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ABSTRACT  

 Today’s data-driven society has prompted the need for energy-efficient data 

collection via data-intensive sensor networks (DISNs).  Previous research assumed that 

the nodes in these networks willingly cooperate with each other when routing and storing 

data.  This is unrealistic because there is no guarantee that nodes work together.  A more 

realistic network consists of nodes that are selfish, which act only in their own self 

interest regardless of the consequences to other nodes.   In 2016, Chen and Tang showed 

that selfish nodes can be incentivized to behave in such a way that energy consumption is 

minimized and all data is stored (Chen, Tang, 2016).  This thesis extends their work by 

illustrating how to design a simulation that empirically verifies their results and how to 

modify the simulation parameters to model all 21 cases required for successful 

verification.  It also briefly describes how the simulation helped refine their theory. 
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CHAPTER 1 

 

INTRODUCTION  

Data-intensive wireless sensor networks are used to collect large quantities of data 

in areas where it is not feasible to set up a base station, such as near earthquake faults, 

under the ocean, and in areas hit by natural disasters (Tang, Jaggi, Wu, Kurkal, 2013).  

Sensors deployed in this area have limited battery power and storage, which introduces 

two primary problems.  First, their limited battery power means that they can only send 

and receive a limited amount of data before they are no longer able to operate.  Second, 

their limited storage means that there is only a finite amount of data that each sensor can 

store before it must relay additional offloaded data to other nodes, thus draining precious 

battery power.   

The two problems of limited battery power and limited storage capacity, 

combined with the absence of a base station to replenish power or collect data, makes 

data collection difficult.  In order to preserve all data collected, nodes must store as much 

data as they can, and then offload the rest to other nodes, which can quickly deplete their 

battery power.  Furthermore, the nodes do not necessarily cooperate willingly with each 

other: they may be owned by separate entities whose goals might conflict with energy-

efficient data collection.   Because cooperation cannot be guaranteed, and because nodes 

may behave in the best interest of themselves rather than the group, they must be 

incentivized to participate in such a way as to benefit the group while still achieving their 
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own goals.  It turns out that there is a way to incentivize all nodes to participate such that 

all data is preserved and energy consumption is minimized (Chen, Tang 2016).   

This thesis presents both a simulation design and relevant simulation data that 

empirically verifies the results from (Chen, Tang 2016).  Its main goal is to explicitly 

show concrete examples of how a base station-less wireless sensor network behaves 

under the conditions of limited battery power, limited storage capacity, and selfish 

behavior.   

 

Problem Description 

 This section discusses the key concepts of the energy-efficient data redistribution 

problem.  These concepts provide the theoretical foundation for the simulation that 

empirically verifies the theoretical results in (Chen, Tang, 2016). 

A data-intensive sensor network can be modeled by a graph, 𝐺 = (𝑉,𝐸) where 𝑉 

is a set of vertices and 𝐸 is a set of weighted, directed edges.  Each vertex represents an 

individual wireless sensor node.  Each edge is defined to be a pair of nodes, (𝑛!,𝑛!) that 

are both within transmission range of each other.  That is, they are close enough such that 

they can send and receive data from each other.  The nodes are partitioned into two 

groups: data generator nodes and data storage nodes.  The data generators receive data 

from the outside environment, but must offload this data to other nodes (storage nodes).  

The storage nodes receive data and either store it or transmit it to other nodes.   

 Data received by data generators is sent to a sequence of nodes until it reaches a 

designated storage node.  This sequence of nodes is known as a data preservation path  
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and is determined by the Minimum Cost Flow (MCF) algorithm (Goldberg, 1997).  The 

MCF algorithm identifies a set of energy-efficient data preservation paths based on a 

collection of source-destination pairs, the storage constraints on all nodes in the network, 

and the total cost to route one data item along the path.   

When data is routed throughout the network, the total energy cost of the routing is 

based on cost parameters inherent to each node.  Every node has three cost parameters: 

the cost to transmit a bit on a circuit (𝜀!"!#), the cost to transmit a bit on a transmit 

amplifier (𝜀!"#), and the cost to store one bit (𝜀!"#$%).  These cost parameters, whose true 

values are known only to the nodes themselves, affect three different actions that nodes 

can take: receiving data, transmitting data, and storing data.  The cost to receive data is 

based on the cost to transmit on a circuit and is given by: 𝑏 ∗ 𝜀!"!#  where 𝑏 is the number 

of bits to receive.  The cost to send data from one node 𝑛!"#$%& (the source) to an adjacent 

node 𝑛!"#$%! (the target) is based on the costs to transmit along circuit and transmit 

amplifier, and the distance between the source and destination node.  It is given by: 

𝑏 ∗ 𝜀!"# ∗ 𝑑𝑖𝑠𝑡 𝑛!"#$%& ,𝑛!"#$%!
! + 𝑏 ∗  𝜀!"!#  

The expression 𝑑𝑖𝑠𝑡 𝑛!"#$%& ,𝑛!"#$%!
!
 represents the square of the distance between the 

source and target node.  The cost to store data is based only on the storage parameter and 

is given by 𝑏 ∗ 𝜀!"#$%. The goal of energy-efficient data preservation is to guarantee that 

all data is stored in storage nodes and the total amount of energy consumed by all nodes 

is minimized.  

 It is possible to accomplish the goal of energy-efficient data preservation under 

the assumption that all nodes cooperate  by instructing all nodes to follow the appropriate 
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algorithm (Tang, Jaggi, Wu, Kurkal, 2013).  However, if the nodes are selfish and will 

not willingly cooperate with each other, the algorithm in (Tang, Jaggi, Wu, Kurkal, 2013) 

will not naturally occur without some additional constraints.  These additional constraints 

manifest themselves in the form of a mechanism, a concept from game theory.  In game 

theory, a mechanism defines a set of strategies, or decisions, for each agent (each selfish 

node, in this case).  The nodes in a data-intensive sensor network can either tell the truth 

or lie about a particular cost parameter.  The choice that each node makes is known as 

that node’s strategy.    Every node has a specific amount of utility it will gain based on a 

payment function.  The payment to each node is given by: 

𝑝! 𝑐! , 𝑐!! = 𝑐!!{!} − (𝑐! −  𝑐!) 

And the utility for each node is given by:  

𝜋! 𝑐! , 𝑐!! = 𝑝! − 𝑐! =  𝑐!! ! − 𝑐! −  𝑐! − 𝑐! 

The symbols in the payment and utility equations are explained in Table 1. 

Table 1.  Explanation of symbols in payment and utility equations. 

Symbol Meaning 
𝑐! The sum of all costs that node i incurs based on its reported costs.   
𝑐!! The strategies of all nodes other than node i 
𝑐!!{!} The minimum total cost required to route all data when node i does 

not participate 
𝑐! The minimum total cost required to route all data when node i 

participates 
𝑐! The sum of all costs that node i incurs based on its true costs 

𝑝! 𝑐! , 𝑐!!  The payment owed to node i based on its reported costs 𝑐! and the 
strategies of all nodes other than node i (𝑐!!) 

𝜋! 𝑐! , 𝑐!!  The utility of node i based on its reported costs 𝑐! and the strategies 
of all nodes other than node i (𝑐!!) 
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Due to the assumption that each node is selfish, rather than cooperative, each 

node is interested in maximizing only its own utility, regardless of what happens to the 

overall network.  By cleverly constructing the payment function and mechanism, and by 

routing all data in via the minimum cost flow algorithm, it is possible to incentivize all 

nodes to participate in data preservation in such a way that all data is preserved (no data 

loss) and total energy consumption is minimized (energy is used most efficiently) (Chen, 

Tang, 2016).   

The cleverly constructed mechanism in (Chen, Tang, 2016) belongs to a family of 

mechanisms known as Vickrey-Clark-Groves (VCG) mechanisms where the dominant 

strategy is to always tell the truth about one’s private types.  That is, no node is 

incentivized to lie about its costs because its utility is maximized only under truth-telling.  

Mechanisms in the VCG family are known as truthful mechanisms and guarantee that all 

agents will truthfully report their private types, thus revealing the hidden information 

intrinsic to each private type.  This makes analysis of these networks easier because all 

true information is made available to outsiders.   

 Data preservation proceeds in three stages.  The first stage, the report stage is 

when all nodes report their private types.  Note that every node has the option to lie about 

the value of a cost parameter.  The second stage is the compute cost stage where all costs 

are computed based on the reported types.  Since the nodes have the option to lie about 

their costs, this reported cost is not necessarily the true cost.  Note that the nodes 

themselves are aware of their own true cost parameters, so they also compute a true cost 

for themselves, which is used when computing payment and utility.  After costs are 
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computed, the MCF algorithm is run based on the costs and underlying network graph to 

determine the data paths along which data must be routed to ensure all data is preserved 

and energy consumption is minimized.  The third and final stage, the decision stage 

occurs when all nodes make decisions to either participate or not participate in the data 

preservation based on their individual strategies.  If the mechanism and payment 

functions are all defined in the way specified in (Chen, Tang, 2016), then at the end of the 

game, all data has been preserved and the minimum amount of energy has been 

consumed.   

 

Major Assumptions 

 There are several major assumptions that are crucial to the solution of the data 

preservation problem.   First, the underlying network must be biconnected.  That is, the 

graph is connected (there always exists at least one path from one node to another node) 

and the removal of any one node from the graph does not affect connectivity (there is still 

at least one path from one node to another).  The assumption of biconnectivity is 

reasonable: networks that are designed to collected data are built with redundancy in 

mind and one way to do this is by ensuring that the network graph is biconnected. 

 The second assumption is that the underlying network is feasible.  The network is 

considered feasible  if all nodes will always have enough battery power such that they 

will always be present in network.  The study of the infeasible case is beyond the scope 

of this work and is left for future research.  
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 The third assumption is that all nodes are aware of the rules of the game and know 

how to compute their payment and utility functions based on the rules.  This assumption 

is reasonable because each node in the network is informed beforehand how it will be 

paid.  Without this knowledge, nodes would not know how to compute their payments, 

and thus would not know how to compute their utilities, which they want to maximize.  If 

this knowledge were not available, no nodes would participate at all since there is no 

guarantee of any payment in such a system.   

 The fourth assumption is that all nodes are selfish.  This is reasonable because it 

more closely matches the real world where individual agents have their own goals that 

they seek to achieve, rather than only achieving the goals of the group (non-selfishness, 

full cooperation).  A more complex variant of the data preservation problem relaxes the 

assumption of pure selfishness such that some nodes will collude with other nodes to 

maximize utility for a subset of nodes rather than an individual node.  This collusion 

problem is more difficult to analyze and is left for future research.    

 The fifth assumption is that there is enough storage capacity in the network such 

that the removal of any single storage node still leaves enough capacity to store all data 

items.  This assumption is reasonable because networks are usually built to be redundant: 

the loss of a node or set of nodes should have minimal effect on the total network 

capacity.  Otherwise, the network is too fragile to be utilized (too many single points of 

failure, or too many possibilities for significantly reduced network capacity).  Note that 

without this assumption, the computation of utilities cannot be performed because they 
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require the computation of minimum cost flow for the underlying graph where one node 

and its incident edges are removed.  

 The sixth assumption is that data generator nodes are already incentivized to 

participate, and thus do not need additional motivation to offload data.  This is a 

reasonable assumption because they can be motivated beforehand to participate in 

receiving data from the environment and offloading it to nodes.  Note that storage nodes 

do not have this flexibility because there is no guarantee that they will be chosen to 

participate in data routing, and thus cannot demand prior payment for their service.    

 

Problem Significance 

 The energy efficient data preservation problem is significant for two reasons.  

First, as the world becomes more interconnected, more and more data flows throughout 

various networks that are essential to critical infrastructure.  Understanding how nodes in 

these networks behave under different circumstances helps network participants, 

researchers, businesses, and many other stakeholders achieve their goals.  The nodes in 

the networks do not necessarily cooperate with each other, and so understanding how to 

incentivize these nodes to cooperate to achieve goals for the common good can assist 

business leaders, researchers, and policymakers when they are involved in the 

development and implementation of these networks.  Second, understanding how to 

simulate and analyze these networks, as well as verify that they are behaving in 

accordance with the rules, is crucial when designing and implementing complex 

networks.  Simulation analysis and verification contributes to society’s overall 
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understanding of network behavior and how it can be utilized for the public good, all 

without requiring expensive infrastructure implementations that may waste resources or 

actively harm the public.  Without simulation and modeling, it is much riskier to 

implement these networks due to the relatively high levels of uncertainty.   
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CHAPTER 2 

LITERATURE REVIEW 

This section discusses literature relevant to the theoretical solution presented in 

(Chen, Tang, 2016), followed by a discussion of how a simulation supports theoretical 

results.   

There are several examples in the current literature that show how algorithmic 

mechanism design is applicable to data routing, network flow, and data redistribution 

problems.  The term Algorithmic Mechanism Design was introduced by Noam Nisan and 

Amir Ronen in their seminal paper on the topic (Nisan, Ronen, 1999).  In their paper, 

they present a solution to a task-scheduling problem, which they solve by designing an 

algorithm that utilizes payments to achieve a desired outcome.  This combination of 

algorithm and payment specification is described as a mechanism, a concept from game 

theory, and serves as the foundation for several solutions to problems related to the 

energy-efficient data redistribution problem.   

  In (Feigenbaum, Papadimitriou, Sami, Shenker, 2005) the authors present a 

mechanism that incentivizes agents to truthfully report their costs and to willingly route 

traffic along Least Cost Paths (LCPs), which minimizes the total energy consumed when 

routing data.  However, they assume that all agents in the network have sufficient storage 

capacity, so their mechanism is not directly applicable to data redistribution in wireless 

networks whose nodes have finite storage.  In (Anderegg, Eidenbenz, 2003), a routing 

protocol called Ad-hoc VCG is presented, which is guaranteed to find cost-efficient paths 

in mobile (wireless) networks where all nodes are incentivized to truthfully report their 
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costs.  However, as in the previous example, it is assumed that all nodes have sufficient 

storage to receive data, so the protocol cannot be used to redistribute data in storage-

constrained wireless networks.   

  In all the aforementioned examples, the correctness of results is shown via 

mathematical proofs.  However, in some cases, it is useful to analyze simulations of real-

world scenarios to verify that the results are consistent with the theory.  One example of 

this technique was used to show that particular quantity was always within theoretical 

upper and lower bounds  (Anderegg, Eidenbenz, 2003).   A different example, which uses 

simulation to help design systems rather than to verify results, is the simulation 

framework for industrial wireless systems presented in (Liu, Candell, Lee, and Moayeri, 

2016).  Although the primary purpose of the simulation in this thesis is to verify results, it 

might also help in the design of data-intensive sensor networks by providing relevant cost 

data for designers interested in predicting operating costs.    

 The results in (Chen, Tang, 2016), which form the theoretical foundation for this 

thesis, are shown to be correct via mathematical proof.  However, two elements are 

missing that can provide additional insight into the behavior of wireless sensor networks.  

First, there is no simulation presented that accurately models the network and the 

behavior of its nodes, so it is unclear how a real world network would behave when the 

nodes operate under the mechanism presented in (Chen, Tang, 2016).  Second, the paper 

identifies all cases in which the utility of each node is maximized, but does not provide 

examples of this behavior in a network.  This thesis proposes to bridge these two gaps in 
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the literature by presenting both a simulation that models the wireless network and results 

that verify all theoretical cases presented in (Chen, Tang, 2016)  

 

 
CHAPTER 3 

METHODOLOGY  

 This section describes the design of a simulation that models a data-intensive 

wireless sensor network and how this simulation is used to empirically verify theoretical 

results in (Chen, Tang, 2016).   

 

Simulation Design 

The purpose of the simulation is to empirically verify the results in (Chen, Tang 

2016) by computing the utility of storage nodes when they lie about their costs and 

comparing it to the utility when they tell the truth.  The results are considered verified if 

and only if the utility is maximized under the truth-telling strategy.   

The following is a list of components that the simulation requires when 

computing utilities: 

1. Vertex object – Represents a node in the network.  Each vertex has a unique 

identifier, cost parameters, unique 2D position, transmission range, and helper 

methods (accessors, mutators, equality and hashing methods, etc.) 

2. Edge object – Represents a pair of nodes in the network that can communicate 

with each other.  It contains a unique identifier, the pair of nodes defining the 
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edge, and the cost to transmit one bit from the source node (tail) to the destination 

node (head). 

3. Graph object – Represents the network.  Contains information about its 

underlying set of vertices and edges, and contains helper functions (internal tests 

of connectivity and biconnectivity, node removal operations, accessor and 

mutators for properties, etc.) 

4. Dijkstra Algorithm Object – A special object that invokes an instance of 

Dijkstra’s algorithm on a graph.  There are two inputs to the algorithm: a graph 

that represents the underlying network, and a fixed specified node in the graph.  

The output is a collection of shortest paths from the specified node to all other 

nodes in the graph.   

 

The interaction between components is based on the steps in (Chen, Tang, 2016) 

that are required when computing utilities.  The simulation performs the following steps 

to compute the utilities: 

1. Generate Nodes - Generate a set of nodes based either on a user-supplied file or 

an algorithm that randomly generates a set of nodes.   

2. Construct Edges - Based on the transmission range of the nodes provided by the 

user, construct all pairs of nodes that are within transmission range. 

3. Construct Graph - Based on the nodes and edges constructed, construct a graph. 
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4. Verify Graph Properties - Test the graph for biconnectedness.  If it is biconnected, 

proceed.  If not, randomly generate nodes and edges until a biconnected graph is 

constructed.   

5. Compute MCF Input File Under Truth-telling - Based on the biconnected graph, 

generate an input file that summarizes the graph and node information so that the 

MCF algorithm can properly read the information and produce the appropriate 

output.  Assume all nodes tell the truth about their costs.   

6. Compute Preservation Paths - Run the MCF algorithm on the input file to 

generate a set of paths along which data will be routed.  The algorithm also 

computes the total energy required to route all the data.  This is the MCF cost 

under truth-telling when all nodes participate.   

7. Compute Costs with a Node Removed - For each storage node, construct a 

modified version of the underlying biconnected graph by removing a specific 

storage node and repeat the steps needed to compute the MCF cost.  This will 

yield the MCF cost when a specific node is removed. 

8. Compute Utilities Under Truth-telling - Compute the utility of each storage node 

under the truth-telling strategy based on the payment and utility functions in 

(Chen, Tang, 2016).  The utility is given by 𝜋! 𝑐! , 𝑐!! = 𝑐!! ! − 𝑐! −  𝑐! − 𝑐!, 

with symbols defined in Table 1. 

a. Compute 𝑐!! ! , the MCF cost when node i is removed from the network.  

This is done by modifying the graph.  Node i is removed and all of its 
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incident edges are removed.  The MCF algorithm is executed on this 

modified graph and the cost computed by the algorithm is  𝑐!! !  

b. Compute 𝑐!, the MCF cost when node i is included in the network.  This 

is done by running the MCF algorithm on the graph where all nodes 

follow a truth-telling strategy (they report the true costs of all of their 

parameters).  Note that in this case, the reported costs of all  nodes is equal 

to the true cost of all nodes because the utility under a truth-telling 

strategy is being computed.    

c. Compute 𝑐!, the cost that Node i incurs based on its reported costs.  In this 

case, since a truth-telling strategy is used, this is equivalent to computing 

the cost that Node i incurs based on its true costs.  The program will 

examine all data paths where Node i is a participant and add up all the 

costs that Node i incurs in these cases.   

d. Compute 𝑐!, the cost that Node i incurs based on its true costs.  This 

computation is done the exact same way as the computation for 𝑐! in the 

previous step because all nodes are using a truth-telling strategy.  Note 

that this is not the case when a non-truth-telling strategy is employed.  

e. Compute 𝑐!! ! − 𝑐! −  𝑐! − 𝑐! based on the previous computations.  

The result is the utility under truth-telling for Node i.   

9. Construct Biconnected Graphs Under a Non-truthful Strategy - For each storage 

node, construct a modified version of the underlying biconnected graph.  This 

time, the storage node lies about its costs based on user-supplied parameters.   
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10. Compute Utilities Under a Non-truthful Strategy - Compute the utility of each 

storage node under a non-truthful strategy based on the payment and utility 

functions in (Chen, Tang, 2016).  The utility is given by 𝜋! 𝑐! , 𝑐!! = 𝑐!! ! −

𝑐! −  𝑐! − 𝑐!, with symbols defined in Table 1.  For each node being 

investigated (one at a time), let that node adjust the cost of exactly one of its cost 

parameters and scale it by some positive scale factor.  Let all other nodes not 

being investigated use any strategy they wish.  Let Node i be the node being 

investigated.   

a. Compute 𝑐!! ! , the MCF cost when node i is removed from the network.  

This is done by modifying the graph.  Node i is removed and all of its 

incident edges are removed.  The MCF algorithm is executed on this 

modified graph and the cost computed by the algorithm is  𝑐!! ! .  Note 

that this is exactly the same number that was computed in the utility 

computation under a truth-telling strategy.  The reason is because when a 

node is removed from a network, its strategy has no effect on the costs of 

any nodes because it is not present in the network at all, and hence cannot 

use different strategies to affect costs.   

b. Compute 𝑐!, the MCF cost when node i is included in the network.  This 

is done by running the MCF algorithm on the graph where Node i adopts a 

non-truthful strategy by lying about one of its cost parameter values.  Note 

that the underlying graph in this case is different from the graph in the 

truthful strategy case because the MCF algorithm is only aware of 
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reported costs.  This is why a different graph had to be constructed when 

analyzing the non-truthful case.      

c. Compute 𝑐!, the cost that Node i incurs based on its reported costs.  The 

program will examine all data paths where Node i is a participant and add 

up all the costs that Node i incurs in these cases, based on the reported cost 

parameters rather than the true cost parameters.  

d. Compute 𝑐!, the cost that Node i incurs based on its true costs.  This 

computation is done the exact same way as the computation for 𝑐! in the 

previous step, except all costs are based on the true cost parameters rather 

than the reported cost parameters.   

e. Compute 𝑐!! ! − 𝑐! −  𝑐! − 𝑐! based on the previous computations.  

The result is the utility under a non-truthful strategy for Node i.   

11. Collect Results - Insert the utility of each storage node under different strategies 

(truth-telling vs. lying) into a data structure.  Continue insertion and computations 

until all storage nodes have been examined. 

12. Verify Results - Verify that utility is maximized for each node only under the 

truth-telling strategy.  Account for precision errors caused by representation of 

real numbers in a finite number of bits. 

13. Generate Summary - Generate a summary file with all utilities of all storage 

nodes in a common data format, such as a comma-separated-value (CSV) file. 
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Simulation Workflow 

 This section contains a sequence of steps that illustrate how to set up and run the 

simulation.    

1. Specify a set of simulation parameters.  The list of parameters are as follows:  

a. Network Dimensions – A pair of numbers that represents the physical 

space in which the network resides.  The pair is of the form (X, Y) where 

X is the upper bound on the x-coordinate of a network node and Y is the 

upper bound on the y-coordinate of a node.  Units for X and Y are in 

meters.  For example, if the pair (400, 700) is provided, then the network 

resides in a 400 meter x 700 meter grid where the x-coordinate of all 

nodes is in the interval [0,400] and the y-coordinate of all nodes is in the 

interval [0,700].   

b. Number of data generators – An integer that represents the number of data 

generators in the network.  This integer must be at least 1. 

c. Number of storage nodes – An integer that represents the number of 

storage nodes in the network.  This integer must be at least 1. 

d. Transmission range – A number that represents the transmission range of 

every node in the network as measured in meters.  It must be greater than 

0.   

e. Storage capacity – An integer that represents the total number of data 

items that can be stored by each storage node.  It must be greater than or 
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equal to 0.  Note that this does not apply to data generators, which have no 

storage capacity.   

f. True value of cost parameters for all nodes.  

i. True value of 𝜀!"!#– a number that represents the true number of 

joules required to transmit one bit on a node’s circuit.  Must be 

greater than or equal to 0.   

ii. True value of 𝜀!"#– a number that represents the true number of 

joules required to transmit one bit on a node’s transmit amplifier. 

Must be greater than or equal to 0.   

iii. True value of 𝜀!"#$% – a number that represents the true number of 

joules required to store one bit. Must be greater than or equal to 0.   

g. Reported value of cost parameters for all nodes  

i. Reported value of 𝜀!"!# – a number that represents the reported 

number of joules required to transmit one bit on a node’s circuit. 

Must be greater than or equal to 0.   

ii. Reported value of 𝜀!"# – a number that represents the reported 

number of joules required to transmit one bit on a node’s transmit 

amplifier. Must be greater than or equal to 0.   

iii. Reported value of 𝜀!"#$% – a number that represents the reported 

number of joules required to store one bit. Must be greater than or 

equal to 0.   
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h. Number of data items – an integer that represents the total number of data 

items that that will preserved in the network.  The integer must be greater 

than or equal to 0.   

i. Number of bytes per data item – an integer that represents the size of one 

data item, as measured in bytes.   

j. Filepath for node summary file – an absolute filepath that points to the 

location of a node summary file, which includes information about node 

coordinates and unique node identifiers.  This filepath is optional – the 

simulation will generate this node summary file if it is not present.   

2. Run the simulation and provide the configuration file as input. 

3. The simulation will create a sub-directory within its main directory (where the 

simulation executable is stored) based on the current time.  All simulation logs 

and results will be stored in this sub-directory.   

a. Summary of utilities – a CSV file containing all unique node identifiers, 

their true utilities, and their reported utilizes, will be produced when the 

simulation finishes all of its computations.   

b. Log files – A text file that lists all of the main steps that the simulation 

performs.  Its purpose is to aid in debugging as well as provide additional 

detail about the nodes and the underlying network.   

c. MCF input files – A collection of text files generated that serve as input to 

the MCF algorithm under various conditions.  The general input to the 

MCF program is a list of source-destination pairs where each pair also has 
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an upper and lower bound on capacity (based on the capacities of the 

storage nodes) as well as a number that represents the total amount of 

energy consumed when routing from the source to the destination.   

d. MCF output files – A collection of text files that describe the data 

preservation paths that were chosen by the MCF algorithm.  Each file 

contains a collection of source-destination pairs, the number of data items 

that were routed from each source to each destination, and the total 

amount of energy consumed to route and store all data.   

 

Data Analysis 

 This section describes how to analyze the data generated by the simulation.  The 

CSV file that the simulation generates is a summary of all the true and reported utilities 

for a specific simulation run.   The data in the CSV file and the path information from the 

simulation logs can be used to verify that the results match the theory in (Chen, Tang, 

2016).  To conduct this verification, fix any one specific node and check the following 

cases enumerated in (Chen, Tang, 2016):  

1. The node can lie about its 𝜀!"#$% parameter.  All other parameters are truthfully 

reported.  This is Theorem 1 in (Chen, Tang, 2016). 

a. The node is not selected to participate regardless of whether it tells the 

truth or lies.  Utility should be exactly 0 in both cases. 
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b. The node is selected to participate when it tells the truth, but is not 

selected to participate when it lies.  Utility under truth-telling should be 

greater than or equal to utility under lying.   

c. The node is not selected to participate when it tells the truth, but is 

selected when it lies.  The utility under truth-telling should be 0 while the 

utility under lying should be less than or equal to zero.   

d. The node is in the preservation path when it tells the truth as well as when 

it lies.  Four subcases must be checked. 

i. The node is instructed to store data when it tells the truth and when 

it lies.  Its utility should be exactly equal in both cases.   

ii. The node is instructed to store data when it tells the truth, but is 

instructed to relay data to another node if it lies.  The utility under 

truth-telling should be greater than or equal to the utility under 

lying.   

iii. The node relays data when it tells the truth, but stores data when it 

lies.  The utility under truth-telling should be greater than or equal 

to the utility under lying.  

iv. The node relays data regardless of whether it tells the truth or lies.  

The utilities should be exactly the same.   

2. The node can lie about its 𝜀!"# parameter.  All other parameters are truthfully 

reported.  This is Theorem 2 in (Chen, Tang, 2016). 
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a. The node is not selected to participate regardless of whether it tells the 

truth or lies.  Utility should be exactly 0 in both cases. 

b. The node is selected to participate when it tells the truth, but is not 

selected to participate when it lies.  Utility under truth-telling should be 

greater than or equal to utility under lying.   

c. The node is not selected to participate when it tells the truth, but is 

selected when it lies.  The utility under truth-telling should be 0 while the 

utility under lying should be less than or equal to zero. 

d. The node is in the preservation path regardless of whether it tells the truth 

or lies.  There are four sub-cases to check. 

i. The node is instructed to store data when it tells the truth and when 

it lies.  Its utility should be exactly equal in both cases.   

ii. The node is instructed to store data when it tells the truth, but is 

instructed to relay data to another node if it lies.  The utility under 

truth-telling should be greater than or equal to the utility under 

lying.   

iii. The node relays data when it tells the truth, but stores data when it 

lies.  The utility under truth-telling should be greater than or equal 

to the utility under lying.   

iv. The node relays data when it tells the truth and when it lies.  Its 

utility under truth-telling should be greater than or equal to the 

utility when it lies.   
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3. The node can lie about its 𝜀!"!# parameter.  All other parameters are truthfully 

reported.  This is Theorem 3 in (Chen, Tang, 2016). 

a. The node is not selected to participate regardless of whether it tells the 

truth or lies.  Utility should be exactly 0 in both cases. 

b. The node is selected to participate when it tells the truth, but is not 

selected to participate when it lies.  Utility under truth-telling should be 

greater than or equal to utility under lying.   

c. The node is not selected to participate when it tells the truth, but is 

selected when it lies.  The utility under truth-telling should be 0 while the 

utility under lying should be less than or equal to zero. 

d. The node is in the preservation path regardless of whether it tells the truth 

or lies.  There are four sub-cases to check. 

i. The node is instructed to store data when it tells the truth and when 

it lies.  Its utility should be exactly equal in both cases.   

ii. The node is instructed to store data when it tells the truth, but is 

instructed to relay data to another node if it lies.  The utility under 

truth-telling should be greater than or equal to the utility under 

lying.   

iii. The node relays data when it tells the truth, but stores data when it 

lies.  The utility under truth-telling should be greater than or equal 

to the utility under lying.   
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iv. The node relays data when it tells the truth and when it lies.  Its 

utility under truth-telling should be greater than or equal to the 

utility when it lies.   

 

In all of the aforementioned cases, the utility under truth-telling and the utility 

under lying is compared, and the results of these comparisons are verified against the 

theory in (Chen, Tang, 2016).  However, an additional step is required to account for the 

fact that real numbers are encoded in a finite number of bits, which produces precision 

error when computing utilities.  For example, in one simulation run, Node 40 lies about 

its 𝜀!"# parameter and reports that it is 10% of its true value.  Its true utility is computed 

to be 960.6547133220884 and its reported utility is 960.6547133220882, a difference of 

about 1.1368683772161603E-13.  This difference is 15 orders of magnitude off of the 

utility values, is 16 orders of magnitude off of the parameters 𝜀!"!# and 𝜀!"#$%, and is 19 

orders of magnitude off the 𝜀!"# parameter.  This suggests that the difference may be 

due to a precision error rather than a computation error. To verify this, the simulation 

computes the difference in magnitudes, which can be used to compare against some 

threshold for precision error.   

 After all cases have been checked and any very small errors in numbers have been 

identified as precision errors (and thus, not contradictory of theory), the simulation run 

has empirically verified the theoretical results for a particular set of parameters.  The 

simulation can be run multiple times with different parameters to verify the results. 
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CHAPTER 4 

RESULTS  

 This section describes the results of a simulation run to show how the simulation 

data was used to empirically verify the results in (Chen, Tang, 2016).   

 

Graph Illustration 

 This section provides a visual depiction of the graph for a specific simulation run.   

The simulation parameters for this example are known as the half-full homogeneous case, 

which means that each node has the same true cost parameters and the total incoming 

data is half of the total network capacity.  The parameters are as follows:  

1. Network Size = 1000 meters * 1000 meters 

2. Transmission Range = 250 meters 

3. Number of nodes = 50 

4. Number of data generators = 10 

5. Number of storage nodes = 40 

6. Default 𝜀!"!# = 100 nanojoules = 100 * 10-9 Joules 

7. Default 𝜀!"# = 100 picojoules = 100 * 10-12 Joules 

8. Default 𝜀!"#$% = 100 nanojoules = 100 * 10-9 Joules 

9. Default storage capacity = 50 data items 

10. Number of data items per data generator = 100 data items 

11. Number of bits per data item = 512 Bytes = 512 * 8 bits = 4096 bits  
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Figure 1.  Graph representation of underlying network 
 

A list-based description of the image is as follows:  

• Each node is identified by a unique integer, 0-49 inclusive.   

• Nodes 0-9 are data generators 

• Nodes 10-49 are data storage nodes 

• Each node has a unique position in 2-dimensional space 

• A line joining two nodes is an edge, which indicates that both source and 

destination nodes are within transmission range of each other and can thus 

communicate (send and receive data) with each other.  
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• The graph is a directed graph where an edge (N1,N2) is a directed edge from node 

N1 (source) to node N2 (destination).  The directed edge (N1, N2) means that data 

moves from node N1 to node N2.  Note that (N1, N2) and (N2, N1) represent 

different edges with possibly different total costs: N1 and N2 can have different 

cost parameters, so even though the distance between the nodes is the same, cost 

to transmit from N1 to N2 can be different from the cost to transmit from N2 to 

N1. To keep the image uncluttered, there is only one line between any two nodes 

within transmission range.  Thus, the line joining nodes N1 and N2 represents 

both (N1, N2) and (N2, N1).  This is only for visualization purposes; the 

simulation treats the edges as distinct objects.   

 

Verification of Theoretical Results 

This section illustrates how simulation runs can verify the results in (Chen, Tang, 

2016).  The general technique is as follows: for each of the three cost parameters (𝜀!"!#, 

𝜀!"#, 𝜀!"#$%), fix the value of two parameters and allow a node to lie about the third 

parameter’s value.  Compute the true utility and reported utility of this node and verify 

that utility is always maximized under truth-telling in all the cases listed in Theorem 1, 

Theorem 2, and Theorem 3 in (Chen, Tang, 2016).  Do this for all storage nodes in the 

network.  For each of the verifications, the half-full homogeneous case (see APPENDIX 

A: Node Summary Files) is used as a baseline for the nodes’ cost parameters.  Deviations 

from the half-full homogeneous case are noted in each case where they occur.    
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1. Theorem 1 Verification – Suppose a node lies about its 𝜀!"#$% parameter and 

consider the following cases for a specific node.     

a. Case 1 – The node is not in the data preservation path regardless of its 

strategy.  Its utility is 0 in both cases.  This is illustrated by Node 12 when 

its 𝜀!"#$% parameter is scaled by 0.1  Its true and reported utility is 0 in 

both cases because it is not selected to participate in any data preservation.  

This confirms Case 1.  

b. Case 2 - The node is selected to participate when it tells the truth, but is 

not selected to participate when it lies.  Utility under truth-telling should 

be greater than or equal to utility under lying.  Node 37 participates under 

truth-telling and has utility 1272.816519261134, but when 𝜀!"#$% is scaled 

by 10.0, it is now too expensive to store data in this node, so MCF does 

not select it to participate.  Its utility when it reports 𝜀!"#$% scaled by 10.0 

is 0.  This confirms Case 2.   

c. Case 3 - The node is not selected to participate when it tells the truth, but 

is selected when it lies.  The utility under truth-telling should be 0 while 

the utility under lying should be less than or equal to zero.  Modify the 

original homogeneous case so that the true 𝜀!"# parameter for Node 10 is 

set to 0.01 and 𝜀!"#$% is set to 0.1.  Under truth-telling, Node 10 is not 

selected to participate because its storage and relay costs are too high, so 

its utility is 0.  When Node 10 lies about its 𝜀!"#$% parameter and scales it 

by 0.1, the MCF algorithm selects it for participation as a storage node.  
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Although Node 10 now participates, its utility is negative: -

18216.9678643829, which is less than its utility under truth-telling (0).  

This confirms Case 3.   

d. Case 4 – The node is in the preservation path when it tells the truth as well 

as when it lies.  Four subcases must be checked. 

i. Subcase 4-1 – The node stores data under both truth-telling and 

lying strategies.  The utility is expected to be equal in both cases.  

Node 43 has utility 9999.419662404369 when it tells the truth as 

well as when it lies by scaling 𝜀!"#$% by 0.1.  This confirms 

Subcase 4-1.   

ii. Subcase 4-2 - The node is instructed to store data when it tells the 

truth, but is instructed to relay data to another node if it lies.  The 

utility under truth-telling should be greater than or equal to the 

utility under lying.  Node 10 is a storage node under truth-telling 

(preservation path {1,10}), but is a relay node when it reports 

𝜀!"#$% is scaled by 10.0 (preservation path {1,10,15}).  Under 

truth-telling, Node 10’s utility is  2058.2321356170723, but when 

it lies, its utility is 1129.124814741197.  Thus, Node 10’s utility is 

maximized under truth-telling.  This confirms Subcase 4-2.   

iii. Subcase 4-3 - The node relays data when it tells the truth, but 

stores data when it lies.  The utility under truth-telling should be 

greater than or equal to the utility under lying.  Set Node 10’s 
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𝜀!"#$% parameter to 0.1.  Leave all other parameters the same as in 

the homogeneous case.  Under truth-telling, Node 10 participates 

in routing along path {1,10,15} as a relay node and has utility 

1129.124814741197.  When Node 10 lies and reports 𝜀!"#$% scaled 

by 0.01, it routes along path {1,10} as a storage node and has 

utility -18216.967864382932, which is less than its utility under 

truth-telling.  This confirms Subcase 4-3.   

iv. Subcase 4-4 - The node relays data regardless of whether it tells 

the truth or lies.  The utilities should be exactly the same.  Node 30 

relays data along path {7,30,25} under truth-telling and lying 

(𝜀!"#$% scaled 0.1).  The utility in both cases is the same: 

11530.483056185709.  This confirms Subcase 4-4.   

Figure 2 illustrates the true vs. reported utilities in the half-full homogeneous case 

when nodes lie about their 𝜀!"#$% parameter.  It also illustrates how the reported utilities 

change as 𝜀!!"#$ is scaled by different factors.  For example, Node 17 acquires the same 

amount of utility when its storage parameter is scaled by 0.01, 0.1, and 1.0 (true cost).  

However, when it inflates its cost by 10.0 and 100.0, it gains less than half the utility 

under truth-telling.  This shows how a node that tries to inflate its costs in the hopes of 

gaining more utility will in fact gain less.   



32 
 

32 
 

 

Figure 2.  Utilities in the half-full homogeneous case with scaled store parameter 

 

2. Theorem 2 Verification – Let nodes lie about their 𝜀!"# parameter and consider 

the following cases for a specific node.   

a. Case 1 - The node is not selected to participate regardless of whether it 

tells the truth or lies.  Utility should be exactly 0 in both cases.  Node 12 is 

not selected when it tells the truth, and when it lies (𝜀!"# scale 0.1), it is 

still not selected to participate.  Its utility is 0 in both cases.  This confirms 

Case 1.   

b. Case 2 - The node is selected to participate when it tells the truth, but is 

not selected to participate when it lies.  Utility under truth-telling should 

be greater than or equal to utility under lying.  Set Node 10’s true 
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parameters to (𝜀!"!#, 𝜀!"#, 𝜀!"#$%) = (0.001, 0.000001, 0.1), which is the 

homogeneous case except 𝜀!"#$% is 0.1 instead of 0.001.  Under truth-

telling, Node 10 acts as a relay node along {1,10,15} and has utility 

1129.124814741197.  When it lies about 𝜀!"# and reports 𝜀!"# = 0.01, it 

is no longer selected to participate and so its utility is 0.  This confirms 

Case 2.    

c. Case 3 - The node is not selected to participate when it tells the truth, but 

is selected when it lies.  The utility under truth-telling should be 0 while 

the utility under lying should be less than or equal to zero.  Set Node 10’s 

true parameters to (𝜀!"!#, 𝜀!"#, 𝜀!"#$%) = (0.001, 0.01, 0.1) and scale 𝜀!"# 

by 0.0001 so that the reported parameter vector is (0.001, 0.000001, 0.1).  

Under truth-telling, Node 10 does not participate and its utility is 0.  Under 

lying where 𝜀!"# is scaled by 0.0001, Node 10’s utility is negative and is 

given by -5193424.576623198, so it is less than utility under truth-telling.  

This confirms Case 3. 

d. Case 4 - The node is in the preservation path regardless of whether it tells 

the truth or lies. There are four sub-cases to check. 

i. Subcase 4-1 - The node is instructed to store data when it tells the 

truth and when it lies.  Its utility should be exactly equal in both 

cases.  Under the homogeneous case parameters, Node 10 stores 

data under truth-telling and also stores data under lying with 𝜀!"# 
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scaled by 0.1.  The utility in both cases is 2058.2321356170723.  

This confirms Subcase 4-1.   

ii. Subcase 4-2 - The node is instructed to store data when it tells the 

truth, but is instructed to relay data to another node if it lies.  The 

utility under truth-telling should be greater than or equal to the 

utility under lying.  Set Node 10’s true parameters to (𝜀!"!#, 𝜀!"#, 

𝜀!"#$%) =  (0.0001, 0.001, 0.001).  Set Node 15’s true parameters to 

(𝜀!"!#, 𝜀!"#, 𝜀!"#$%) = (0.0001, 0.000001, 0.0001).  Let all other 

nodes’ true parameters be the same in the homogeneous case.  

Then under truth-telling, Node 10 has utility 2242.552135617065 

and is routed along {1,10} where it acts only as a storage node.  

When Node 10 lies and scales 𝜀!"# by 0.0001, it is routed along 

{1,10,15} as a relay node, and has utility -517121.4087402644.  

Thus, Node 10 still maximizes utility under truth-telling, and under 

lying, it has negative utility.  This confirms Subcase 4-2.   

iii. Subcase 4-3 - The node relays data when it tells the truth, but 

stores data when it lies.  The utility under truth-telling should be 

greater than or equal to the utility under lying.  Set Node 10’s true 

parameters to (𝜀!"!#, 𝜀!"#, 𝜀!"#$%) = (0.0001, 0.0000001, 0.001) 

and set Node 15’s true parameters to be (𝜀!"!#, 𝜀!"#, 𝜀!"#$%) = 

(0.0001, 0.000001, 0.0001).  When Node 10 tells the truth, it relays 

data along path {1,10,15} and has utility 2333.96140352948.  
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When Node 10 lies and scales 𝜀!"# by scale factor 10000, it stores 

data and has utility 2242.552135617065, which is less than the 

utility under truth-telling.  This confirms Subcase 4-3.   

iv. Subcase 4-4 - The node relays data when it tells the truth and when 

it lies.  Its utility under truth-telling should be greater than or equal 

to the utility when it lies.  Use the same parameters that were used 

in Subcase 4-3: Set Node 10’s true parameters to (𝜀!"!#, 𝜀!"#, 

𝜀!"#$%) = (0.0001, 0.0000001, 0.001) and set Node 15’s true 

parameters to be (𝜀!"!#, 𝜀!"#, 𝜀!"#$%)  = (0.0001, 0.000001, 

0.0001).  When Node 10 tells the truth, it relays data along path 

{1,10,15} and has utility 2333.96140352948.  When it lies and 

scales 𝜀!"# by 0.5, it has the same utility: 2333.96140352948.  

This confirms Subcase 4-4.   

Figure 3 provides a summary of true utilities vs. reported utilities when 𝜀!"# is 

scaled by various factors.  It also illustrates how the reported utilities change when the 

𝜀!"# parameter is changed. For example, Node 16 experiences negative utility when it 

scales its amp parameter by 0.01, and gains less than utility under truth-telling when 

scaling it by 0.1.  It gains no advantage when it increases the parameter by 10.0 or 100.0.   
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Figure 3.  Utilities in the half-full homogeneous case with scaled amp parameter  
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1272.816519261134.  It does not participate when scaling 𝜀!"!# by 10.0 

and has utility 0.  This confirms Case 2.   

c. Case 3 - The node is not selected to participate when it tells the truth, but 

is selected when it lies.  The utility under truth-telling should be 0 while 

the utility under lying should be less than or equal to zero.  Set all nodes’ 

parameters to the homogeneous case except for Node 10.  Set Node 10’s 

true 𝜀!"!# parameter to 1.0.  Node 10 is not selected to participate in this 

case and has utility 0.  When Node 10 lies about its 𝜀!"!# parameter scaled 

by 0.001, it is selected to participate, but has negative utility, computed to 

be -202536.96786438292, which is less than utility under truth-telling.  

This confirms Case 3.   

d. Case 4 - The node is in the preservation path regardless of whether it tells 

the truth or lies.  There are four sub-cases to check. 

i. Subcase 4-1 - The node is instructed to store data when it tells the 

truth and when it lies.  Its utility should be exactly equal in both 

cases.  Node 10 stores data when it tells the truth in the 

homogeneous case, and also stores data when it lies about its 𝜀!"!" 

parameter by scaling it by 0.1.  Its utility in both cases is 

2058.2321356170723. This confirms Subcase 4-1.   

ii. Subcase 4-2 - The node is instructed to store data when it tells the 

truth, but is instructed to relay data to another node if it lies.  The 

utility under truth-telling should be greater than or equal to the 
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utility under lying.  In the homogeneous case, Node 31 is 

instructed to store data when it tells the truth.  It has utility 

2889.2334227411193.  When it lies and scales 𝜀!"!# by 0.1, it is 

selected to both store some data and relay the rest.  Its utility under 

lying is 2588.2214664051344, which is less than the utility under 

truth-telling.  Note that Node 31 has two roles when it lies and 

routes twice as much data as when it tells the truth, but its utility is 

still maximized under truth-telling.  This confirms Subcase 4-2   

iii. Subcase 4-3 - The node relays data when it tells the truth, but 

stores data when it lies.  The utility under truth-telling should be 

greater than or equal to the utility under lying.  In the 

homogeneous case, Node 39 both relays data and stores data under 

truth-telling, and has utility 11774.11498785732.  When Node 39 

lies about its 𝜀!"!# parameter and scales it by 10.0, it only stores 

data and has utility 9800.370128119832.  Its utility is still 

maximized under truth-telling.  This confirms Subcase 4-3.   

iv. Subcase 4-4 - The node relays data when it tells the truth and when 

it lies.  Its utility under truth-telling should be greater than or equal 

to the utility when it lies.  In the homogeneous case, Node 30 

stores and relays along paths {7,30} and {7,30,25} when it tells the 

truth and when it lies about its 𝜀!"!# parameter, scaled by 10.0.  

The utility under truth-telling is 11530.483056185709 and the 
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utility under lying is 10961.04455698209. Thus, even though Node 

30 has the exact same roles under truth-telling and lying, and 

routes the same amount of data along the same paths, its utility is 

still maximized when it tells the truth rather than when it lies.  This 

confirms Subcase 4-4.   

 

Figure 4 summarizes true vs. reported utilities in the half-full homogeneous case 

when nodes lie about their 𝜀!"!# parameters.  It also illustrates how the reported utilities 

change based on how 𝜀!"!# is reported.  In this particular example, there are many cases 

where there is no difference between truth-telling vs. lying.  However, the data for Node 

30 shows that if it inflates its 𝜀!"!# parameter by 10.0, it gains less utility than under truth-

telling.  And if it inflates its 𝜀!"!# parameter by 100.0, it gains 0 utility because it becomes 

too expensive to utilize for data preservation.   



40 
 

40 
 

 

Figure 4.  Utilities in the half-full homogeneous case with scaled elec parameter 

 

 To provide contrast with the half-full homogeneous case, several other simulation 

runs were performed to illustrate three other cases:  full homogeneous, half-full 

heterogeneous, and full heterogeneous.   

Note that if the amount of incoming data exactly matches the storage capacity of 

the network, then no analysis is necessary: all data must be stored in all storage nodes 

regardless of costs.   
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Full Homogeneous Case 

 In the full homogeneous case, each node has the same cost parameters and all 

storage nodes except one are filled to capacity.  One storage node is unused because the 

computation of utilities requires that the MCF cost be calculated for a network where one 

node is removed from the graph.  If all storage nodes were filled to capacity prior to 

removal of a node, then the network would not have enough capacity to store all data 

when a node is removed for the calculation of utilities.   

 Figure 5 shows the utilities in the full homogeneous case when nodes lie about 

their amp parameter and how the utilities are affected when they scale their amp 

parameter by different factors.  For example, Node 10 has negative utility when its amp 

parameter is scaled by 0.01 and 0.1, which shows that Node 10 gains significant 

disadvantage if it suggests that its cost are significantly less than they actually are.  When 

it increases its amp parameter by 10.0 or by 100.0, it gains less utility than under truth-

telling, showing that truth-telling is its best strategy to maximize its utility.   
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Figure 5.  Utilities in the full homogeneous case with scaled amp parameter 

 Figure 6 shows the utilities in the full homogeneous case when nodes lie about 

their elec parameter and how the utilities are affected when they are scaled by different 

factors.  For example, Node 32 gains the same amount of utility when it scales its elec 

parameter by 0.01, 0.1, and 1.0 (true cost), but acquires less utility when it inflates the 

cost by 10.0 or 100.0.  This shows that the payment and utility functions punish Node 32 

when it tries to suggest that its costs are larger than they actually are.   
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Figure 6.  Utilities in the full homogeneous case with scaled elec parameter 

Figure 7 shows the utilities in the full homogeneous case when nodes lie about 

their store parameter and how the utilities are affected when they are scaled by different 

factors.  For example, Node 34 gains the same amount of utility when its store parameter 

is scaled by 0.01, 0.1, 1.0 (true cost), and 10.0, but less utility when it scales it by 100.0.  

This shows that in some cases, lying by a certain amount does not affect the acquired 

utility, but if the lie is significant enough, it will negatively affect the amount of utility 

gained.  One way to think of this is to consider the hypothetical extreme case: imagine 

that the true cost of a parameter is finite, but a node decides to lie and say its cost is 

infinite.  If all other cost parameters of other nodes are finite, then this node will never be 

chosen to participate because it would be too costly to allow its participation.   
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Figure 7.  Utilities in the full homogeneous case with scaled store parameter 

Half-Full Heterogeneous Case 

In the heterogeneous half-full case, each node has randomized cost parameters 

and the total incoming data is half of the total network capacity.  Figure 8 shows the 

utilities in the half-full heterogeneous case when nodes lie about their elec parameter and 

how the utilities are affected when they are scaled by different factors.  For example, 

Node 31 gains maximum utility under truth-telling, but gains less utility when it scales its 

elec parameter by 0.01 and 0.1, and zero utility when it scales it by 10.0 or 100.0.  This 

shows that there are cases where if a node deflates its costs, it might still gain some utility 

(but not as much under truth-telling), and when it inflates it by too much, it gains nothing 

because it is too expensive to use in data routing.  Note that in the vast majority of cases 

shown, scaling the elec parameter by 100.0 causes utility to be gained to be zero because 
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there are other nodes that can be chosen whose costs are not as high.  This explains why 

most nodes have zero utility when elec is scaled by 100.0.   

 

 

Figure 8.  Utilities in the half-full heterogeneous case with scaled elec parameter 

 Figure 9 shows the utilities in the half-full heterogeneous case when nodes lie 

about their amp parameter and how the utilities are affected when they are scaled by 

different factors.  For example, Node 36 gains negative utility when it scales its amp 

parameter by 0.01, which shows that it is being severely punished for suggesting its costs 

are significantly less than they actually are.  When it inflates its costs by 10.0 and 100.0, 

it gains positive utility, but not as much as under truth-telling.  These scenarios show that 

a node can be punished for inflating as well as deflating its costs and that truth-telling is 

the best strategy.  Note that nodes are affected differently based on their cost parameters.  

For example, Node 30 gains the same amount of utility when it scales its amp parameter 
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by 0.01, 0.1, and 1.0 (true value), but experiences decreased utility when it scales it by 

10.0 and 100.0.   This differs significantly from Node 31, 32, 36, and 47, all of which 

experience negative utility when they scale their amp parameter by 0.01.   

 

Figure 9.  Utilities in the half-full heterogeneous with scaled amp parameter 

 Figure 10 shows the utilities in the half-full heterogeneous case when nodes lie 

about their store parameter and how the utilities are affected when they are scaled by 

different factors.  For example, Node 30 gains the same amount of utility when it scales 

its store parameter by 0.01, 0.1, 1.0 (true cost), and 10.0.  However, it gains less than half 

of the utility it would have gained under truth-telling when it scales the parameter by 

100.0.   
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Figure 10.  Half-full heterogeneous case with scaled storage parameter 

Full Heterogeneous Case 

In the full heterogeneous case, each node has randomized cost parameters and all 

storage nodes except one are filled to capacity.  One storage node is unused because the 

computation of utilities requires that the MCF cost be calculated for a network where one 

node is removed from the graph.   

Figure 11 shows the utilities in the full heterogeneous case when nodes lie about 

their elec parameter and how the utilities are affected when they are scaled by different 

factors.  For example, when storage node 22 lies about its elec parameter, it acquires 

slightly less utility when scaling by 0.01, about half of true utility when scaling by 10.0, 

and zero utility when scaling by 100.0.   
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Figure 11.  Full heterogeneous case with scaled elec parameter 

Figure 12 shows the utilities in the full heterogeneous case when nodes lie about 

their amp parameter and how the utilities are affected when they are scaled by different 

factors.  For example, Node 14 gains negative utility when scaling its amp parameter by 

0.01 and 0.1, and less utility than utility under truth-telling when it scales its parameter by 

10.0 and 100.0.  This represents a real-world scenario where a node might mistakenly 

believe that reporting a significantly lower cost would lead to more participation in the 

network, which might lead to higher utility.  However, the node gains negative utility 

because it still must pay its true costs, but is only compensated for its reported costs, as 

specified by the payment and utility functions.   
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Figure 12.  Full heterogeneous case with scaled amp parameter 
 

  
Figure 13 shows the utilities in the full heterogeneous case when nodes lie about 

their elec parameter and how the utilities are affected when they are scaled by different 

factors.   For example, when node 22 scales its storage parameter by 10.0 or 100.0, 

perhaps in a misguided attempt to gain more utility by reporting higher costs, it still 

acquires less utility than under a truth-telling strategy.   
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Figure 13.  Full heterogeneous case with scaled store parameter 

 

Refinement of Theory 

 During the development of the simulation for this thesis, an early version of 

(Chen, Tang, 2016) was consulted as a main reference for the majority of work.  

Although the simulation produced data that confirmed some aspects of the theory in 

(Chen, Tang, 2016), it also produced cases that were not analyzed in the paper.  In 

particular, it generated scenarios where the MCF algorithm selects different sets of 

routing paths based on the nodes’ reported costs.  The early version of the paper only 

considered scenarios where the paths did not change.  This revealed that there were an 

additional set of cases that needed to be verified, and additional theoretical results were 

required to show that these cases still satisfied the claims of the original theory.  The 

most recent version of (Chen, Tang, 2016) has already been edited to reflect these new 

developments, which were motivated by the results that the simulation produced.  This 
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demonstrates the value of the simulation in this thesis: it can help researchers improve 

their theory as well as provide evidence for how their theory manifests itself in the real 

world.   

 

CHAPTER 5 

CONCLUSION  

 This thesis described a simulation that verifies the results in (Chen, Tang, 2016), 

how to change simulation parameters to model all 21 cases required for successful 

verification of the results, and how the simulation helped to refine the current theory on 

non-cooperative data-intensive wireless sensor networks.  The next step in the analysis of 

these networks is to consider more complicated scenarios, such as the infeasible network 

case (nodes can run out of battery power and disappear from the network), and the 

collusion scenario (subsets of nodes cooperate only with each other to maximize their 

utilities).  Both of these scenarios are exciting areas of research that will be investigated 

in the future.   
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APPENDIX A: Node Summary Files 

The following is the data inside a node summary file for both the half-full and full 

homogeneous cases.   

Table 2.  Node summary information for half-full and full homogeneous cases.   

Node	ID	 x-coordinate	 y-coordinate	 elec	 amp	 store	
0	 909.2224635	 554.4268048	 0.001	 0.000001	 0.001	
1	 676.9814863	 722.2853662	 0.001	 0.000001	 0.001	
2	 832.7951844	 332.178449	 0.001	 0.000001	 0.001	
3	 507.5877259	 396.6751068	 0.001	 0.000001	 0.001	
4	 636.5041164	 84.91108762	 0.001	 0.000001	 0.001	
5	 441.0072201	 571.6131606	 0.001	 0.000001	 0.001	
6	 435.9609446	 443.4736313	 0.001	 0.000001	 0.001	
7	 994.1529299	 649.6453409	 0.001	 0.000001	 0.001	
8	 710.0784973	 953.2690148	 0.001	 0.000001	 0.001	
9	 234.2105153	 195.6704525	 0.001	 0.000001	 0.001	
10	 590.7941999	 624.3671768	 0.001	 0.000001	 0.001	
11	 766.9457895	 213.6255864	 0.001	 0.000001	 0.001	
12	 167.1260353	 678.4533326	 0.001	 0.000001	 0.001	
13	 291.6671707	 559.1702928	 0.001	 0.000001	 0.001	
14	 225.8332062	 846.7684559	 0.001	 0.000001	 0.001	
15	 549.9003467	 594.9673536	 0.001	 0.000001	 0.001	
16	 512.0856839	 492.1435225	 0.001	 0.000001	 0.001	
17	 484.0895782	 567.2282378	 0.001	 0.000001	 0.001	
18	 160.9302974	 903.4245717	 0.001	 0.000001	 0.001	
19	 818.1482847	 210.5121621	 0.001	 0.000001	 0.001	
20	 423.9732383	 342.0313065	 0.001	 0.000001	 0.001	
21	 73.43917866	 772.3372058	 0.001	 0.000001	 0.001	
22	 195.5822033	 808.0867549	 0.001	 0.000001	 0.001	
23	 241.7721607	 989.9827572	 0.001	 0.000001	 0.001	
24	 129.0438754	 37.50102011	 0.001	 0.000001	 0.001	
25	 951.2658141	 548.9329287	 0.001	 0.000001	 0.001	
26	 325.495177	 941.5876492	 0.001	 0.000001	 0.001	
27	 981.4263854	 205.7303347	 0.001	 0.000001	 0.001	
28	 677.0801524	 557.2362663	 0.001	 0.000001	 0.001	
29	 410.5555609	 67.58077626	 0.001	 0.000001	 0.001	
30	 950.6661551	 588.3602947	 0.001	 0.000001	 0.001	
31	 511.6069573	 486.8688972	 0.001	 0.000001	 0.001	
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32	 609.5868356	 788.2842582	 0.001	 0.000001	 0.001	
33	 751.8678442	 650.8155353	 0.001	 0.000001	 0.001	
34	 188.2615175	 757.9303341	 0.001	 0.000001	 0.001	
35	 897.3516312	 224.8281603	 0.001	 0.000001	 0.001	
36	 758.1736675	 216.1087046	 0.001	 0.000001	 0.001	
37	 274.5436804	 342.6651528	 0.001	 0.000001	 0.001	
38	 653.5741547	 435.9125845	 0.001	 0.000001	 0.001	
39	 700.1512086	 827.3561562	 0.001	 0.000001	 0.001	
40	 161.4072592	 335.1628165	 0.001	 0.000001	 0.001	
41	 453.7656901	 773.8899734	 0.001	 0.000001	 0.001	
42	 322.3406721	 659.0433282	 0.001	 0.000001	 0.001	
43	 938.8538011	 528.0026772	 0.001	 0.000001	 0.001	
44	 338.4136694	 799.5136259	 0.001	 0.000001	 0.001	
45	 354.2515728	 654.9683081	 0.001	 0.000001	 0.001	
46	 337.6995201	 58.77941388	 0.001	 0.000001	 0.001	
47	 781.3427602	 708.1150704	 0.001	 0.000001	 0.001	
48	 407.5125966	 583.0487686	 0.001	 0.000001	 0.001	
49	 581.3620954	 478.8602166	 0.001	 0.000001	 0.001	

 

The following is the node summary file for half-full and full heterogeneous cases:  

Table 3.  Node summary file for half-full and full heterogeneous cases.  

Node	ID	 x-coordinate	 y-coordinate	 elec	 amp	 store	
0	 909.2224635	 554.4268048	 0.099675186	 8.86348E-05	 0.036194187	
1	 676.9814863	 722.2853662	 0.073172859	 1.90224E-05	 0.041700381	
2	 832.7951844	 332.178449	 0.018762011	 9.43141E-05	 0.091505068	
3	 507.5877259	 396.6751068	 0.089660832	 6.13652E-06	 0.089266933	
4	 636.5041164	 84.91108762	 0.097962471	 8.41406E-05	 0.067284708	
5	 441.0072201	 571.6131606	 0.015245709	 5.04639E-05	 0.098678001	
6	 435.9609446	 443.4736313	 0.026550934	 9.76092E-05	 0.015041567	
7	 994.1529299	 649.6453409	 0.032650376	 6.67642E-05	 0.036964431	
8	 710.0784973	 953.2690148	 0.058842165	 5.3286E-05	 0.021294516	
9	 234.2105153	 195.6704525	 0.089971058	 3.77146E-05	 0.082056177	
10	 590.7941999	 624.3671768	 0.047331296	 6.92073E-05	 0.067300186	
11	 766.9457895	 213.6255864	 0.088970032	 8.74963E-05	 0.059300164	
12	 167.1260353	 678.4533326	 0.024406263	 6.20793E-05	 0.019952437	
13	 291.6671707	 559.1702928	 0.082139563	 6.15645E-05	 0.074813705	
14	 225.8332062	 846.7684559	 0.010041498	 8.99324E-05	 0.070418912	
15	 549.9003467	 594.9673536	 0.059040632	 3.28444E-05	 0.06663868	



59 
 

59 
 

16	 512.0856839	 492.1435225	 0.086828858	 3.90631E-05	 0.076934499	
17	 484.0895782	 567.2282378	 0.024780998	 9.89039E-05	 0.064393028	
18	 160.9302974	 903.4245717	 0.072391944	 6.52007E-05	 0.064998225	
19	 818.1482847	 210.5121621	 0.02889905	 4.49443E-05	 0.067578611	
20	 423.9732383	 342.0313065	 0.067872004	 7.10203E-05	 0.038681937	
21	 73.43917866	 772.3372058	 0.053793162	 6.97888E-05	 0.085140488	
22	 195.5822033	 808.0867549	 0.037153183	 1.57252E-05	 0.079807253	
23	 241.7721607	 989.9827572	 0.071788992	 5.22464E-05	 0.060526164	
24	 129.0438754	 37.50102011	 0.077030118	 7.39184E-05	 0.021365486	
25	 951.2658141	 548.9329287	 0.010661151	 5.41252E-05	 0.04493236	
26	 325.495177	 941.5876492	 0.048700908	 4.95372E-05	 0.021859317	
27	 981.4263854	 205.7303347	 0.087878993	 4.60531E-05	 0.07861395	
28	 677.0801524	 557.2362663	 0.019036533	 9.40945E-05	 0.080208231	
29	 410.5555609	 67.58077626	 0.025000932	 8.86831E-05	 0.059966176	
30	 950.6661551	 588.3602947	 0.062318654	 2.89785E-05	 0.044866626	
31	 511.6069573	 486.8688972	 0.056171276	 5.88874E-05	 0.013019621	
32	 609.5868356	 788.2842582	 0.010237464	 9.19084E-05	 0.019253992	
33	 751.8678442	 650.8155353	 0.080673818	 8.30278E-05	 0.026664253	
34	 188.2615175	 757.9303341	 0.033922605	 1.72329E-06	 0.025371008	
35	 897.3516312	 224.8281603	 0.037063717	 2.73974E-05	 0.023217185	
36	 758.1736675	 216.1087046	 0.041381791	 9.62399E-05	 0.043858045	
37	 274.5436804	 342.6651528	 0.079560828	 1.68593E-05	 0.02775392	
38	 653.5741547	 435.9125845	 0.053252531	 7.31283E-05	 0.013711954	
39	 700.1512086	 827.3561562	 0.039155467	 6.62262E-05	 0.00439258	
40	 161.4072592	 335.1628165	 0.052117431	 2.86327E-05	 0.011039327	
41	 453.7656901	 773.8899734	 0.025682507	 1.7044E-06	 0.070533801	
42	 322.3406721	 659.0433282	 0.013885942	 8.6363E-05	 0.019711841	
43	 938.8538011	 528.0026772	 0.072242522	 2.79464E-05	 0.014440761	
44	 338.4136694	 799.5136259	 0.069144265	 1.74717E-05	 0.064629072	
45	 354.2515728	 654.9683081	 0.072452555	 2.026E-05	 0.074988172	
46	 337.6995201	 58.77941388	 0.082183172	 3.03705E-05	 0.094892378	
47	 781.3427602	 708.1150704	 0.022087549	 2.38212E-05	 0.075418425	
48	 407.5125966	 583.0487686	 0.057310491	 3.59211E-05	 0.023747172	
49	 581.3620954	 478.8602166	 0.093162155	 9.99433E-05	 0.049758069	
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APPENDIX B: Relevant Code Sections 

The following are some code sections for the core logic in the simulation.  The 

core logic is the set of steps described in the “Simulation Design” section, partially 

reproduced below with their corresponding code sections.   

 

Generate Nodes - Generate a set of nodes based either on a user-supplied file or an 

algorithm that randomly generates a set of nodes.  	

 

Figure 14.  Node generation code.   
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Construct Edges - Based on the transmission range of the nodes provided by the user, 

construct all pairs of nodes that are within transmission range.  The code for this is 

below: 

 

Figure 15.  Edge construction code.   

 

Construct Graph and Verify Graph Properties - Based on the nodes and edges 

constructed, construct a graph. Test the graph for biconnectedness.  If it is biconnected, 

proceed.  If not, randomly generate nodes and edges until a biconnected graph is 

constructed.  The code for this is below:  
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Figure 16.  Construct graph and verify properties – initialization steps.   
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Figure 17.  Construct graph and verify properties – node and edge generation.   

 

Figure 18.  Construct graph and verify properties – verification of biconnectedness 
   

Compute MCF Input File Under Truth-telling - Based on the biconnected graph, generate 

an input file that summarizes the graph and node information so that the MCF algorithm 
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can properly read the information and produce the appropriate output.  Assume all nodes 

tell the truth about their costs.  The code for this is below:  

 

Figure 19.  Generate MCF file under truth-telling – initial setup for writing file 



65 
 

65 
 

 

Figure 20.  Generate MCF file under truth-telling – file-writing for source nodes 

 

Figure 21.  Generate MCF file under truth-telling – compute source-destination costs 
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Figure 22.  Generate MCF file under truth-telling – connect destination to sink nodes 

 

Compute Preservation Paths - Run the MCF algorithm on the input file to generate a set 

of paths along which data will be routed.  The algorithm also computes the total energy 

required to route all the data.  This is the MCF cost under truth-telling when all nodes 

participate.  The MCF algorithm is a C program that is invoked by the simulation.  The 

code to invoke an executable from the simulation is here:  
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Figure 23.  Run an executable from the simulation. 

The logic for calling the MCF program from the simulation is here: 

 

Figure 24.  Invoke MCF program from simulation.   
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The simulation manually computes the costs based on the MCF program’s output to 

avoid truncation issues present in the C program.   This computation is seen here: 

 

Figure 25.  Compute more accurate MCF cost – get source and destination nodes 
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Figure 26.  Compute more accurate MCF cost – compute edge costs 

 

Figure 27.  Compute more accurate MCF cost – sum all costs 

 

Compute Costs with a Node Removed - The code for this section is the same as the 

previous MCF cost computation, except that the input graph has a node removed and all 



70 
 

70 
 

edges incident to this node are removed as well.  The underlying logic is the same, so the 

code is not shown here to avoid unnecessary duplication. 

 

Compute Utilities Under Truth-telling - Compute the utility of each storage node under 

the truth-telling strategy based on the payment and utility functions in (Chen, Tang, 

2016).  The utility is given by 𝜋! 𝑐! , 𝑐!! = 𝑐!! ! − 𝑐! −  𝑐! − 𝑐!, with symbols 

defined in Table 1.  The code for this computation is here:   

 

Figure 28.  Compute utilities under truth-telling – get source and destination nodes 
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Figure 29.  Compute utilities under truth-telling – get all shortest paths  

 

Figure 30.  Compute utilities under truth-telling – utility for participating node 
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Construct Biconnected Graphs Under a Non-truthful Strategy - The code for this section 

uses the same logic as the previous biconnected graph construction, except that the node 

parameters have been altered to reflect a non-truthful strategy.  The computation of costs 

and edge weights still follow the same logic.  Thus, the code is not shown here.   

 

Compute Utilities Under a Non-truthful Strategy - Although the logic for this step looks 

similar to the utility computation under truth-telling, the use of reported costs makes the 

computation slightly more complicated.  Thus, the code section corresponding to this 

computation is shown here, even though it has many similarities to the computation of 

utility under truth-telling.   

 

Figure 31.  Compute utilities under non-truthful strategy – initialize file reading 
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Figure 32.  Compute utilities under non-truthful strategy – get shortest paths 

 

Figure 33.  Compute utilities under non-truthful strategy – check node participation 
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Figure 34.  Compute utilities under non-truthful strategy – compute arc relay costs 

 

Figure 35.  Compute utilities under non-truthful strategy – compute arc final costs 



75 
 

75 
 

 

Figure 36.  Compute utilities under non-truthful strategy – compute utility  

 

Collect results and generate summary (CSV file): this is a code section that combines 

both the collection of results and the generation of a summary file.   

 

Figure 37.  Collect results and generate summary CSV file 


