NP-hard [21]. 

Therefore, a time-efficient approximation algorithm and heuristic algorithm is designed to solve 

the DAO. Chapter 4 presents a naive, two-stage solution to solve the DAO and to show its 

limitation. Chapter 5 proposes a more unified approach as well as more energy efficiency which 

employs data replication techniques to integrate data aggregation and offloading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 

 

Chapter 4 

DAO-N: A NAÏVE TWO-STAGE APPROACH 

A naive approach to solve the DAO is to solve data aggregation and data offloading as two 

separate and independent problems, and then combine the solutions (i.e., the energy cost of the 

DAO is the sum of the costs of data aggregation and data offloading). It first aggregates overflow 

data to the size that can be accommodated by the available storage spaces; then, it offloads the 

overflow data from data nodes to storage nodes. This naive two-stage approach is referred to as 

DAO-N. Below the algorithms solving data aggregation and data offloading, are presented, 

respectively. 

4.1 Data Aggregation Approximation Algorithm 

 It has been proven [21] that the data aggregation problem in a general graph topology is 

NP-hard. Below, an approximation algorithm, which yields energy cost that is at most 

(2 −
1

𝑞
) times of the optimal [21] is presented. 

Algorithm 1: Data Aggregation Approximation Algorithm. 

1). Transform the sensor network graph 𝐺(𝑉, 𝐸) to its aggregation graph 𝐺′(𝑉 ′, 𝐸′), defined 

below. 𝑉 ′ is the set of 𝑝 data nodes in 𝑉 , i.e. 𝑉 ′ =  𝑉𝑑. For any two data nodes 𝑢, 𝑣 ∈  𝑉𝑑 in G, 

there exists an edge (𝑢, 𝑣)  ∈  𝐸′ in 𝐺′ if and only if all the shortest paths between 𝑢 and 𝑣 in 𝐺 

do not contain other data nodes. For each edge (𝑢, 𝑣)  ∈  𝐸′, its weight 𝑤(𝑢, 𝑣) is the cost of the 

shortest path between 𝑢 and 𝑣 in 𝐺. 

2). Create a set 𝑆 containing all the edges in 𝐸′ in non-decreasing order of their weights. 

3). Create a forest 𝐹 of |𝑉 | trees, initially each tree is one of the |𝑉 | nodes. 



13 

 

4). Starting from the first edge in S, if that edge connects two different trees, add it to F and 

combine two trees into a single tree. This repeats for q times. 

5). Replace each edge (𝑢, 𝑣) in F with a shortest path between u and v in G (choose one randomly 

if there are multiple). 

6). For each connected component of the resulted F, if it is linear, it starts from one end (the 

initiator) and visits the rest of the nodes exactly once; if it is a tree, it does the following: finding 

an edge (𝑢, 𝑣) with maximum weight in the tree (tie is broken randomly), which has three parts; 

𝑇𝑢, (𝑢, 𝑣), and 𝑇𝑣, it starts from u (the initiator) and visits all the nodes in 𝑇𝑢 in a sequence 

following depth-first-search (DFS) and comes back, then visits v, from where it visits all the nodes 

in 𝑇𝑣  in a sequence following DFS. 

Applying the above approximation algorithm to the sensor network in Fig. 2, it obtains two 

data aggregation solutions. One is that data node B is an initiator and the aggregation path is B, C, 

D, and E, as shown in Fig. 3(a). It also shows the sizes of overflow data at each data node after 

aggregation (but before offloading). In particular, there is no overflow data left at initiator B, and 

there are 0.5 and 1.5 units of data at data nodes D and E respectively. The aggregation cost is 3, 

which happens to be optimal in this small network. 

4.2 Data Offloading Algorithm 

 Data offloading is to offload the overflow data from its data node to the storage node, 

since there are enough storage spaces available to store the overflow data after data aggregation. 

The goal of data offloading is to minimize the energy cost incurred in the offloading process. Tang 

et al. [20] show that by transforming the sensor network graph 𝐺(𝑉, 𝐸) into a flow network, the 

data offloading problem is equivalent to the minimum cost-flow problem [1], which is solvable 



14 

 

optimally in polynomial. In this thesis, the scaling push-relabel algorithm proposed and 

implemented in [5,6], is adopted, with a time complexity of 𝑂(|𝑉 |2|𝐸|𝑙𝑜𝑔(|𝑉 |𝐶)). Here 𝐶 =

max {
𝑅+𝑟

𝑥
,

𝑚

𝑥
 } is the maximum capacity of an edge in the transformed graph. 

Fig. 3(b) shows the data offloading solution that follows data aggregation in Fig. 3(a). It 

shows that 0.5 unit of data at D and 0.5 unit of data at E are offloaded to storage node C, while 1 

unit of data at E is offloaded to storage node A, with an offloading cost of 5.5. 

 

 

Fig. 3. One naive two-stage solution with B being the initiator. (a) Data aggregation stage: values in parentheses are sizes of overflow data after 

aggregation. (b) Data offloading stage: values on the arrowed lines are sizes of overflow data that is offloaded from its data node to a storage node. 

4.3 Limitations of Naive Two-Stage Approach.  

Another naïve two-stage solution is shown in Fig. 4, wherein data node E is the initiator and the 

aggregation path is E, D, C, and B. In this case, the aggregation cost is again 3. However, the 

offloading cost is 2, which is a 64% improvement compared to 5.5 in Fig. 3(b). Therefore, even 

though the solution in Fig. 3 independently solves each of the data aggregation and data offloading 

nicely (one with approximation algorithm and the other optimal algorithm); the combined solution 

may not give the best result. 

 



15 

 

 

Fig. 4. Another naive two-stage solution with E being the initiator. 

Furthermore, even though Fig. 4 gives optimal combined total energy cost of data 

aggregation and offloading, its performance can be further improved. The key observation here is 

that while aggregating data, it can also replicate data along the aggregation paths, since replicating 

data does not introduce extra energy consumption. As a result of replicating, less data needs to be 

offloaded in the data offloading stage. Fig. 5 shows that when initiator E sends its one unit data 

passing storage node C, it replicates half of the data and stores it at C. Therefore, next in the data 

offloading stage, node B only needs to offload the other half unit of E to A (combined with its own 

0.5 unit after aggregation, B actually offloads one unit to A).The offloading cost is 1.5, a 25% of 

improvement compared to offloading cost of 2 in Fig. 4(b). 

 

Fig. 5. Illustrating the DAO with data replication. 0.5 unit of initiator E’s data is replicated and stored at C in the data aggregation stage. 

Thereafter in the data offloading stage, node B does not need to offload this part of data. 

 

 

 

 



16 

 

Chapter 5 

DAO-R: INTEGRATING DATA AGGREGATION AND DATA OFFLOADING VIA 

REPLICATION 

In this chapter, the DAO-R that integrates data aggregation and offloading is formulated, 

and solved by designing two data replication algorithms. It is assumed that l data aggregation paths 

𝑊1
𝑎. 𝑊2

𝑎, … , 𝑊𝑙
𝑎 have already been found using Algorithm 1 in chapter 4. As in chapter 3, it is 

assumed that the overflow data consists of small units, each of which is x-bit and different units 

can be offloaded to different storage nodes. The overflow data that needs to be offloaded after data 

aggregation falls into one of the three categories: 

 𝐷′ = ⋃ 𝐷𝑗
′𝑙

𝑗=1 : The overflow data of all the initiators.𝐷𝑗
′ is the R amount of overflow 

data of 𝐼𝑗 an initiator of 𝑊𝑗
𝑎  (1 ≤  𝑗 ≤  𝑙). Note that each initiator’s overflow data has 

been transmitted to the last aggregator of each aggregation path after data aggregation. 

 𝐷′′: The overflow data of all the aggregators, each having 𝑟 amount of overflow data. 

 𝐷′′′: The overflow data that are not aggregated and are not on any aggregation path. 

𝐷′′′ is empty if all the data nodes are on some aggregation paths. 

5.1 Problem Formulation of DAO-R  

When the R amount of overflow data traverses each aggregation path starting from its 

initiator, it can replicate part or all R on storage nodes along the path. The data replication 

algorithms decide for each aggregation path 𝑊𝑗
𝑎  

 the end node 𝐼𝑗  that serves as initiator, 

 a subset of 𝐷𝑗
′ , denoted as 𝐷𝑗  , of data units to replicate, 



17 

 

 a replication function 𝑟 ∶  𝐷𝑗  𝑉𝑆  ∩  𝑊𝑗
𝑎 , to replicate and store a data unit in 𝐷𝑗  at a 

storage node in 𝑊𝑗
𝑎 , when R amount from 𝐼𝑗 traverses along 𝑊𝑗

𝑎 . 

under the constraint that the total size of replicated data on any storage node along any aggregation 

path cannot exceed this node’s available storage capacity: |{𝑘|𝑘 ∈  𝐷𝑗 , 𝑟(𝑘)  =  𝑖}|  ×  𝑥 ≤

 𝑚, ∀𝑖 ∈  𝑉𝑠  ∩  𝑊𝑗
𝑎. Recall that D is the entire set of data units to be offloaded after data 

aggregation. With 𝐷𝑗  replicated and stored on 𝑊𝑗
𝑎, the rest of the 𝐷𝑗

′ − 𝐷𝑗  amount still needs to be 

offloaded from the last aggregator of 𝑊𝑗
𝑎  in the data offloading stage. Therefore, 

𝐷 = ⋃(𝐷𝑗
′ − 𝐷𝑗)𝐷′′ ∪ 𝐷′′′

𝑙

𝑗=1

= (𝐷′ − ⋃ 𝐷𝑗

𝑙

𝑗=1

) ∪ 𝐷′′ ∪ 𝐷′′′ 

Let 𝑠(𝑗) denote the data node of any data unit  𝐷𝑗  ∈  𝐷. The data offloading algorithm is to decide 

an offloading function  𝑜 ∶  𝐷 →  𝑉𝑠, to offload 𝐷𝑖  ∈  𝐷 from its data node 𝑠(𝑖)  ∈  𝑉𝑑 to storage 

node 𝑜(𝑖)  ∈  𝑉𝑠. Equivalently, the data offloading algorithm is to decide a set of |D| offloading 

paths: 𝑊1
𝑜 , 𝑊2

𝑜 , … , 𝑊|𝐷|
𝑜 , where 𝑊𝑗

𝑜  (1 ≤ j ≤ |D|) starts from 𝑠(𝑗) and ends with 𝑜(𝑗), to minimize 

the offloading cost: 

𝐶𝑜𝑓𝑓 = ∑ 𝑐(𝑥,

1≤𝑗≤|𝐷|

𝑊𝑗
𝑜), (4) 

under the constraint that the size of overflow data offloaded to any storage node in the network 

cannot exceed its available storage capacity: |{𝑗|1 ≤  𝑗 ≤  |𝐷|, 𝑜(𝑗)  =  𝑖}|  ×  𝑥 ≤  𝑚, ∀𝑖 ∈  𝑉𝑠. 

In DAO-R, since all the aggregation paths are given, the total aggregation cost is the same whether 

replication takes place or not. Therefore the offloading cost needs to be minimized, which can be 

solved by the minimum cost-flow algorithm given optimally in polynomial time [5,6]. 



18 

 

Selecting initiator for each aggregation path. After aggregation, among all data nodes on a 

particular aggregation path, the initiator has the least amount of overflow data (zero), the last 

aggregator has the most (R + r), while others have the same r amount of overflow data. Therefore, 

having more available storage spaces around the last aggregator would make the data offloading 

next more energy-efficient. For example, in Fig. 2, since B has two neighboring storage nodes 

while E has zero, E is selected as the initiator. 

5.2 Global Replication Algorithm. 

 Once the initiator is selected for each aggregation path, it begins the data aggregation and 

replication process. The global replication algorithm works as follows: first, it offloads the r 

amount of data at all the aggregators and the overflow data that are not aggregated (line 1), then 

for each aggregation path, it finds its available spaces (line 3-7). The amount to be replicated is 

the smaller of R and the size of the available spaces (line 8). Next, while the R amount of data from 

the initiator is traversing along the path performing the data aggregation, it replicates this amount 

(line 9-16). Finally, it offloads each initiator’s overflow data that has not been offloaded from the 

last aggregator of each path (line 18). Since it uses the minimum cost-flow algorithm to find the 

available spaces to replicate, Algorithm 2 takes a global perspective and is therefore referred to as 

Global. For ease of presentation, in algorithms below, 𝑣 =  𝑚𝑐(𝑂, 𝐺) means running the 

minimum cost-flow algorithm on 𝐺(𝑉, 𝐸) to offload a set of data units O from its belonged 

aggregators, yielding a minimum energy cost of 𝑣. 

Algorithm 2: Global Data Replication Algorithm. 

 

Input: All aggregation paths in 𝐺(𝑉, 𝐸): 𝑊𝑗
𝑎 (1 ≤  𝑗 ≤  𝑙) 

Output: 𝐶𝑜𝑓𝑓 

0. Notations: 



19 

 

         𝑢: a node in 𝑊𝑗
𝑎; 

𝑢. 𝑛𝑒𝑥𝑡: the next node of u in 𝑊𝑗
𝑎;  

𝑧: total size of data in 𝐷𝑗  that are not yet replicated;  

𝑎𝑣𝑎𝑖𝑙(𝑢): amount of available storage at node 𝑢; 

 𝑎𝑣𝑎𝑖𝑙𝑗: amount of available storage at node 𝑊𝑗
𝑎; 

1. 𝐶𝑜𝑓𝑓  =  𝑚𝑐(𝐷′′ ∪  𝐷′′′, 𝐺); 

2. for each 𝑊𝑗
𝑎 (1 ≤  𝑗 ≤  𝑙) 

3.  𝑎𝑣𝑎𝑖𝑙𝑗  = 0, 𝑢 =  𝐼𝑗 . 𝑛𝑒𝑥𝑡; 

4. while (u is not the last aggregator on 𝑊𝑗
𝑎) 

5  𝑎𝑣𝑎𝑖𝑙𝑗 =   𝑎𝑣𝑎𝑖𝑙𝑗  +  𝑎𝑣𝑎𝑖𝑙(𝑢); 

6. 𝑢 =  𝑢. 𝑛𝑒𝑥𝑡; 

7. end while; 

8. |𝐷𝑗|  =  𝑚𝑖𝑛{ 𝑎𝑣𝑎𝑖𝑙𝑗, 𝑅}; 

9. 𝑢 =  𝐼𝑗 . 𝑛𝑒𝑥𝑡, 𝑧 =  |𝐷𝑗|; 

10. while (𝑧 >  0) 

11. if (𝑢 ∈  𝑉𝑠) 

12. Replicate 𝑎𝑣𝑎𝑖𝑙(𝑢) amount at 𝑢; 

13. 𝑧 =  𝑧 −  𝑎𝑣𝑎𝑖𝑙(𝑢); 

14. end if; 

15. 𝑢 =  𝑢. 𝑛𝑒𝑥𝑡; 



20 

 

16. end while; 

17. end for; 

18. 𝐶𝒐𝒇𝒇 = 𝐶𝒐𝒇𝒇 + 𝑚𝑐(𝐷′ − ⋃ 𝐷𝑗 , 𝐺)𝑙
𝑗=1 ; 

19. RETURN 𝐶𝒐𝒇𝒇.  

Time complexity. The minimum cost-flow algorithm takes 𝑂(|𝑉 |2|𝐸|𝑙𝑜𝑔(|𝑉 |𝐶)), 

with. 𝐶 = max {
𝑅+𝑟

𝑥
,

𝑚

𝑥
 }.  Since each of the 𝑙 (𝑙 =  𝑂(|𝐸|)) aggregation paths can not have more 

than |𝑉 | nodes, finding available storages and replicating data along each aggregation path takes 

𝑂(|𝑉 |). It takes 𝑂(|𝐸| × |𝑉 |) for all the aggregation paths. Therefore, the time complexity of 

Algorithm 2 is 𝑂(|𝑉 |2|𝐸|𝑙𝑜𝑔(|𝑉 |𝐶)). 

Theorem 1: In Algorithm 2, if  ∀ 1 ≤  𝑗 ≤  𝑙,  𝑎𝑣𝑎𝑖𝑙𝑗  ≥  𝑅, then 𝐶𝒐𝒇𝒇 is minimum. 

Proof: Recall 𝐷 = ⋃ (𝐷𝑗
′ − 𝐷𝑗) ∪ 𝐷′′𝑙

𝑗=1 ∪ 𝐷′′′. Now if ∀ 1 ≤ 𝑗 ≤ 𝑙, 𝑎𝑣𝑎𝑖𝑙𝑗 ≥ 𝑅 then |𝐷𝑗|  =

 𝑚𝑖𝑛{ 𝑎𝑣𝑎𝑖𝑙𝑗, 𝑅}  =  𝑅. Recall that 𝐷𝑗  is exactly this R amount of overflow data of 𝐼𝑗 . 

Therefore,𝐷𝑗
′ = 𝐷𝑗 , ∀ 1 ≤ j ≤ l. D = 𝐷′′ ∪ 𝐷′′′, which is the minimum amount of data that must 

be offloaded. Therefore 𝐶𝑜𝑓𝑓 =  𝑚𝑐(𝐷′′ ∪ 𝐷′′′, 𝐺) is minimum. 

Therefore 𝐶𝒐𝒇𝒇  =  𝑚𝑐(𝐷′′ ∪  𝐷′′′, 𝐺) is minimum. 

5.3 Localized Replication Algorithm.  

The following definition is presented. 

 Definition 1: (Demand Number 𝑑(𝑢) of Storage Node u) For any storage node u on any 

aggregation path, let 𝑁(𝑢) be all its one-hop neighbors. For each data node  𝑣 ∈  𝑁(𝑢)  ∩ 𝑉𝑑, 



21 

 

let s(v) denote number of v’s one-hop neighbors that are storage nodes. Then 𝑑(𝑢) =

∑
𝑣∈𝑁(𝑢)∩𝑉𝑑

1

𝑠(𝑣)

 □ 

Note that 𝑠(𝑣)  ≠  0 since v has at least one neighboring storage node 𝑢. The idea behind 𝑑(𝑢) is 

that the more number of data nodes surrounding u and the less storage nodes surrounding such 

data nodes, then more likely u will be used to store the overflow data from those data nodes. 

Therefore, less of the initiator’s data 𝐷𝑗
′ 𝑜𝑛 𝑢 should be replicated. 

The algorithm works as follows: it first calculates the demand number of each storage node on 

the aggregation path, and then sorts the storage nodes in ascending order of their demand 

numbers. Next, it calculates the amount of data that is to be replicated at the storage node with 

the smallest demand number, say 𝑢, as 𝑚𝑖𝑛(𝑅/𝑑(𝑢), 𝑅). If not, the whole part of 𝑅 is replicated 

as well, as not all the storage nodes on this path have been considered. It then calculates the 

amount to be replicated on the storage node with the second-smallest demand numbers, and so 

on. It stops if either the whole part of 𝑅 is replicated or if all storage nodes on the path are 

considered for replication. It is a localized algorithm since it works on each aggregation path one 

by one, and figures out the replication strategy for each storage node on the aggregation path 

based on demand number. 

Algorithm 3: Localized Data Replication Algorithm. 

Input: All aggregation paths in G (V,E): 𝑊𝑗
𝑎  (1 ≤ 𝑗 ≤ 𝑙) 

Output: 𝐶𝑜𝑓𝑓 

0. Notations 

𝑆𝑗 = {𝑆1
𝑗
, 𝑆2

𝑗
, … , 𝑆𝐾𝑗

𝑗
}: the set of 𝐾𝑗  (𝐾𝑗 ≥ 0) storage 



22 

 

Nodes on 𝑊𝑗
𝑎; 

𝑖: index for storage nodes. 

𝑧: total size of data in 𝐷𝑗 that are not yet replicated; 

1.  for each 𝑊𝑗
𝑎 (1 ≤ 𝑗 ≤ 𝑙) 

2.       for 𝑢 ∈ 𝑆𝑗. calculate 𝑑(𝑢); 

3.       Sort 𝑆𝑗 in assending order of 𝑑(𝑢); 

4.        Let 𝑑(𝑆1
𝑗
) ≤ 𝑑(𝑆2

𝑗
) ≤ ⋯ ≤ 𝑑(𝑆𝑘

𝑗
),WLOG; 

5.        𝑧 = 𝑅. 𝑖 = 1; 

6.       while (𝑧 > 0 ∧ 𝑖 ≤ 𝑘) 

7.                Replicate min (
𝑅

𝑑(𝑆
𝑖
𝑗

)
, 𝑅) amoount data 𝐷𝑗 on 𝑆𝑖

𝑗
; 

8.                  𝑧 = 𝑧 −
𝑅

𝑑(𝑆
𝑖
𝑗

)
; 

9.                  𝐷𝑗
′ = 𝐷𝑗

′ − 𝐷𝑗 ; 

10.                     𝑖 + +; 

11.                   end while; 

12.              end for; 

13. end for; 

14. 𝐷 = ⋃ (𝐷𝑗
′ − 𝐷𝑗) ∪ 𝐷′′𝑙

𝑗=1 ∪ 𝐷′′′ 

15. 𝐶𝒐𝒇𝒇 = 𝑚𝑐(𝐷, 𝐺); 

16. 𝑹𝑬𝑻𝑼𝑹𝑵 𝐶𝒐𝒇𝒇. 

Time complexity. For each aggregation path, finding the demand number for a storage 

node takes 𝑂(|𝐸|2) (assuming an adjacency list graph data structure), sorting the storage nodes 



23 

 

takes |𝑉 |𝑙𝑜𝑔|𝑉 |, and traversing each aggregation path takes 𝑂(𝑉 ). Each of the 𝑙 aggregation 

paths could have at most |𝐸| edges. Therefore it takes 𝑂(|𝐸|3 + |𝑉 |𝑙𝑜𝑔|𝑉 | + 𝑉 )  =  𝑂(|𝐸|3)) 

for all the aggregation paths. The minimum cost-flow algorithm takes 𝑂(|𝑉 |2|𝐸|𝑙𝑜𝑔(|𝑉 |𝐶)), 

with 𝐶 = max {
𝑅+𝑟

𝑥
,

𝑚

𝑥
 }.Therefore the total time complexity of Algorithm 3 is 𝑂(|𝐸|3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 

 

Chapter 6 

PERFORMANCE EVALUATION 

The performances of different DAO algorithms proposed in this thesis have been 

compared, via a naive two-stage algorithm (Naive), the Global Replication Algorithm (Global), 

and the Localized Replication Algorithm (Localized). In the simulation, 100 sensors are uniformly 

distributed in a region of 1000m×1000m square. The transmission range of sensor nodes is 250m. 

Unless otherwise mentioned, R = m = 512KB (the ratio of R/m is varied to 5 and 10, with m = 

512KB while R = 2560KB and 5120KB, respectively). In all plots, each data point is an average 

over 20 runs, and the error bars indicate 95% confidence interval. 

 

Effect of Varying p. Fig. 6 shows the offloading cost of three algorithms when R = 1m. 

Where r is varied from 0.3R, 0.5R, to 0.7R. In each case, the valid range of p (using Equation 2) 

is found and p is increased from its smallest valid value to its largest valid value. In each case, it 

is observed that Global and Localized perform similarly, but both perform better than Naive. This 

demonstrates that data replication helps reducing offloading cost. It is also observed that the 

performance improvement of Global and Localized upon Naive gets larger when increasing 𝑝 (it 

is around 10% at the last p value of each case). This is because with more data nodes in the 

network, the aggregation path gets longer; therefore potentially more storage nodes are on 



25 

 

aggregation paths, which works favorably for data replication algorithms. Finally, it is observed 

that with increase of p, the offloading cost of three algorithms generally decreases. This is because 

the available storage spaces in the network is (|𝑉 | − 𝑝) × 𝑚. With the increase of p, it has fewer 

available spaces and less overflow data to offload after aggregation, resulting in less offloading 

cost. 

Effect of R = 5m and R = 10m. Next, we compare the algorithms when R = 5m and R = 10m. Fig. 

7 and 8 clearly show that Localized performs better than Global, which performs better than Naive. 

In most cases, performance improvement of Localized upon Naive is around 20%. With the 

increase of the ratio R/m, both the range and the number of valid p decrease (according to 

Equation2), therefore there are fewer number of storage nodes on each aggregation path. For 

Global, after running the minimum cost-flow algorithm (line 1 of Algorithm 2), most of the storage 

nodes on the aggregation paths are filled with offloaded data, leaving not much space for data 

replication. For Localized, however, it always replicates based upon the calculated demand 

number of each storage node. A few cases were noted wherein the offloading cost increases with 

the increase of p (such as p = 33 in Fig. 7 (a)), it might be because in these a few cases, there are 

more data nodes that are not involved in aggregation, and each of these data nodes contain R 

amount of overflow data, increasing the offloading cost. 



26 

 

Effect of Varying r. Fig. 9 shows the performance comparison of the three algorithms by varying 

r. R = 5m and p = 20 were chosen since they are located in the middle of the simulated parameters. 

It shows that if others fixed, with the increase of r, the offloading cost of all three algorithms 

generally increase. This can be explained by Equation 1: with the increase of r, q increases as well 

as the r amount of overflow data at each aggregator after aggregation. Therefore, the offloading 

cost increases. However, Fig. 9 also shows that for both Global and Localized, when r is increased 

from 0.5 to 0.7, the offloading cost slightly decreases. This can possibly be attributed to the effect 

of data replication, since more aggregators are visited, the aggregation paths get longer with the 

increase of r. Therefore, there are potentially more storage nodes on aggregation paths, resulting 

in less offloading cost due to data replication. 

 

 



27 

 

 

Effect of Varying R/m. Fig. 10 investigates the effect of R/m. Since only R/m = 5 and R/m 

= 10 have a common valid range of p, 17 ≤  𝑝 ≤  23, when r = 0.3R, this set of parameters is 

adopted. The performance of R/m = 5 and R/m = 10 is compared by varying p from 17, 19, 21, to 

23. First, it is observed that the offloading cost for Naive is always higher in R/m = 10 than R/m = 

5. R is doubled from R/m = 5 to R/m = 10. However, since the total available storage, being (|𝑉 |  −

 𝑝)  ×  𝑚 is fixed, the same amount of overflow data after aggregation are offloaded. Therefore, 

more overflow data needs to be reduced, resulting in increased q. Therefore the data offloading 

cost for Naive increases. However, when increasing from R = 5m to R = 10m, the offloading cost 

for Localized always decreases, while it could be either way for Global. This again demonstrates 

the effectiveness of this replication algorithm, with increased q, longer aggregation paths exist, 

which allows more storage nodes to store replicated data. 

 

 



28 

 

Chapter 7 

CONCLUSION AND FUTURE WORK  

In this thesis, two categories of solutions to solve overall storage overflow problem in sensor 

networks were designed. Proposed first was a naive two-stage solution DAO-N, wherein data 

offloading strictly follows data aggregation. Proposed next was DAO-R: an integrated method 

based upon data replication techniques, in order to further reduce energy consumption. The data 

replication algorithms used integrate data aggregation and data offloading to achieve more energy 

efficiency. A sufficient condition to solve DAO-R optimally was also given. Using extensive 

simulations, it was shown that DAO-R outperforms DAO-N by around 20% in terms of energy 

consumption under different network parameters. As future work, consideration will be made in 

that different data nodes could have different amounts of overflow data, as well as different storage 

nodes could have different storage capacity. More dynamic scenarios will also be considered: for 

example, some nodes could deplete their battery power. 



29 

 

REFERENCES 

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory, 

Algorithms, and Applications. Prentice Hall, 1993. 

[2] Costas Busch, Malik Magdon-Ismail, Fikret Sivrikaya, and Bulent Yener. Contention-free mac 

protocols for wireless sensor networks. In Proc. of DISC, pages 245–259, 2004. 

[3] R. Cristescu, B. Beferull-Lozano, M. Vetterli, and R. Wattenhofer. Network correlated data 

gathering with explicit communication: Npcompleteness and algorithms. IEEE/ACM 

Transactions on Networking, 14:41–54, 2006. 

[4] Deepak Ganesan, Ben Greenstein, Denis Perelyubskiy, Deborah Estrin, and John Heidemann. 

An evaluation of multi-resolution storage for sensor networks. In Proc. the 1st international 

conference on Embedded networked sensor systems (SenSys), 2003. 

[5] A. V. Goldberg. An efficient implementation of a scaling minimum-cost flow algorithm. 

Journal of Algorithms, 22(1):1–29, 1997. 

[6] A. V. Goldberg. Andrew goldberg’s network optimization library, 2008. 

http://www.avglab.com/andrew/soft.html. 

[7] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communication 

protocol for wireless microsensor networks. In Proc. of HICSS 2000. 

[8] Xiang Hou, Zane Sumpter, Lucas Burson, Xinyu Xue, and Bin Tang. Maximizing data 

preservation in intermittently connected sensor networks. In Proc. of MASS 2012, pages 448–

452. 

[9] S. Jain, R. Shah, W. Brunette, G. Borriello, and S. Roy. Exploiting mobility for energy efficient 

data collection in wireless sensor networks. MONET, 11(3):327–339, 2006. 

[10] Jaein Jeong, Xiaofan Jiang, and D. Culler. Design and analysis of microsolar power systems 

for wireless sensor networks. In Proc. of INSS 2008, pages 181 – 188. 

[11] Apoorva Jindal and Konstantinos Psounis. Modeling spatially correlated data in sensor 

networks. ACM Tran. on Sensor Net, 2:466–499, 2006. 

[12] Milica Stojanovic John Heidemann and Michele Zorzi. Underwater sensor networks: 

applications, advances and challenges. Phil. Trans. R. Soc. A, 370:158 – 175, 2012. 

[13] Tung-Wei Kuo and Ming-Jer Tsai. On the construction of data aggregation tree with minimum 

energy cost in wireless sensor networks: Np-completeness and approximation algorithms. In 

Proc. of INFOCOM 2012, pages 2591 – 2595. 

[14] Jian Li, Amol Deshpande, and Samir Khuller. On computing compression trees for data 

collection in wireless sensor networks. In Proc. of INFOCOM 2010, pages 2115–2123. 

[15] D. Luo, X. Zhu, X. Wu, and G. Chen. Maximizing lifetime for the shortest path aggregation 

tree in wireless sensor networks. In Proc. of INFOCOM 2011, pages 1566 – 1574. 

[16] K. Martinez, R. Ong, and J.K. Hart. Glacsweb: a sensor network for hostile environments. In 

Proc. of SECON 2004. 

[17] Ioannis Mathioudakis, Neil M. White, and Nick R. Harris. Wireless sensor networks: 

Applications utilizing satellite links. In Proc. of PIMRC 2007. 

[18] D. Mosse and G. Gadola. Controlling wind harvesting with wireless sensor networks. In Proc. 

of IGCC 2012. 



30 

 

[19] Luca Mottola. Programming storage-centric sensor networks with squirrel. In Proc. of IPSN 

2010, pages 1–12. 

[20] Bin Tang, Neeraj Jaggi, Haijie Wu, and Rohini Kurkal. Energy efficient data redistribution in 

sensor networks. ACM Transactions on Sensor Networks, 9(2), May 2013. 

[21] Bin Tang and Yan Ma. Data resilience via data aggregation: Overcoming overall storage 

overflow in sensor networks. In Submitted to SECON 2015. 

[22] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and Matt Welsh. Fidelity 

and yield in a volcano monitoring sensor network. In Proc. of OSDI 2006. 

[23] Y. Wu, S. Fahmy, and N. B. Shroff. On the construction of a maximumlifetime data gathering 

tree in sensor networks: Np-completeness and approximation algorithms. In Proc. of 

INFOCOM 2008. 

[24] X. Xu, M. Li, X. Mao, S. Tang, and S. Wang. A delay-efficient algorithm for data aggregation 

in multihop wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 

22:163 – 175, 2011. 

[25] Xinyu Xue, Xiang Hou, Bin Tang, and Rajiv Bagai. Data preservation in intermittently 

connected sensor networks with data priorities. In Proc. of SECON 2013, pages 65–73. 

 


