
A SOFTWARE DEFINED NETWORK IMPLEMENTATION USING

MININET AND RYU

A Project

Presented

to the Faculty of

California State University Dominguez Hills

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Carlos Ontiveros

Summer 2019

PROJECT: A SOFTWARE DEFINED NETWORK IMPLEMENTATION USING MININET
 AND RYU

AUTHOR: CARLOS ONTIVEROS

APPROVED:

Bin Tang, Ph.D
Project Committee Chair

Mohsen Beheshti, Ph.D
Committee Member

Alireza Izaddoost, Ph.D
Committee Member 

ACKNOWLEDGMENTS

I would like to thank California State University and its supportive staff and faculty for

mentoring me and providing me with an environment in which I was able to grow both

academically and personally. I would like to thank the following professors who have been

instrumental in helping me achieve academic success: Dr. Tang, Dr. Tankelevich, Dr. Beheshti,

Dr. Han, and Professor McCullough.

iii

PREFACE

This research project is a continuation of an earlier attempt to implement a software defined

network (SDN) using physical hosts. The project was ambitious but unsuccessful because there

were many barriers such as limited hardware resources and poor documentation. Although there

were some setbacks, all hope was not lost and a new experimentation testbed was possible using

virtual machines and a server. This research project was successful in implementing an SDN by

using tools like Mininet and Ryu. A virtual network was created using Mininet and traffic

management was handled using the Ryu controller. The algorithms designed in the research,

efficiently assigned virtual machines (VM) pairs to middleboxes (MBs). Knowledge from prior

experimentations was crucial in successfully connecting the controller to the switches and

configuring them to reroute traffic.

iv

TABLE OF CONTENTS

APPROVAL PAGE …………………………………………………………......………. ii
ACKNOWLEDGEMENTS …………………………………………………....………. iii
PREFACE ……………………………………………………………………...………... iv
LIST OF TABLES ……………………………………………………………….……. vii
LIST OF FIGURES …………………………………………………………….……... viii
ABSTRACT ……………………………………………………………………..……… xi

1. INTRODUCTION ​ ………...……...……...……...……...……...……...……...…………. 1

2. LOAD BALANCED MIDDLEBOX ASSIGNMENT PROBLEM (LB-MAP) ​ ………... 5
2.1. Problem Formulation ​ ………...……...……...……...……...……...……...……… 5

2.1.1. Network Model​ ………...……...……...……...……...……...…………... 5
2.1.2. Middlebox Model​ ………...……...……...……...……...……...………... 7
2.1.3. Bump Off The Wire Design ​ ………...……...……...……...……...……... 8
2.1.4. Energy Model​ ………...……...……...……...……...……...…………….. 9
2.1.5. Problem Formulation of LB-MAP ​ ………...……...……...…………….. 10

2.2. Minimum Cost Flow (MCF) Optimal Algorithm ​ ………...……...……...……... 11
2.2.1. Transforming a Data Center Network to a Flow Network ​ ……………... 13

2.3. Three Heuristic Algorithms ​ ………...……...……...……...……...……...……... 15

3. CONTRIBUTION​ ………...……...……...……...……...……...……...……...………... 18

4. BACKGROUND​ ………...……...……...……...……...……...……...……...…………. 19
4.1. Software Defined Networking ​ ………...……...……...……...……...………….. 19
4.2. OpenFlow A Software Defined Network Protocol​ ………...……...…………... 20
4.3. Mininet A Virtual Network Emulator​ ………...……...……...……...………….. 21
4.4. Ryu A Software Defined Network Controller ​ ………...……...……...…………. 23

5. RELATED WORK​ ………...……...……...……...……...……...……...……...……….. 24
5.1. Data Center Topology​ ………...……...……...……...……...……...…………... 26

6. METHODOLOGY ​ ………...……...……...……...……...……...……...………………. 28
6.1. Testbed Settings ​ ………...……...……...……...……...……...……...………….. 28
6.2. The Ryu Framework​ ………...……...……...……...……...……...…………….. 28
6.3. Ryu Applications ​ ………...……...……...……...……...……...………………... 29
6.4. Ryu & Network Traffic ​ ………...……...……...……...……...……...………….. 30
6.5. Ryu Algorithm Implementation ​ ………...……...……...……...……...………… 34
6.6. Ryu Flow Chart & Structure ​ ………...……...……...……...……...……...…….. 43
6.7. Configure Ryu & Mininet Experiment ​ ………...……...……...……...…………. 44

v

1

6.8. Start Ryu & Mininet ​ ………...……...……...……...……...……...……...……... 45
6.9. Running Algorithms in Ryu ​ ………...……...……...……...……...……...……... 47

6.10. Issues with Ryu​ ………...……...……...……...……...……...……...…………... 50
6.11. Traffic Measurement Using Iperf ​ ………...……...……...……...……...……….. 50
6.12. Iperf Server​ ………...……...……...……...……...……...……...……...……….. 51
6.13. Iperf Client ​ ………...……...……...……...……...……...……...……...………... 53
6.14. Parsing Output​ ………...……...……...……...……...……...……...……………. 54
6.15. Plotting Results ​ ………...……...……...……...……...……...……...…………... 56

7. DISCUSSION ​ ………...……...……...……...……...……...……...……………………. 56
7.1. Results​ ………...……...……...……...……...……...……...……...……………. 56

7.1.1. Experiment 1 ​ ………...……...……...……...……...……...……………. 57
7.1.2. Experiment 2 ​ ………...……...……...……...……...……...…………….. 60

8. CONCLUSION​ ………...……...……...……...……...……...……...……...…………... 63

9. REFERENCES​ ………...……...……...……...……...……...……...……...……………. 63

10. APPENDIX​ ………...……...……...……...……...……...……...……...……...………... 66
10.1. Ryu Python Implementation​ ………...……...……...……...……………………. 67
10.2. Ryu VM Pairs Data​ ………...……...……...……...……...……...……...………. 87
10.3. Ryu Superclass​ ………...……...……...……...……...……...………………….. 92

vi

LIST OF TABLES

Table 1 Notations of Symbols …………………………………………………………………… 6

Table 2. Experiment 1 End-to-end Delay 10VM 3MB ………………………….……………... 57

Table 3. Experiment 1 Packet Loss 10VM 3MB …………………………………...………….. 58

Table 4. Experiment 2 End-to-end Delay 10VM 5MB …………………………..………...….. 61

Table 5. Experiment 2 Packet Loss 10VM 5MB ………………………………………..……... 62

vii

LIST OF FIGURES

Figure 1. Data Center Two VM Pairs and Two Middleboxes………………………..……...…… 5

Figure 2. Fat Tree Network with Capacity ​K=1​ ... 10

Figure 3. New Flow Network Transformed From A Data Center... 12

Figure 4. Software Defined Networking Diagram ... 19

Figure 5. Ryu Architecture .. 23

Figure 6. Data Center with Fat Tree Topology.. 26

Figure 7. Simple Ryu Application .. 29

Figure 8. Ryu Python Decorator Listens to OpenFlow Events ……………................................ 29

Figure 9. Ryu Extracts Packet Information .. 30

Figure 10. Ryu Functions Inspect Packet ...30

Figure 11. Ryu Builds PACKET_OUT Message ... 31

Figure 12. Ryu Match Instruction ... 31

Figure 13. Ryu Action Instruction .. 31

Figure 14. Ryu Instruction Object .. 32

Figure 15. Ryu OFPFlowMod Object ... 32

Figure 16. Complete Ryu Application.. 32

Figure 17. Ryu Class Attributes.. 34

Figure 18. Ryu Class Functions.. 34

Figure 19. Ryu Algorithm Module.. 35

Figure 20. Ryu Module Handles Flows... 35

 viii

Figure 21. Middlebox Initialized... 36

Figure 22. VM Pairs Initialized... 36

Figure 23. Ryu Load Variable... 37

Figure 24. VM Based Algorithm Attributes.. 37

Figure 25. VM Based Algorithm Logic .. 38

Figure 26. MB Based Algorithm... 39

Figure 27. MB-Based Algorithm Loop.. 39

Figure 28. VM+MB Based Algorithm.. 40

Figure 29. VM+MB Based Algorithm Nested Loops... 41

Figure 30. get_path ​ Module.. 41

Figure 31. Flow Chart Packet-In………………………………………………………………... 42

Figure 32. Flow Chart Controller……………………………………………………………….. 43

Figure 33. Mininet Loading Network... 44

Figure 34. Ryu Detects Network... 44

Figure 35. Mininet Pingall.. 46

Figure 36. Algorithm checks if flow is in VM pairs list……………………………………….. 46

Figure 37. Ryu Handles Traffic.. 47

Figure 38. MB Based Algorithm Initiated... 47

Figure 39. MB Based Algorithm Finished... 48

Figure 40. VM+MB Based Algorithm Initiated.. 48

Figure 41. VM+MB Based Algorithm Finished.. 49

Figure 42. Host Runs Iperf Server……………………………………………………………….. 51

 ix

Figure 43. Host ​h13 ​Runs Iperf Report………………………………………………………….. 52

Figure 44. Host ​h13​ Runs Iperf Client…………………………………………………………... 52

Figure 45. Iperf Running in Client Mode………………………………………………………... 53

Figure 46. Parsed Iperf Log data……………………………………………………………….... 54

Figure 47. End-to-end Delay for 10 VMs , 3 MBs , 100Mbps Bandwidth……………………... 56

Figure 48. Packet Loss for 10 VMs, 3 MBs, 100Mbps Bandwidth..58

Figure 49. End-to-end Delay for 10 ​VMs​, 5 ​MBs​, 100Mbps Bandwidth...................................... 59

Figure 50. End-to-end Delay Closeup... 60

Figure 51. Packet Loss for 10 VMs, 5 MBs, 100Mbps Bandwidth..61

 x

ABSTRACT

Middleboxes are not only great for providing network services but they also facilitate

network management in cloud data centers. Software Defined Networks (SDN) and Network

Function Virtualization (NFV) facilitate this process. Virtual machine (VM) communication

must traverse middlebox sequences for policy requirements. Data centers are challenged with

load-balancing middleboxes and minimizing VM communication costs. This problem is known

as the Load-Balanced Middlebox Assignment Problem (LB-MAP). Three algorithms were

proposed to solve this problem. They are heuristics and designed to perform near optimal but

they have not been implemented in a real network environment. One of them, VM+MB, is a

combination of the other two and is expected to be the best. This project is the first to implement

all heuristics in an SDN testbed and then analyze and measure the results. From the experiments

conducted the VM+MB performed best in terms of end-to-end delay and packet loss.

1

1. INTRODUCTION

Middleboxes are network appliances which act as intermediary computer networking

devices. These network appliances are also called network functions because they serve specific

functions for computer networks. Some of these functions are to transform, inspect, filter, or

manipulate traffic and forward them to other devices. These middleboxes are widely deployed in

enterprise networks such as data centers and play a crucial role in ensuring network security

through the use of firewalls, intrusion detection systems (IDS). They also ensure high

performance through the use of load balancers, and reduce bandwidth cost through the use of

WAN optimizers [1].

According to one recent study, the number of middleboxes have grown to almost the

same number of routers in large networks. Traditional middleboxes are physical devices that are

usually proprietary, closed and expensive. They are built for specific purposes such as firewalls

and are not easily configurable or always compatible with other proprietary devices [1].

Deploying and operating them can be costly because of initial capital investment and the cost of

maintaining them. As network resources increase, acquiring more devices is necessary but this

will also require more physical space as well as power consumption. When equipment becomes

outdated and can no longer be supported, the so-called network ossification problem emerges

[12].

In order to provide some relief, network function virtualization (NFV) has been proposed.

NFV is a networking virtualization technology that allows operators and administrators to

implement middleboxes in software rather than purpose-build hardware. In terms of

2

management, there are large improvements because now the software-based middleboxes may be

instantiated anywhere in the network without having to worry about new equipment purchases

nor need any new services from an operator [1].

Software Defined Networking (SDN) further alieves the burden of network management

by decoupling the control plane from the forwarding plane. SDN works as a complementary

technology to NFV because it moves the management functions from the hardware to a software

format that is orchestrated by a centralized controller. The centralized controller utilizes a new

open protocol known as OpenFlow to communicate with middleboxes, which are usually

implemented inside switches, and dynamically configure them [1].

Cloud data centers are thriving thanks to the facilitation SDN and NFV bring into

network management. Hardware resources such as CPU cycles, and memory are divided into

smaller isolated computing units known as a virtual machine (VM), which can be rented to users

for a fee [1]. These resources are and ideal platform for researchers to implement SDN and NFV

experiments. Deployed middleboxes ensure that applications and services hosted in data centers

are secure, maintained, and perform optimally. The configuration and synchronization of these

middleboxes is possible due to SDN and NFV [12].

Network policies require traffic to traverse specific sequences of middleboxes in order to

provide security and performance guarantees for the applications and services being hosted.

Different applications have different requirements thus the expectations from cloud service

providers and the commitments from cloud users are usually described in the Service Level

Agreement (SLA) in order to maintain some sort of accountability. A data center’s ability to

fully satisfy the SLA has become an important measurement for both efficiency and efficacy.

3

Data centers who strive to transcend these measurements are known as policy-driven data

centers. One example of policy, may be the case where network traffic from a communicating

VM must go through an IDS and a load balancer, in order to first filter out malicious traffic and

then efficiently route it to avoid congestion [1].

Middlebox management may be facilitated by SDN and NFV but it is a complex

operation with a dilemma. It is important to note that there are limits to the hardware resources

such as CPU cycles and memory that are available for middleboxes. Additionally, the special

memory is used by SDN switches implement middleboxes is very small and expensive. This

memory is known as ternary content addressable memory (TCAM) and it is considered perfect

for storing MAC addresses and faster than RAM. TCAM consumes a lot of power which

increases temperature in data centers and thus also increasing the need for cooling. Since the

memory size is still small, only a small amount of forwarding rules may be stored [1]. Whenever

middleboxes perform services such as deep packet inspection, complex and extensive processing

must be involved. These limitations and resource usage are reasons why middleboxes fail and

then lead to packet loss, traffic delays, and waste of power. To prevent this, network

administrators must balance the load in middleboxes so that they are not overworked but also not

underworked and sit idly wasting energy [12].

NFV and SDN allows administrators to replicate a middlebox as many times as needed in

order to achieve load-balancing and fault tolerance. Each clone of a middelbox is known as an

instance​. In this research project the focus lies in policy-driven data centers where only one type

of middlebox is considered but multiple instances of that same middlebox can exist. The purpose

of a single middlebox will serve a specific need such as load balancing or security. Each VM

4

communication pair must traverse a middlebox and if that middlebox is full or incurs a heavy

cost then another instance will be utilized [1].

The goal of this research project is to consider the situation where a set of VM

communication pairs is given as well as a set of middlebox software instances and each VM pair

must be assigned to a middlebox instance while considering energy cost and capacity constraints.

The total VM communication cost when traversing a middlebox must be kept as low as possible

and the maximum load capacity of the middlebox must be balanced. This research will refer to

this problem as the Load-Balanced Middlebox Assignment Problem (LB-MAP) [1]. This

problem is equal to the well known minimum cost flow problems (MCF) in a transformed flow

network. MCF can be solved efficiently and optimally. A suit of efficient heuristic algorithms

were designed viz. VM-Based, MB-Based, and VM+MB-Based. Through testing and

experimentation it can be seen that all heuristics perform close to the optimal minimum cost flow

algorithm but VM+MB-Based performs best from all heuristics. This research is one of the first

to implement a testbed in which VM communication cost and load-balancing of middleboxes is

addressed in policy-driven data centers [1].

2. LOAD BALANCED MIDDLEBOX ASSIGNMENT PROBLEM (LB-MAP)

2.1. Problem Formulation

2.1.1. Network Model

The data center graph will be modeled as an undirected general graph ​G(V,E)​. Set

 includes the set of physical machines ​V​p​ (​PMs​) and set of switches ​V​s​ (edge,V = V p ⋃ V s

aggregate, and core). The set of edges, E, includes links between switches to switches and links

5

between switches to PMs. The data center contains ​l​ VM pairs expressed in set

 where v ​i​ and v​i​’ are referred to as the ​source​ VM(v ,), v ,), .., v v)}P = { 1 v1′ (2 v2′ . (l l ′ (1),≤ i ≤ l

and the ​destination​ VM, respectively. Each VM ​v​ is located inside a PM, denoted as ​S(v​i​) ​ and

S(v​i​’)​ where they are referred to as the ​source ​ PM and ​destination ​ PM of ​(v ​i​,v​i​’)​, respectively. A

PM is capable of storing both source VM and destination VM simultaneously [1]. Figure 1

shows an example of two communicating VM pairs ​(v​1​,v​1​’)​ and ​(v​2​,v​2​’)​. All notations used in this

paper are listed in Table 1.

Figure 1. Data Center Two VM Pairs and Two Middleboxes [1]

6

Table 1. Notations of Symbols

Notation Explanation

V​p The set of physical machines (PMs) in the data center

V​s The set of switches in the data center

P The set of ​l​ VM communication pairs, , v ,)(i vi′ 1 ≤ i ≤ l

M The set of ​m​ middlebox instances, ​mb​j​, 1 ≤ j ≤ m

S(v) The PM where VM ​v​ is stored

sw(j) The switch where ​mb​j​ is located

K The capacity of each middlebox instance

, ,re ra rc The energy consumption on edge, aggregate, and core switch

c(i,j) The energy cost between PM (or switch) ​i​ and ​j

ci,j The energy cost when VM pair ​(v​i​,v ​i​’) ​ traverses ​mb ​j

Cp
 The total energy cost for an MB assignment function ​p

2.1.2. Middlebox Model

Load balancers inside data centers are known to have the highest failure probability

according to Gill et al [1]. The high failure rate is due to faults arising from configuration errors

and bugs in the software. Other errors arise from application-specific integrated circuit (ASIC)

and memory. In this research project the general case of only one type of middlebox such as a

load balancer will be considered but multiple copies of that same middlebox will be present.

Cases where different types of middleboxes with multiple copies exist will not be studied here

but discussed in the future work section [1].

7

During experimentation, ​m​ software-based middleboxe instances ​M={mb​1​,mb​2​,...,mb​m​}

were placed inside the data center by installing them inside corresponding switches. Assume that

middlebox ​mb​j​ is located at switch ​sw(j) ​ ​V ​s​. Policy specification require each1)(≤ j ≤ m ∈

VM pair ​(v​i​,v ​i​’)​ to traverse a middlebox instance. Each middlebox instance will have a capacity

constraint where at most ​K​ VM pairs will be able to traverse it. Figure 1 contains an example

where there are two load balancers ​MB​1​ and ​MB​2​ and the capacity of each is ​K​=2 [1].

2.1.3. Bump Off The Wire Design

Traditionally middlebox appliances have been deployed using an inline

“bump-in-the-wire” design. Cases such as these, involve dedicated middlebox hardware

appliances that are physically plugged into the network. There are some drawbacks, such as the

fact that all traffic running in the network must pass through these middleboxes whenever they

pass through the switch in which they are installed in. In certain situations, this may be

unnecessary and a waste of resources since certain application specific traffic may not need to

traverse this middlebox and only use up the capacity of the middlebox. Dynamically configuring

middleboxes to process traffic was very tedious and time consuming in traditional middleboxes.

Sometimes there are multiple copies of the same physical middlebox in the network. In cases like

this, resources may be wasted if the traffic only needs to traverse the middlebox once but instead

passes multiple times and thus increase processing load and energy consumption. This research

project will implement the “bump-off-the-wire” design [1]. This approach was also improved by

Zhang [5]. In these designs middleboxes are take off the physical networks and implemented as

software modules or ​VMs​ installed inside a PM which are plugged into each switch. As traffic

8

traverse switches they will explicitly forward them to an attached middlebox if necessary. Since

there are low latency links and minimal performance overhead, data center networks are suitable

for this traffic redirection [1].

2.1.4. Energy Model

Power consumption in the data center network will be measured by the total amount of

switches that traffic passes through. The notations will be used to denote the power, , rc ra re

consumption on a core switch, aggregate switch, and edge switch, respectively, whenever traffic

from a VM communication passes through them. There are two energy consumption models that

are currently adopted in cloud data center network research [1].

Uniform Energy Model

This model will measure energy consumption as the minimum number of switches that VM

communication traffic passes through [1]. In other words, any switch that forwards traffic will

cost the same amount so every core, aggregate, or edge: . As an example, consider=rc ra = re

Figure 1, if =1 then the power consumption between ​v​1​ and ​v​1​’​ and between ​v​2​ and ​v​2​’=rc ra = re

are 3 and 5 respectively.

Skewed Energy Model

This model is based on the simple idea that higher layer switches will consume a greater amount

of energy than the lower ones. So, . For example, in Figure 2, if ​r​e​=1, ​r ​a​=5, and ​r ​c​=10>rc ra > re

the power consumption between ​v​1​ and ​v​1​’​ and between ​v​2​ and ​v​2​’​ are 7 and 22, respectively [1].

EXAMPLE 1

9

In Figure 1 the capacity of each middlebox is ​K=2​ and each VM pair must traverse at most one

instance. Here ​(v​1​,v​1​’)​ traverses ​MB​1​ with a cost of 3 and ​(v​2​,v​2​’)​ also traverses ​MB​1​ with a cost of

5 which results in a total cost of 8 which is ideal because it achieves the minimum cost under the

uniform energy model [1].

2.1.5. Problem Formulation of LB-MAP

Let ​c(i,j)​ denote the minimum energy consumption between PM (or switch) ​i​ and ​j​. Let

 be the minimum power consumption for VM pair when it is assigned middlebox ​mb​j​.ci,j v ,)(i vi′

Then,

(1)(S(v), w(j)) c(sw(j), (v)). ci,j = c i s + S i′

The load balanced middlebox assignment function is defined as , which means that>p : P − M

VM pair is assigned to middlebox instance . Given any middleboxv ,)(i vi′ ∈ P (i)p ∈ M

assignment function , the power consumption for VM pair is thenp v ,)(i vi′

(2)(S(v), w(p(i))) (sw(p(i)), (v)). ci,p(i) = c i s + c S i′

The total energy consumption of ​l​ VM pairs with middlebox assignment ​p​ as . ThenCp

(c(S(v), w(p(i))) (sw(p(i)), (v))) . (3)Cp = ∑
l

i=1
ci,p(i) = ∑

l

i=1
i s + c S i′

Let be the assignment that produces the minimum total energy consumption among all thepmin

middlebox assignments , in other words It is the objective of theΡ , ∀p .Cpmin ≤ Cp ∈ Ρ

LB-MAP to find such a ​p​min​ under the constraint that at most ​K​ ​VM​ pairs can be served by any

middlebox instance:

{1 |p(i) }| , ∀ j, .| ≤ i ≤ l = j ≤ K 1 ≤ j ≤ m

10

Figure 2. Fat Tree Network with Capacity ​K=1​ [1]

EXAMPLE 2

Consider Figure 2, which is similar to Example 1, but instead of having K=2, set the capacity to

K=1. The VM pairs can no longer traverse the same middlebox simultaneously. VM pair ​(v​1​,v​1​’)

traverses ​MB​1​ ​(shown in blue color) with a cost of 3 while ​(v​2​,v​2​’)​ traverses ​MB​2​ (shown in red

color) with a cost of 9 and result in a total cost of 12 under uniform energy model.

2.2. Minimum Cost Flow (MCF) Optimal Algorithm

This section will show that LB-MAP is equivalent to the minimum cost flow problem [1].

The minimum cost flow problem will be presented along with its algorithm and then the data

center network will be transformed to the flow network in order to show the equivalency.

Minimum Cost Flow Problem (MCF)

11

The MCF problem is an optimization problem in which the cheapest possible way of sending a

flow from one node to another node is found [1]. The MCF can be represented by a directed

graph . Each has a capacity ​c(u,v)​ which is the maximum amount of flowV ,)G = (E u,)(v ∈ E

that can pass through that edge. For every single amount of flow that passes through u,)(v ∈ E

there is an associated cost . At two ends of the graph there exist a source node with(u,)d v s ∈ V

supply and a sink node with demand . When a flow is present in an edge it is denotedb t ∈ V b

 and mapped as and there are two constraints [1]:(u,)f v f : E → ℝ+

1) Capacity constraint: The flow in an edge cannot exceed the capacity:

.(u,) (u,), ∀(u,) Ef v ≤ c v v ∈

2) Fow conservation: The same amount of flow that enters a node is same amount that must

exit. . The net flow out of source ​s​ isf (u,) f (v,)∀v ∖{s, }∑

 u∈V
v = ∑

 u∈V
u ∈ V t

and the net flow into sink node ​t​ is .(f (s,) (u,)) ∑

 u∈V
u − f s = b (f (t,) (u,))∑

 u∈V
u − f t = b

The goal of the MCF is to find a flow function ​f​ what will yield the smallest cost possible, that is:

 (4)(d(u,) (u,)). min ∑

 (u,v)∈E
v · f v

MCF Algorithms

The MCF can be solved efficiently using combinatorial algorithms. Some of these algorithms

include cycle-canceling, successive shortest path, out-of-kilter algorithm, but in this research

project it is the scaling push-relabel algorithm by Goldberg that will be adopted [1]. The

algorithm’s time complexity for any flow network is where ​a​, ​b​, and ​c(a b og(a))O 2 · · l · c

12

represent the number of nodes, number of edges, and the maximum edge capacity in the flow

network, respectively [1].

2.2.1. Transforming a Data Center Network to a Flow Network

Transformation of the data center network ​G=(V,E)​ into a new flow network ​G’=(V’,E’)

will be discussed next. There are five steps to complete:

Step 1. s } t }V ′ = { 0 ⋃ { 0 ⋃ P ⋃ M

Step 2. (s , v ,)) v ,) } ((v ,), b) v ,) , b }E′ = { 0 (i vi′ : (i vi′ ∈ P ⋃ { i vi′ m j : (i vi′ ∈ P m j ∈ M ⋃

(mb ,) b } { j t0 : m j ∈ M

Step 3. For each edge set capacity to 1, and cost to 0. For each edge sets , v ,))(0 (i vi′ mb ,) (j t0

its capacity to ​K​ and cost to 0.

Step 4. For each edge set its capacity as 1 and its cost(v ,), b), v ,) , b(i vi′ m j (i vi′ ∈ P m j ∈ M

as which is the cost of VM pair ​(v​i​,v ​i​’) ​ is assigned middlebox ​mb ​j​. ci,j

Step 5. Set both supply and demand of and to .s0 t0 l

Figure 3. New Flow Network Transformed From A Data Center [1]

13

The technique to convert the data center to a network flow is similar to [30]. Once the

transformation is complete it will be passed to the MCF algorithm discussed earlier, which will

then output the load-balanced middlebox assignment which yields the minimum power

consumption for ​l​ VM pairs. Each VM pair will be assigned a middlebox without violating its

capacity constraint [1].

Time Complexity for LB-MAP Algorithm

Time complexity for LB-MAP is made up of two crucial steps: the graph transformation, and

MCF algorithm. The graph transformation which consists of calculating costs and ​c(i,j)​ takesci,j

O(|V|​3​)​. Creating the edges will take so total construction complexity is(l)O + m · l + m

. The MCF algorithm used is the scaling push-relabel algorithm which has a time(V)O | |3 + m · l

complexity of where the number of nodes, number of edges, and capacity(a b og(a))O 2 · · l · c

are represented by ​a​, ​b​, and ​c​, respectively. In the transformation graph we have nodes

 and and capacity ​K​. Thus the complexity for MCF isV || ′ = 2 + l + m E || ′ = l + m · l + m

. Putting both parts together give the LB-MAP algorithm a((l) og((l))) O + m 2 · l · m · l + m · K

complexity of .(|V | l) og((l)))O 3 + (+ m 2 · l · m · l + m · K

Theorem 1 ​: LB-MAP is equivalent to the minimum cost flow problem.

Proof ​: Applying the minimum cost flow algorithm to the flow graph will a) assign each of the ​l

VM pairs to exactly one middlebox while b) not violating the middlebox capacity constraints and

c) achieve the minimum energy consumption in the graph for all ​l​ VM pairs.

The transformed graph will ensure that all ​l​ VM pairs will be assigned a middlebox

instance. Since the supply at ​s​0​ is ​l ​and has an edge with every VM pair, the flow will pass

14

through every VM pair. Note that the capacity on each edge is one so all flow must go through

every edge from ​s​0​ to every VM pair. Due to conservation constraints, each flow must then leave

every VM pair and go to a middlebox. The capacity on every edge is one so it will(v ,), b)(i vi′ m j

be able to accommodate the flow from any VM pair.

All VM pair assignments to middleboxes respect the capacity constraints. Step 3 says that

the capacity for edges is ​K​ so no more than ​K​ amount of VM pairs will pass flowmb ,)(j t0

through any middlebox.

Total cost of the flow in the transformed network is calculated from edge .(v ,), mb)(i vi′ j

It is the only edge with a cost which is and it represents the minimum energy consumptionci,j

when VM pair is assigned to middlebox . All other edges in the network have a zerov ,)(i vi′ mbj

cost which indicates that only the VM communication cost is considered in the minimum cost

flow. The minimum cost flow algorithm thus sends ​l ​amount of flow from ​s​0​ to ​t​0​ and shows that

the corresponding VM communication costs are the minimum.∎

2.3. Three Heuristic Algorithms

Three polynomial-time greedy algorithms are proposed for comparison purposes. Each

algorithm takes place in rounds and uses different criteria to find an assignment between a VM

pair and a middlebox.

VM-Based Algorithm. ​ The VM-Based algorithm assigns VM pairs to the middlebox that yields

the lowest power consumption and also satisfies the middlebox capacity constraints. Once a

middlebox has been assigned to a VM pair its load capacity will be updated. Finding all

minimum energy consumption paths between all pairs of PMs takes ​O(|V|​3​)​. Assigning each VM

15

pair to a middlebox takes ​O(l ⋅ m)​ and so therefore the time complexity for the algorithm is

.(V)O | |3 + l · m

Algorithm 1: ​ VM-Based Algorithm
Input: ​ A data center ​G=(V,E)​ with ​l​ VM pairs and ​m​ MBs
Output: ​ Total energy cost ​C ​for all the ​l​ VM pairs.
Notations ​:

i​: index for VM pair
j​: index for middlebox instances
load(j) = 0​: current load for ​mb​j

: the minimum energy cost for VM pair ​(v​i​,v ​i​’)ci
min

j​*​: middlebox ​mb​j​ assigned to ​(v ​i​,v ​i​’)
1. C=0​;
2. for (i=1 to l)
3. = infinity;ci

min
4. ​ for (j=1 to m)
5. if () ≤ and load(j)ci,j ci

min < K
6. ;ci

min = ci,j
7. j*=j;
8. ​ end if;
9. ​end for;
10. load(j*)++;
11. ;C = C + ci

min
12. end for;
13. RETURN ​C.

MB-Based Algorithm. ​ In the MB-Based algorithm, each MB will be assigned ​K​ VM pairs. The

assigned VM pairs will be those that produce the minimum energy consumption when traversing

that particular middelbox. The running time is which isl g(l))V| |3 + m · (+ l · l + K

.(V l g(l)))O | |3 + m · (· l

Algorithm 2: ​ MB-Based Algorithm
Input: ​ A data center ​G=(V,E)​ with ​l​ VM pairs and ​m​ MBs
Output: ​ Total energy cost ​C ​for all the ​l​ VM pairs.

16

Notations ​:
i​: index for VM pair
j​: index for middlebox instances
X​j​: the set of VM pairs assigned to ​mb ​j
assigned[i]​: set to true if VM pair ​(v​i​,v ​i​’) ​ has been assigned a MB, else it is false

1. C=0​;
2. for (i=1 to l)
3. assigned[i]=false;
4. end for;
5. for (j=1 to m)
6. ⊘X j =
7. for(i=1 to l)
8. if(assigned[i]==false)
9. (i,)}UX , assigned[i] rue;X j = { ci,j j = t
10. ​end if;
11. ​end for;
12. ​Sort in non-descending order based on values for ​ ;X j ci,j
13. (x ,), x ,), x ,), ..},X j = { 1 cx ,j1

(2 cx ,j2
(3 cx ,j3

.
14. where ..; cx ,j1

≤ cx ,j2
≤ cx ,j3

≤ .
15. for (k=1 to K)
16. ;C = C + cx ,jk

17. ​end for;
18. end for;
19. RETURN ​C.

VM+MB-Based Algorithm ​. In each round, a VM pair is assigned to an MB instance such that it

produces the minimum energy consumption not only among all MBs with available capacity but

all other available VM pairs. The time complexity is ​O(|V|​3​ + m⋅l)​.

Algorithm 3: ​ VM+MB-Based Algorithm.
Input: ​ A data center ​G=(V,E)​ with ​l​ VM pairs and m MBs
Output: ​ Total energy cost ​C ​for all the ​l​ VM pairs.
Notations ​:

i​: index for VM pair
j​: index for middlebox instances
load(j)=0​: current load for ​mb​j*
i​*​,j​*​: ​i​*th​ VM pair is assigned to ​mb ​j*​ in each round,

: the minimum energy obtained in each roundc
min

17

1. C=0​;
2. for (i=1 to l)
3. assigned[i]=false;
4. end for;
5. while ​(unassigned VM pairs exist)
6. ;nf initecmin = i
7. ​for (i=1 to l)
8. if(assigned[i]==false)
9. for (j=1 to m)
10.)if (load(j) and c< K i,j

 ≤ cmin
11. ;cmin

 = ci,j
12. j*=j, i*=i;
13. ​end if;
14. ​end for;
15. ​end if;
16. ​end for;
17. ​assigned[i​*​]=true, load(j​*​)++;
18. ​C=C+c​min​;
19. end while;
20. RETURN ​C.

3. CONTRIBUTION

This research project is the first to analyze the load balanced middlebox assignment

(LB-MAP) problem using an SDN testbed. The testbed has been implemented using a network

emulator called Mininet and an SDN controller called Ryu. Three heuristic solutions have been

proposed by B. Tang [1] that are near optimal in theory but no quantifiable metrics have been

produced. Prior implementations only compiled the algorithms with simple test cases that did not

consider real network environments variables such as link bandwidth and packet rate. Each

algorithm was implemented in the testbed and then their performances were compared to find the

best solution.

18

Data centers must route traffic to their correct destinations but depending on their service

level agreement (SLA), some traffic may be required to traverse one or more middleboxes (MBs)

before reaching its destination. Mininet is a powerful network emulator used by academic

institutions for SDN research. Mininet was configured to create a data center with a fat tree

topology. Ryu is a powerful SDN controller that is compatible with Mininet. Resources are

limited and for data centers to be competitive they must eliminate waste. Waste can be

eliminated by balancing the load between all middleboxes, and finding the shortest path to travel

from source to destination to decrease energy consumption. The heuristics perform traffic

management for data center networks.

4. BACKGROUND

4.1. Software Defined Networking

Software Defined Networks (SDN) is a network architecture in which the data plane and

the control plane are decoupled or separated. The architecture of SDN involves three primary

layers which are the application layer, the controller layer, and the forwarding layer as shown in

figure 4. The application layer includes network functions such as firewalls, load balancers, and

intrusion detection systems.

19

Figure 4. Software Defined Networking Diagram [27]

The application layer communicates with the controller layer via the Northbound

interface. The Northbound interface may be implemented using different protocols such as

Frenetic, REST, or an API. The controller layer communicates the network functions to the

forwarding plane via the Southbound interface. The Southbound interface utilizes the OpenFlow

protocol to communicate between the control layer and the forwarding layer. The forwarding

layer takes care of routing network packets. The forwarding layer is composed of network

appliances such as routers and switches [12].

4.2. OpenFlow A Software Defined Network Protocol

OpenFlow is the protocol that virtual and physical switches use to communicate in a

software defined network. SDN controllers manage switches through a secure channel using the

OpenFlow protocol. The controllers listens on a specific port and when switches enter the

20

network they send messages to the port. These messages send the controller information such as

the protocol version the switch supports, MAC address, and hardware type. OpenFlow is utilized

in the southbound layer which connects the forwarding plane (i.e. physical or software network

devices) to the control plane. The forwarding plane is sometimes referred to as the data plane and

the control plane is also the management plane [12].

4.3. Mininet A Virtual Network Emulator

Mininet is an open source network emulator that allows researchers to create virtual

networks with many switches and hosts in one single machine. Mininet is Python based and runs

a collection of end-hosts, switches, routers, and links on a single Linux kernel. Lightweight

virtualization is used to make one computer look like a complete system running the same

kernel, system, and user code. A host in mininet can run just like a real machine so it can run

linux programs and run bash scripts. These hosts have virtual ethernet interfaces which can send

and receive packets like a normal ethernet card [21]. Mininet can be installed in a desktop, a

server, or in a machine in the cloud. Mininet contains a command line interface (CLI) and an

application programming interface (API) so researchers can configure the network anyway they

want. It speaks the OpenFlow protocol and is ideal for Software Defined Network (SDN)

implementations [20].

Mininet allows hosts to send traffic to another host in the network or a host outside the

network. By default Mininet creates a simple network with two hosts, a switch, and uses the

default SDN controller. The sample network is small but powerful because it allows users to

view interhost communications from different layers. When hosts pings one another, the Mininet

21

CLI displays packets being sent and received. One can also open up Wireshark and observe

communication patterns just as a live physical network. Administrators can view traffic at the

regular IPv4 level and also at the TCP layer where OpenFlow operates [20].

Developers can quickly generate any desired network because they can use the CLI or

Python scripts to instantiate topologies. Mininet can modify parameters such as the size of the

network, the SDN controller, and link bandwidth. Python scripts are a great way to create large

and complex networks or implement special labeling so that traffic patterns are easier to identify

or manage [20].

The Mininet API gives researchers the power to create any network. The main class to

create and manage a network is ​Mininet ​and the base class for creating topologies is ​Topo​.

Functions like ​addSwitch()​, ​addHost()​, and ​addLink()​ ​add necessary components to a network.

They add switches, hosts, and let developers specify a name. Function ​addLink()​ creates network

links between any two devices like hosts or switches. The network can be started or stopped by

using the functions ​start()​ and ​stop()​ respectively [20].

There are some limitations to Mininet which impact the speed at which packets may be

sent. For example, if mininet runs on a server with a 2.0 Ghz CPU and can handle about 1Gbps

of traffic then virtual hosts will have to share these resources and cannot be assigned the entire

CPU and bandwidth that is actually available. It is crucial to realize that hosts do not contain

their own dedicated switching hardware. When hosts are created they will all share the same

memory and can thus run scripts from the local machine. Since Mininet is not a simulator it does

not have a strong notion of real time and thus timing measurements are based on real time. For

22

improved time accuracy, especially under heavy load, it is important to carefully limit the CPU

bandwidth of the Mininet hosts [21].

4.4. Ryu A Software Defined Network Controller

Ryu is an open source software defined networking (SDN) framework that give users the

ability to control OpenFlow enabled devices [23]. Ryu is the Japanese word for “flow” and its

purpose is to keep network traffic flowing smoothly. Ryu is written entirely in Python, open

source, and maintained by an active community. Ryu supports other networking protocols such

as NETCONF and OF-config. Ryu supports various versions of OpenFlow such as 1.0, 1.2, 1.3,

1.4, and 1.5. Ryu works with OpenFlow switches from various organizations such as Open

vSwitch, Centec, Hewlett Packard, IBM, and NEC [28].

Developers can create new network management and control applications with Ryu by

using its application programming interfaces (APIs). Ryu can communicate information down to

switches and routers using southbound APIs and up to the applications and business logic using

northbound APIs. Figure 5 shows the northbound and southbound layers that Ryu interacts with.

The northbound is where the logic is found. These are software implementations of standard

switches and hubs or other appliances used to load balance the network [29].

23

Figure 5. Ryu Architecture [28]

Ryu is powerful because it has a global view of all network devices and can utilizes logic

from Python scripts to calculate efficient routes and deliver traffic to its destination. Ryu can act

as a traditional switch or developers can programmatically alter network behavior by configuring

switches and routers. Thanks to the controller, developers do not have to understand the details

of the OpenFlow protocol nor its syntax in order to configuring network devices, instead; they

only have to focus on the logic of the flow in network [28].

5. RELATED WORK

One of the first works to discuss middlebox management in data centers was the

architectural work of Joseph et al. [1]. He proposed a new layer-2 switching layer that detects

different types of traffic and then forwards them through different sequences of middleboxes. It

was shown that their technique did traverse middleboxes correctly and efficiently. Further

system designs and algorithmic challenges were addressed by Qazi et al. [4] Efficient data play

support for policy composition was proposed and they also unified switch and middlebox

24

resource management. An entirely new and different design for middlebox management was

proposed by Sekar in which individual middleboxes and their management were consolidated to

multiplex hardware resources and then reused processing modules [1].

Managing middleboxes in enterprise networks is no small feat but an interesting idea has

emerged from researcher Sherry, in which it has been proposed to outsource all of the middlebox

processes and computations to other cloud service providers as a solution [1]. A software defined

middlebox networking framework was realized by Gember et al. [1] in which he represented,

manipulated, and controlled the middlebox states. Another framework for SDN-enabled services

was presented by Zhang et al. [5] and it dynamically routed traffic through any sequences of

middleboxes. Additionally, they proposed an algorithm that would find the optimal location for

any middlebox.

In order to create effective solutions to the middlebox problem, researchers have

identified deep theoretic roots. Liu has researched the middlebox placement problem by

considering network information and policy specifications in order to determine the optimal

locations for middleboxes so that end to end delay and bandwidth consumption is optimized [9].

It turns out that this problem is NP hard and so, instead, heuristics were proposed as solutions.

Online primal-dual algorithms were designed by Li et al. [1] to deal with the policy-aware cloud

application embedding problem. Cuie et al. [1] studied dynamic virtual machine consolidation

and dynamic network policy (re)allocation to meet both efficient data center resource

management and middlebox traversal requirements.

Among the research covered thus far, the issue optimal load-balancing for middleboxes

in data centers was specifically addressed by Qazi et al. [4]. An online integer linear program

25

(ILP) was formulated to minimize the maximum of the middlebox load across the network but

depending on the size of the network this process can become very lengthy. However, the

LB-MAP problem discussed in this research has different goals and different solution

techniques. Minimizing VM communication costs and satisfying middlebox load capacities are

the goals of LB-MAP. The proposed solutions include the minimum cost flow solution and a

suite of time-efficient heuristic algorithms [1]. In one recent research experiment, a

programmable middlebox was introduced by Tu et al. [1] The middlebox was programmed to

distribute data center traffic more evenly and thus enhance bandwidth utilization and reduce

traffic delay. The middlebox communicated to an SDN controller that recorded traffic

distribution and traffic load and then performed the necessary load balancing. This solution is

effective but unlike the LB-MAP problem, it did not consider middlebox capacity constraints nor

try to minimize VM communication energy costs [1].

5.1. Data Center Topology

The type of networks that this research will focus on are data centers with fat tree

topologies because they are the preferred choice when interconnecting commodity hardware [3].

A fat tree network is a variation of the three-stage Clos networks and it is rearrangeably

non-blocking which means that all available bandwidth to the end hosts can be fully saturated.

This network also contains a 1:1 oversubscription ratio which means that all hosts may

potentially communicate with any other hosts at the full bandwidth of their interface [1].

26

Figure 6. Data Center with Fat Tree Topology

An example of a fat tree network can be seen in Figure 6, which is also called a ​ k-ar​y

fat-tree. The ​k​ variable stands for the number of ports in each switch and the figure is an example

of a ​k​=4 fat tree. This topology contains a three-layered hierarchical order of switches. Starting

from the top are the edge switches, aggregation switches, and the edge switches. Higher layer

switches consume the most energy whereas the bottom layer switches consume the least amount

of energy since the top layer switches handle traffic across the network while the bottom layer

switches handle traffic form the hosts they are directly connected to. The lower two layers are

separated into ​k​ pods where each pod contains ​k/2​ aggregation switches and ​k/2​ edge switches

and they form a complete bipartite graph in between [1]. For each edge switch, ​k/2​ of its ports

connect to physical machines (PM), and the other ​ k/2​ ports connect to the higher layer

aggregation switch. There are k-port core switches and they each connect to k pods. Fat trees 4
k2

contain PMs and since the example is a 4-ary fat-tree, it contains 16 PMs [1]. 4
k3

27

6. METHODOLOGY

6.1. Testbed Settings

The experiment testbed was implemented using a Linux Ubuntu Server system. The

experiments ran on an Ubuntu Server 16 (64-bit) with an Intel i7 3.4 Ghz CPU and 16GB of

memory. The hypervisor used is Virtualbox 5.1 and it is used to instantiate three virtual

machines. Each VM is allocated 1 CPU and 2GB of memory. Each VM contains Mininet and

Ryu and each ran and tested one of the algorithms. Python 2.7 is used to write the main logic in

Ryu as well as the topology used in Mininet. Communication between the controller and

switches occurred on port 6633 and utilized the OpenFlow 1.3 protocol. Each experiment runs

for 500 seconds or five minutes.

6.2. The Ryu Framework

Ryu uses scripts and the OpenFlow protocol to communicate and manage the switches.

Ryu applications are created using Python scripts. All Ryu applications are subclasses of the

RyuApp​ class. Devices from the forwarding plane connect to the Ryu controller by sending

messages to the correct port. SDN controllers listen to standard ports 6633 or 6653 and this

project uses port 6633. Ryu and the switches will initiate communication between each other by

first conducting a handshake in which both agree on a communication protocol to use as well as

the corresponding version. Although there are different types of protocols available, this project

will use OpenFlow version 1.3 for SDN communication.

28

The virtual machine image provided by ​www.SDNHub.org ​was used because it provides

a good foundation to implement the testbed. This image was an Ubuntu 14 system with Mininet

2.2, Ryu 3.22, and OpenFlow protocol version 1.3.

The Ryu application is composed of six major components that perform unique functions

and are divided by different directories. The ​app​ directory contains a set of applications that run

on the northbound interface of Ryu. The ​base​ directory contains the base class, ​RyuApp​, which is

always inherited for all new Ryu applications. The ​controller​ directory contains files to handle

OpenFlow functions. The ​lib​ directory contains set of packet libraries that are used to parse

different protocol headers. The ​ofproto​ directory contains OpenFlow version specific

information so that Ryu can work with different protocol versions. The ​topology​ directory allows

Ryu to discover devices in the network and it uses the LLDP protocol.

6.3. Ryu Applications

Creating Ryu applications is straightforward because only a small amount of code is

required but it will not perform any tasks until the logic is implemented. An example of a small

and simple Ryu application is shown in Figure 7 but it is useless because it is missing the logic to

handle network traffic. Ryu’s powerful API can easily be integrated with this code so that it will

be able to handle live traffic by either blocking some of the traffic or performing complex packet

redirections. Ryu uses handlers and decorators such as ​ryu.controller.handler.set_ev_cls​ in order

to listen and observe events, parse normal packets such as TCP or UDP, and create and send

OpenFlow or SDN messages such as PACKET_OUT and FLOW_MOD [27]. Figure 8 shows

the decorator that allows Ryu to receive packets sent from a switch to the controller.

29

Figure 7. Simple Ryu Application [28]

Figure 8. Ryu Python Decorator Listens to OpenFlow Events [28]

The Python script contains the function ​packet_in_handler​ that listens to messages from

switches. Switches send messages to Ryu via ports. The ​set_ev_cls​ decorator tells Ryu to call

the decorator function whenever a PACKET_IN is detected. A PACKET_IN message occurs

when a switch encounters a new flow entry that it does not recognize and this results in a table

miss.

6.4. Ryu & Network Traffic

Ryu will use its logic to decide what to do with PACKET_IN messages. Ryu will extract

valuable information from packet headers as seen in Figure 9 and 10. Once Ryu determines what

is to be done with the PACKET_IN message received from the switch, it builds and sends a

PACKET_OUT message. The PACKET_OUT message serves as a quick response as to what a

switch should do when encountering a packet or flow of packets that it is not familiar with. The

switch first looks at its own flow table to see if it recognizes the incoming flow before deciding

to message the controller. Figure 11 shows the OFPPacketOut class that is used to build the

PACKET_OUT message. The message will tell the switch what port to send the flow through.

30

Figure 9. Ryu Extracts Packet Information [28]

Figure 10. Ryu Functions Inspect Packet [28]

In order to create a new forwarding rule for a switch, it will build a FLOW_MOD

message. This message is sent from Ryu to the switch and it will install a new flow inside the

switch’s flow table so it will know what to do when similar flows that arrive in the future. This

will require a match, and action, and an instruction to be created. Figure 12 shows a match

instruction in which a packet must match the ​in_port ​and ​eth_dst ​specified.

The match instructions can specify other fields such as the MAC address or the IP

address. The actions instructions tell the switch to pass the packet through a specific port or

perhaps change its header fields by writing a new destination MAC address. Flow entries may

also include a priority number and the higher the number the higher the priority. Note that

priority number are only considered when there are wildcard values in the match instruction. For

example if a match specifies the source MAC and the destination MAC then that is an exact

match. If a match considers any source MAC and a specific destination MAC then it contains a

wildcard. When an incoming flow matches multiple flow entries in the flow table and the

matches contain wildcard values then the entry with the highest priority will take precedence.

31

Figure 11. Ryu Builds PACKET_OUT Message [28]

Figure 12. Ryu Match Instruction [28]

Figure 13. Ryu Action Instruction [28]

Figure 13 shows an instructions which tells a switch to flood the network. This is useful

when the controller does not know how to locate the end host and needs to ask all devices to find

out where they are located. An example of this is when traditional switches send ARP requests to

identify all the machines or MAC addresses that are connected to its port. All devices connected

to the switch receive the ARP request but only the device that is associated with the address in

the request will reply using an ARP reply. The switch or controller builds a table matching the

MAC address to the port. The action can also be directed towards a specific location. The action

will be encapsulated inside the class OFPInstructionActions as seen in Figure 14.

32

Figure 14. Ryu Instruction Object [28]

Figure 15. Ryu OFPFlowMod Object [28]

Figure 16. Complete Ryu Application [28]

Once the match, action, and instruction are ready, they can be encapsulated into a

FLOW_MOD message using the OFPFlowMod class. Figure 15 shows an OFPFlowMod object

which includes the match and instruction to be applied. This will be sent using the Datapath’s

send_msg​ function. SDN terminology varies slightly from tradition and refers to switches using

terms such as ​datapaths ​but they are also known as ​bridges ​inside virtual switches [28].

33

A complete Ryu application is shown in Figure 16. The second argument in the

decorator, ​MAIN_DISPATCHER​, tells Ryu to only call the function if the handshake is complete.

This is useful as it will save time from processing relevant messages. The PACKET_IN data

structure is found inside ​ev.msg​. The datapath is represented by ​dp​. The objects ​dp.ofproto​ and

dp.ofproto_parser ​represent the protocol used between Ryu and the switch. The action set may

include one or more action instructions. The class OFPActionOutput is used to specify the switch

port that a packet will go out through. Class OFPPacketOut is used to build the PACKET_OUT

message that contains the OFPActionOutput object. Datapath classes encapsulate OpenFlow

message objects and use the ​send_msg​ method to instruct switches what to do.

6.5. Ryu Algorithm Implementation

The algorithms for the data center are implemented in a class called ProjectController and

it is a subclass of RyuApp. A module called ​get_path_module()​ contains access to all three

algorithms: VM, MB, and VM+MB. As traffic arrives, the module will activate whichever

algorithm has been enabled and process the flow.

Global variable ​ALGO_CHOICE ​is used to enable or disable algorithms in the network.

Only one algorithm may run per each session. As traffic is detected by the Ryu controller, it will

check it against the master list of VM pairs saved in a variable called ​vmpairs​. If the incoming

traffic matches a VM pair from the list then it will be assigned to a middlebox. The pairing of a

VM pair and a middlebox will depend on the specific algorithm that has been enabled for the

session. The path will be calculated using the shortest path algorithm known as Dijkstra’s

algorithm. This shortest path will be modified into two parts: 1) path from source VM to

34

middleboxe and 2) path from middlebox to destination VM. Finally, both paths will be combined

and stored in a table. This path will be installed in all switches. Next time traffic from the VM

pairs is detected, the switches will reroute the traffic to first traverse the assigned middlebox

before it reaches the destination VM.

The class diagram below shows the attributes and functions of the ​RyuApp ​subclass

ProjectController which implements the proposed heuristics. The ProjectController is the only

instance since Ryu utilizes the singleton design pattern. Figures 17 and 18 below display the

attributes and the functions in the ProjectController class.

Figure 17. Ryu Class Attributes Figure 18. Ryu Class Functions

35

In ProjectController the function ​_packet_in_handler()​ will handle PACKET_IN

messages from switches. Ryu will then call module ​get_path_module() ​which will decide what to

do with the incoming flow. Figure 19 shows the module and Figure 20 demonstrates the logic

inside the module.

Figure 19. Ryu Algorithm Module

Figure 20. Ryu Module Handles Flows

36

Module ​get_path_module ​will first check if the algorithm has already calculated the path,

if not then it will run on of the heuristic algorithms. The heuristic is determined by a global

variable called ALGO_CHOICE that stores an integer value pertaining to a specific heuristic

function. The boolean variable ALGO_EXECUTED informs Ryu if an algorithm has already

been calculated or not. The default value is ​False ​but is set to ​True ​as soon as the heuristic

finishes. Middleboxes are stored in the ​localswitches ​variable as a list as shown in Figure 21.

VM pairs are stored in a Python Dictionary called ​vmpairs ​as two-tuple elements as shown in

Figure 22. Figure 23 shows the variable ​load ​which contains the capacity of each switch.

Figure 21. Middlebox Initialized

Figure 22. VM Pairs Initialized

37

The VM Based algorithm calculates all paths and stores them in a hash table called

vm_mb_paths ​so that they can be retrieved later. VM pairs are represented as two-tuple string

values and middleboxes are represented using positive integers. The two-tuple string includes the

source and destination host name. A VM pair is used as a key and the value is a list of switches

that it is assigned to traverse. The function ​call_get_path_cost_2 ​is called to calculate the cost

whenever a VM pair is assigned to a middlebox. The VM pair and middlebox values are passed

as parameters to the function.

Figure 23. Ryu Load Variable

Figure 24. VM Based Algorithm Attributes

38

Figure 25. VM Based Algorithm Logic

The MB Based algorithm is similar to VM algorithm but it uses a function called ​sort ​to

sort the unassigned list of VM pairs from lowest cost to greatest cost in relation to the specified

middlebox. The variable ​x_sort ​contains the sorted VM pairs list and the function

x_sort.reverse()​ reverses the order so that they are ordered in decreasing minimum cost. This

places the minimum cost assignment at the top of the stack. The list can be placed inside a for

loop and then by applying ​x_sort.pop()​ function, the first ​k​ elements removed will produce the

minimum assignment out of all the elements available inside the stack.

39

Figure 26. MB Based Algorithm

Figure 27. MB-Based Algorithm Loop

40

The VM+MB Based algorithm combines techniques from the VM and the MB

algorithms. Two for loops are nested inside a while loop until the minimum cost assignment has

been achieved from all VM pairs and middleboxes in the sets. In the first round, a VM pair will

be assigned to a middlebox that produces the minimum cost. Then, the next VM pair in the list

will be assigned a middlebox that produces a minimum cost but only if it is less than all other

assignments will the VM pair and middlebox assignment be finalized. Once elements in the

vmlist ​have been assigned to a middlebox they are removed from the list. In the next round, the

process is similar but now less VM pairs remain in the set. As the VM pairs are assigned they are

removed and the list shrinks one by one until it is empty.

Figure 28. VM+MB Based Algorithm

41

Figure 29. VM+MB Based Algorithm Nested Loops

Figure 30. get_path​ Module

42

The function ​get_path ​will calculate the path for normal flows that do not consider any

middleboxes. Once Ryu calculates the paths using one of the algorithms, it will check the new

flows against its VM pairs list. If it is in the list, then it will lookup the flow in the flow table. If

the flow is not in the VM list, then it will find the shortest path without traversing a middlebox.

6.6. Ryu Flow Chart & Structure

Figure 31. Flow Chart Packet-In

43

Figure 32. Flow Chart Controller

6.7. Configure Ryu & Mininet Experiment

Ryu and Mininet can only be configured at the start of each session. Developers can

adjust the total number of VMs, total number of MBs, and the algorithm that will run in the

experiment. Mininet loads a script from a directory to instantiate the data center with a fat tree

topology. The Mininet CLI option ​mac ​will automatically assign mac addresses that match host

names as shown in Figure 33. This will increase stability and consistency during the simulation

and simplify the logic in Ryu. The Mininet CLI ​arp ​options allows hosts to cache mac addresses

so they know where other hosts are located. The CLI option ​ovsk ​is used to specified the type of

switch. Mininet will utilize the open source virtual switch ​Open vSwitch​. All network applicaince

44

and the controller are configured to use OpenFlow version 1.3 to maintain compatibility. The

CLI option ​remote ​lets switches know where they can find the controller. The controller can be

running in the same machine as Mininet as a separate process or it can be running in another

machine in the cloud. The SDN controller, Ryu, is a separate application in this experiment and

switches connect to localhost IP with port 6633 to send messages to it.

Figure 33. Mininet Loading Network

Figure 34. Ryu Detects Network

6.8. Start Ryu & Mininet

Start by loading Ryu app first and then start Mininet. Give Ryu about one minute to

detect the network before interacting with Mininet as seen on Figure 34. Once loaded use

45

Mininet to start pinging other hosts. Mininet runs pingall so that all switches configure their flow

table correctly. The pingall utility may take about 30 minutes or more to complete. Sometimes it

may take up to three or more tries to complete successfully. The Ryu app will detect incoming

flows. Configure the application to redirect output to a log file and record results. The log can

store the paths, list of VM pairs, middleboxes, and total cost.

Bash scripts are used to automate many of the steps and the configurations in the

experiment to make the process more efficient. Scripts like ​run-global.sh​ are used to store global

variables such as total amount of VMs, middleboxes, iterations, time, bandwidth, and directories.

Scripts are also used to start Iperf for each host in the VM pairs list. Some hosts will run Iperf in

server mode and other hosts will run Iperf in client mode. Switches communicate with the Ryu

SDN controller using port number 6633 and each switch will be assigned its own unique port

number so that the controller can send reply messages back.

Ryu will run each algorithm alone and calculate the costs for all VM pairs. Start Ryu by

typing the below command inside the CLI.

$~/ryu/bin/ryu-manager ~/ryu/ryu/app/dijkstra_ryu_vm_mb_vmmb.py --observe-links >>

~/ryu/ryu/app/resultslogs/log1.log

To start up mininet type the command in a terminal.

$sudo mn --custom ~/ryu/ryu/app/fattree4.py --topo mytopo --controller remote --switch

ovsk,stp=1,protocols=OpenFlow13 --arp --mac

46

Figure 35. Mininet Pingall

6.9. Running Algorithms in Ryu

The Ryu algorithms will run in the beginning of the experiment and store results. After

the algorithm finishes and stores the calculated paths the boolean value ​ALGO_EXECUTED ​will

be set to ​True ​and the algorithm will no longer run. In the figure a flow ​(h3,h1)​ is detected.

The module will first check if the flow belongs to a VM pair in the set, and if it does then it will

look up the flow table and send a FLOW_MOD message to the switches. Whenever a match is

made, the lookup will take place and then display the path found.

Figure 36. Algorithm checks if flow is in VM pairs list

47

In Figure 37 the network contains 9 VM pairs, 5 ​MBs​, and a load capacity of 2. The

output shows that Ryu has detected the VM pairs and middleboxes in the network.

Figure 37. Ryu Handles Traffic

Figures 38-39 display a network that contains 9 ​VMs​, 5 ​MBs​, and a capacity of two. In

the MB-Based algorithm has finished calculating all the paths and has produced a total minimum

cost of 53 as seen on the figure.

Figure 38. MB Based Algorithm Initiated

48

Figure 39. MB Based Algorithm Finished

In Figure 40 the VM+MB Based algorithm is running and the network contains 9 VM

pairs, 5 ​MBs​, and a load capacity of 2. In Figure 41 it has finished and displays the paths for the

VM pairs and middlebox pairings. The total cost was 47 which is less than MB Based (53), but

more than VM Based (45).

Figure 40. VM+MB Based Algorithm Initiated

49

Figure 41. VM+MB Based Algorithm Finished

6.10. Issues with Ryu

If Ryu needs to be restarted then the following steps are helpful: 1) quit Ryu by pressing

CTRL+C twice, 2) Exit Mininet and wait until it is done, 3) on the same Ryu terminal clear

cache by typing ​#mn -c​ (root mode), 4) run Ryu again and wait until fully loaded, 5) start

Mininet with fat tree script and wait until fully loaded, 6) ping again, and 7) if it fails then reboot

the system.

6.11. Traffic Measurement Using Iperf

Iperf is a tool used by engineers in the industry to test network resources, connectivity,

and many other things such as troubleshooting slow speeds. It is possible to generate both UDP

and TCP traffic with iperf [24]. The goal is to ensure that the algorithms work well with the

switches and that traffic is passing through the specified switches in the path. UDP traffic will be

50

generated through Iperf using one virtual machine as the host and another as the client.

Simulation will run for approximately 300 seconds or 5 minutes. Iperf generates constant bit rate

(CBR) UDP traffic and at the end of each simulation the averages are displayed. The

performance metrics used to compare the algorithms are ​End-to-end delay​ and the ​Packet loss

ratio​ [25]. Traffic will be generated at rates from 10 megabits per second (Mbps) to 100 Mpbs

and will change with strides of 10 Mbps [10].

End-to-end delay is the time that it takes for a packet to travel from a source host ​h1 ​to a

destination host ​h2​. End-to-end delay is also known as one-way-direction (OWD) and this can be

measured through the use of synchronized clocks. The source host will place a timestamp on the

packet that it sends and the destination host will note the receiving time and then find the

difference [18]. Another method to test end-to-end delay is using the ​Minimum-Pairs Protocol

and is generally used with three sets of network nodes. A good quality network link will have a

packet loss that is less than 1% [25].

Iperf commands initialize hosts to either run as a server or as a client. Each host will

configure Iperf to specify the port number, time interval (in seconds), format, bandwidth, time to

listen or transmit traffic, and enable the enhanced report option that calculates end-to-end delay.

The client and server will both produce reports of total packet loss and end-to-end delay. The

output is saved to log files. The Linux ​date​ command prints a timestamp to measure how long

the process takes to complete. To measure the results, Iperf log files are parsed and the packet

loss and end-to-end delays are recorded.

51

6.12. Iperf Server

When Iperf is in server mode it is configured to listen on port 5566 for this research

experiment. This port can be configured to any valid value but for simplicity servers are assigned

this specific port. To start the server run the command below inside the terminal:

 ​#iperf -u -s -p 5566 -i 1 -f m -e

This command instructs the host running the Iperf server to listen to UDP traffic on port

5566 and display traffic statistics inside the CLI in intervals of 1 second. The ​e​ options tells Iperf

to produce a summary of the traffic that includes latency such as end-to-end delay which is vital

for measuring the performance of each algorithm in this experiment. The Figure below shows

host ​h3​, a virtual host inside the Mininet network emulator, running Iperf in server mode. There

are many options available when using this utility but not all are required or necessary for this

experiment. Option ​u​ specifies that only UDP traffic will be handled, option ​p​ specifies the port

number, and option ​f​ specifies the format of the results displayed as either bits (b), bytes (B),

kilobits (k), kilobytes (K), megabits (m), megabytes (M), or other desired type. Figure 43 shows

a log printout every second. At the end of the printout a summary is displayed which shows the

total time of the experiment as well as packet delay and loss information.

Figure 42. Host Runs Iperf Server

52

Figure 43. Host ​h13​ Runs Iperf Report

6.13. Iperf Client

In order for a host to generate UDP traffic in client mode type the command below in a

terminal:

#iperf -u -c 10.0.0.3 -p 5566 -t 300 -b10m -e

This tells the host to send traffic to host h3 using port 5566 for 300 seconds at a rate of 10

Mpbs and then generate a report that includes the latency. Figure below shows host h13 running

iperf in client mode and its report printout.

Figure 44. Host ​h13​ Runs Iperf Client

53

One can extract packet loss ratio, average time delays, minimum time delays, maximum

time delays and the amount of packets that were sent during the time period from the log file

produced by Iperf. Figure 45 shows Iperf in client mode with log output. The settings were

bandwidth of 10 Mbps, 300 seconds, port 5566, IP 10.0.0.1, and enhanced report enabled.

Figure 45. Iperf Running in Client Mode

In this example the output format is in Interval, Transfer, Bandwidth, Jitter, Lost/Total,

Latency avg/min/max/stdev PPS, and NetPwr. If total data loss is high, it may be because flows

are beginning to be calculated and switches are sending PACKET_IN messages. To improve

packet loss the algorithm should run first so flows will be installed in all switches and then run

the traffic generator.

54

6.14. Parsing Output

Parsing data from Iperf logs was achieved by using regular expression statements in

Linux. Essential tools and utilities were: ​concatenate (cat​)​, ​piping, grep, ​and ​translate (tr)​.​ To

extract the columns and rows that contained Time, Packet Loss, and Average Delay the ​gawk

utility was used.

An example of such command is:

$cat outputtext.log | grep sec | tr - " " | tr / " " | awk '{ print “ ”$4"\t"$15"\t"$16}'

After parsing the log file, there are three remaining columns which are time in seconds, packet

loss, and average end/end delay.

Figure 46. Parsed Iperf log data

55

6.15. Plotting Results

Results are plotted using a powerful utility known as ​Gnuplot​. Start Gnuplot by using the

gnuplot​ command. Use ​Ghostscript ​to view or convert PostScript files to PDF files. To create a

simple plot type command below in the terminal.

gnuplot>plot “output-columns.dat” title “End End Delay” with linespoints in

To set the X axis type

gnuplot>set xrange [1:15], and to set X tics use gnuplot>set xtics 1,1,15,

To set the label for X axis type the command below in the terminal.

gnuplot>set xlabel “ Time (ms) ”

This will be the similar configuration format for the Y axis. Finalizing output by typing

gnuplot>set term postscript

Output the file type

gnuplot>set output “outputpostfile.ps”

Replot the data

gnuplot>replot

Finish plotting

gnuplot>exit

Data and results are stored into three folders labeled vm, mb, and vmmb in reference to

the algorithm that they represent. Under each folder there are subfolders that store the number of

VM that the experiment uses (i.e. 2,4,6, etc). The main folder will be labeled with total VM’s,

56

total MB’s, and bandwidth. Each subfolder will contain a log of the Iperf printout for each VM

pair. The parsed Iperf log data will also be stored.

7. DISCUSSION

7.1. Results

7.1.1. Experiment 1

This experiment contains 10 VM pairs, 3 middleboxes, bandwidth of 100Mbps, and the

packet rates of 1.0-10.0 Mbps. The results for the end-to-end delay and packet loss are plotted in

the graphs.

Figure 47. End-to-end Delay for 10 ​VMs​, 3 ​MBs​, 100Mbps Bandwidth

57

The three heuristics share a similar trend for the end-to-end delay because time delay

increases as the transfer rate increases. VM+MB performs best in about 50% of the time as seen

on the Table 2. It produces the smallest time delay in the following rates: 1.0-4.0 Mbps, 5.0-6.0

Mbps, and 9.0-10.0 Mbps. VM performs second best and MB performs last by having the

highest end-to-end delay times.

Table 2. Experiment 1 End-to-end Delay 10VM 3MB

Mbps Smallest Delay Median Delay Largest Delay

1-2 Same -- --

2-3 VMMB MB VM

3-4 VMMB MB VM

4-5 VM VMMB MB

5-6 VMMB MB VM

6-7 MB VMMB VM

7-8 VM MB VMMB

8-9 VM MB VMMB

9-10 VMMB VM MB

58

Figure 48. Packet Loss for 10 ​VMs​, 3 ​MBs​, 100Mbps Bandwidth

The packet loss increase as traffic rate increases for all heuristics. Out of all the heuristics

VM+MB and MB perform best as they produced the least packet loss overall and as seen in

Table 3. VM produced the largest packet loss overall.

Table 3. Experiment 1 Packet Loss 10VM 3MB

Mbps Smallest Loss Median Loss Largest Loss

1-2 Same -- --

2-3 Same -- --

3-4 Same -- --

4-5 VM MB/VMMB

5-6 MB/VMMB VM

6-7 MB/VMMB VM

59

7-8 Same -- --

8-9 Same -- --

9-10 Same -- --

7.1.2. Experiment 2

This experiment contains 10 VM pairs, 5 middleboxes, bandwidth of 100Mbps, and the

packet rates of 1.0-10.0 Mbps. The results for the end-to-end delay and packet loss are plotted in

the graphs.

Figure 49. End-to-end Delay for 10 ​VMs​, 5 ​MBs​, 100Mbps Bandwidth

60

Figure 50. End-to-end Delay Closeup

A close up view can be observed in Figure 50 to better understand the traffic behavior for

the 1.0-2.0Mbps interval. These results point out that VM+MB seems to outperform the other

algorithms from the beginning of the experiment even as traffic rate is very small.

While End-to-end delay increased for all heuristics when packet rate increased, it was

VM+MB that produced the smallest end-to-end delay overall and was the best among all

heuristics when it came to 10 VM pairs and 5 MBs. VM+MB performed best during

1.0-4.0Mbps, and 6.0-9.0Mbps as seen in Table 4. VM performed best during 4.0-6.0Mbps

interval and MB performed best during 9.0-10.0Mbps interval. Although End-to-end delay peeks

at 6.0-7.0Mbps for all heuristics it then drops but this could be due to some random variation and

needs more experimentation.

61

Table 4. Experiment 2 End-to-end Delay 10VM 5MB

Mbps Smallest Delay Median Delay Largest
Delay

1-2 VMMB MB VM

2-3 VMMB MB VM

3-4 VMMB MB VM

4-5 VM VMMB/MB --

5-6 VM MB VMMB

6-7 VMMB VM MB

7-8 VMMB VM MB

8-9 VMMB VM MB

9-10 MB VM VMMB

Figure 51. Packet Loss for 10 VMs, 5 MBs, 100Mbps Bandwidth

62

Packet loss increased in all algorithms as the traffic rate increased. VM and VM+MB

performed best overall by having the least packet loss. VM did best in 2.0-5.0Mbps interval and

VM+MB did best in 7.0-10.0Mbps interval as seen in Table 5. MB performed the worst in this

experiment as it experienced the highest packet loss out of all the heuristic.

Table 5. Experiment 2 Packet Loss 10VM 5MB

Mbps Smallest Loss Median Loss Largest Loss

1-2 Same -- --

2-3 VM -- MB/VMMB

3-4 VM -- MB/VMMB

4-5 VM -- MB/VMMB

5-6 MB VM VMMB

6-7 MB VM VMMB

7-8 VMMB -- VM/MB

8-9 VMMB -- VM/MB

9-10 VMMB -- VM/MB

8. CONCLUSION

VM+MB-Based algorithm seems to perform better than the other two algorithms but

more testing is needed. Parameters need to be further explored and adjustments must be made

63

where needed. The amount of middleboxes does affect the outcome of the energy consumption

results for every algorithm. When middleboxes are increased, there are clear differences in the

final cost for all algorithms. Lower amounts of middleboxes does not seem to have an effect on

final cost but there are some variations in end-to-end delay that must be investigated. It is

important to note that fixing the bandwidth of Mininet was crucial to producing more consistent

and accurate results. Since mininet bandwidth had not been fixed in prior experiments, results

had been much more inconsistent. Finding the right Mininet parameters should help improve the

results in the testbed that has been implemented.

9. REFERENCES

[1] M. Alqarni, A. Ing, and B. Tang. (2017). LB-MAP: Load-Balanced Middlebox
Assignment in Policy-Driven Data Centers. 1-9. 10.1109/ICCCN.2017.8038423.

[2] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar, “Making

middleboxes someone else’s problem: Network processing as a cloud service,” ​ACM
SIGCOMM Computer Communication Review​, 2012.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network
architecture,” in ​ACM SIGCOMM​, 2008.

[4] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “SIMPLE-fying
middlebox policy enforcement using sdn,” ​SIGCOMM Comput. Commun.​ Rev., 2013.

[5] Y. Zhang et al., ‘‘StEERING: A software-defined networking for inline service
chaining,’’ in ​Proc. 21st IEEE ICNP​, Oct. 2013, pp. 1–10.

[6] ETSI NFVISG, “Network functions virtualisation. introductory white paper,” 2013.

[7] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and D.

Walker, “Frenetic: A network programming language,” in ​ACM SIGPLAN Notices​, vol.
46, no. 9. ​ACM​, 2011, pp. 279–291.

[8] D. Erickson, “The Beacon OpenFlow controller,” in ​Proceedings of the second ACM

SIGCOMM​ workshop on Hot topics in software defined networking, ser. ​HotSDN ’13​.
New York, NY, USA: ACM, 2013, pp. 13–18.

64

[9] J​. Liu, Y. Li, Y. Zhang, L. Su, D. Jin, "Improve service chaining performance with

optimized middlebox placement", ​IEEE Trans. Services Comput.​, vol. 10, no. 4, pp.
560-573, Jul./Aug. 2017.

[10] W. Ma, J. Beltran, Z. Pan, D. Pan, and N. Pissinou, “Sdn-based traffic aware placement
of nfv middleboxes,” ​IEEE TNSM​, vol. 14, no. 3, pp.528–542, 2017.

[11] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou, “Traffic aware placement of
interdependent nfv middleboxes,” in ​INFOCOM 2017-IEEE Conference on Computer
Communications​. IEEE, 2017, pp.1–9.

[12] D​. Kreutz et al., "Software-defined networking: A comprehensive survey", ​Proc. IEEE​,

vol. 103, no. 1, pp. 14-76, Jan. 2015.

[13] R. Kumar, M. Hasan, S. Padhy, K. Evchenko, L. Piramanayagamk, S. Mohan, R. B.

Bobba, "End-to-End Network Delay Guarantees for Real-Time Systems using SDN",
IEEE Real-Time Systems Symposium (RTSS)​, 2017.

[14] Y​. Ben-Itzhak, K. Barabash, R. Cohen, A. Levin, E. Raichstein, "EnforSDN: Network

policies enforcement with SDN", ​Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manage.​, pp.
80-88, 2015.

[15] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid prototyping for

software-defined networks,” in ​Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks. ACM​, 2010, p. 19.

[16] Gao, L., Rouskas, G.N.: “Virtual Network Reconfiguration with Load Balancing and

Migration Cost Considerations”, ​Proc. - IEEE INFOCOM​, 2018, 2018–April, pp.
2303–2311.

[17] Unknown. (1970, January 01). IPERF : Test Network throughput, Delay latency, Jitter,

Transefer Speeds , Packet Loss & Raliability. Retrieved from
http://linuxthrill.blogspot.com/2016/04/iperf-test-network-throughput-delay.html

[18] End-to-end delay.​ (2019, February 18). Retrieved April 7, 2019, from

https://en.wikipedia.org/wiki/End-to-end_delay

[19] How to Install Ubuntu.​ (n.d.). Retrieved May 10, 2018, from

https://www.howtoinstall.co/en/ubuntu/trusty/iperf?action=remove

[20] Team, M. (n.d.). ​Mininet Overview​. Retrieved from ​http://mininet.org/overview/

[21] Mininet. (n.d.). ​Mininet/mininet​. Retrieved from

https://github.com/mininet/mininet/wiki/Introduction-to-Mininet

http://linuxthrill.blogspot.com/2016/04/iperf-test-network-throughput-delay.html
https://www.howtoinstall.co/en/ubuntu/trusty/iperf?action=remove
http://mininet.org/overview/
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet

65

[22] About Tics​. (n.d.). Retrieved June 2, 2018, from http://lowrank.net/gnuplot/tics-e.html

[23] Ryu​. (n.d.). Retrieved January 2, 2018, from

https://sourceforge.net/p/ryu/mailman/message/33797329/

[24] Iperf2​. (n.d.). Retrieved February 7, 2019, from https://sourceforge.net/projects/iperf2/

[25] (n.d.). Retrieved February 7, 2019, from

https://fasterdata.es.net/performance-testing/network-troubleshooting-tools/iperf/

[26] Chapter 27. Bash Arrays​. (n.d.). Retrieved May 2, 2019, from

http://tldp.org/LDP/abs/html/arrays.html

[27] The First Application​. (n.d.). Retrieved January 10, 2019, from

https://ryu.readthedocs.io/en/latest/writing_ryu_app.html

[28] Natarajan, S. (n.d.). ​RYU Controller Tutorial​. Retrieved January 10, 2019, from

http://sdnhub.org/tutorials/ryu

[29] What is Ryu Controller? ​- SDxCentral .com. (n.d.). Retrieved January 10, 2019, from

https://www.sdxcentral.com/networking/sdn/definitions/what-is-ryu-controller

[30] P. Khani, B. Tang, J. Han, and M. Beheshti. “Dao-r: Integrating data aggregation and
offloading in sensor networks via data replication”. ​In Proceedings of IEEE GLOBECOM
2015.

https://sourceforge.net/p/ryu/mailman/message/33797329/
http://tldp.org/LDP/abs/html/arrays.html
https://ryu.readthedocs.io/en/latest/writing_ryu_app.html
http://sdnhub.org/tutorials/ryu

66

10. APPENDIX

10.1. Ryu Python Implementation

Copyright (C) 2008 Nippon Telegraph and Telephone Corporation.

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.

See the License for the specific language governing permissions and

limitations under the License.

** VM-Based Algorithm **

Input is a data center G(V,E).

Set all i as assigned=False.//?

Start iterating with the first i in VM Pairs Set P.

Iterate through all j in MB Set M.

Check there is available capacity in j or load(j)<k.

Calculate Cij.

Find the minimum cost out of all available j.

Assign i to j.

Label assigned[i]=true.//?

load(j)=load(j) + 1.

Iterate next i in VM Pair Set M.

"""

update april 7 2019

This script will detect flows and apply algorithms to efficently

route them through appropriate middleboxes. The script will first

run the algorithm and use the given set of vm pairs and middleboxes

to calculate the path which yelds the minimum costs. Once the

algorithm finishes, all paths will be stored in a table. When

an incoming flow is detect it will be looked up and verified if

it has been assigned a middlebox. If it has, it will load the

appropiate path, if not, then it will find the shortest path

without including a middlebox.

The flow is installed on all switches that lie in the path. This

is achieved through PACKET_IN and FLOW_MOD messages.

"""

Libraries #

import math

import sys

import time

67

import datetime

from vmpairs_data import vmlist

from collections import OrderedDict

from ryu.base import app_manager

from ryu.controller import mac_to_port

from ryu.controller import ofp_event

from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER

from ryu.controller.handler import set_ev_cls

from ryu.ofproto import ofproto_v1_3

from ryu.lib.mac import haddr_to_bin

from ryu.lib.packet import packet

from ryu.lib.packet import ethernet

from ryu.lib.packet import ether_types

from ryu.lib import mac

from ryu.topology.api import get_switch, get_link

from ryu.app.wsgi import ControllerBase

from ryu.topology import event, switches

from collections import defaultdict

###############

GLOBALS ##

###############

Size of VM #

SIZE_VM =0 # Choose 1:16 #

Size of MB #

SIZE_MB =0 # Choose 1:16 #

ALGO CHOICE #

1: VM-Based #

2: MB-Based #

3: vm+MB Based #

ALGO_CHOICE =0

#switches

switches = []

#mymac[srcmac]->(switch, port)

mymac={}

#adjacency map [sw1][sw2]->port from sw1 to sw2

Middlebox List #

List of middleboxes #

localswitches2 =[]

VM-Pairs List #

old version #

#vmpairs2 = {}

regular dictionary #

#vmpairs3 ={}

created an ordered dictionary #

vmpairs3 =OrderedDict()

Dictionary which contains the current load for all #

the middleboxes #

load ={}

Capacity for middleboxes #

capacity is initialzied as #

an integer. #

capacity =0

68

Set to True when aglorithm finishes #

ALGO_EXECUTED =False

Total Cost of network flow #

costtotal =0

VM Based Algorithm #

vm_mb_paths ={}

Used for MB-Based Algorithm #

mb_assigned_vmlist ={}

Maps ETH/MAC to Host Name #

eth_to_host ={}

Maps Host Name to ETH/MAC #

host_to_eth ={}

Counst Hosts Discovered during startup #

SW_NOT_DISCOVERED =True

Tells Ryu to allow switches to pass packets through #

same the port. Sets IN_PORT = OUT_PORT #

GLOBAL_IN_PORT =4294967288

PACKET_IN Counter #

packet_in_cnt =0

Used to store Edges and their values #

adjacency=defaultdict(lambda:defaultdict(lambda:None))

Print path results #

REPORT_PATH_RESULTS_ENABLED = True

###############

GLOBALS ##

###############

"""

Reset variables

load

costtotal

"""

def init_reset(): # Starts whenever algorithm is started

Global #

global load

global localswitches2

global costtotal

Reset MB Load to 0 #

for mb in localswitches2:

 load[mb]=0

Reset Costtotal to 0 #

costtotal=0

Enddef End of init_reset function #

"""

Initialize variables.

Only need to run once.

Set total VM, total MB, load, capacity,

print reports.

"""

def init_vars():

print "\t** Initialized Variables **"

Globals #

global vmpairs3

global load

global localswitches2

69

global host_to_eth

global eth_to_host

global vm_mb_paths

global capacity

global SIZE_VM

global SIZE_MB

global ALGO_CHOICE

global REPORT_PATH_RESULTS_ENABLED

Enable/Disable REPORT_PATH_RESULTS_ENABLED #

REPORT_PATH_RESULTS_ENABLED=True #True#False

#######################################

ALGO SETTINGS #

SIZE_VM =200 # Choose 1:16 #

SIZE_MB =5 # Choose 1:16 #

CHOICE #

1)VM 2)MB #

3)VM+MB 4)MCF #

5)ALL #

ALGO_CHOICE =3 #

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

DATA For Middleboxes and VM Pairs #

see outside class/file #

#~~~#

Middlebox List #

mblist=[6,9,11, 13,15,17,19,5,7,8,10,12,14,16,18, 20]

#~~~#

VM Pairs List dictionary{} #

Static list of VM Pairs ,16 total #

#vmlist=[]

#vmlist.append(("h3","h1")) # LB-MAP Graph Examples #

#~~~#

DATA END #

#####################################

MB List Initialize #

for i in range(SIZE_MB):

 localswitches2.append(mblist[i])

#Endfor #

VM Pairs List Initialize #

for i in range(SIZE_VM):

 vmpairs3[vmlist[i]]=None

#Endfor #

#####################################

Initialize Capacity #

if len(localswitches2) > len(vmpairs3.items()):

 capacity=1

Set capacity using formula ceiling(total vm pairs / total mb). #

else:

70

 capacity = math.ceil(len(vmpairs3.items())*1.0 / len(localswitches2)) #1#3#1 # k,

capacity

 capacity = int(capacity)

Initilize load for all MB in list #

for mb in localswitches2:

 load[mb]=0

"\n Initialize Mac/Eth/Host" #

Populate ETHERNET and HOST addresses. #

mymac["00:00:00:00:00:01"][0]=SW_ID

mymac[host_to_eth["h1"]][0]=SW_ID

for i in range(1,17):

 if i<16:

 var_host=str("h%d"%(i))

 var_eth =str("00:00:00:00:00:0%s"%(hex(i)[2:]))

 else:

 var_host = str("h%d"%(i))

 var_eth = str("00:00:00:00:00:%s"%(hex(i)[2:]))

 host_to_eth[var_host] = var_eth

 eth_to_host[var_eth] = var_host

End ETH/MAC #

#Enddef

#End init_vars()

#startbackup

"""

Checks if vm pair is part of the set.

"""

def check_vm_in_set_BACKUPFUNCTION(vm):

global vmpairs3

src=vm[0]

dst=vm[1]

#print "*check_vm_in_set(vm)"

#for vm in vmpairs3:

 #print vm

#print "Checking VM:",vm

if (src,dst) in vmpairs3:

 print "[FOUND VM]-> (",src,",",dst,"). "

 return True

elif (dst,src) in vmpairs3:

 print "[FOUND VM]-> (",dst,",",src,"). "

 return True

else:

 print "FAIL:VM Pair Not Found->(",src,",",dst,"). "

 return False

#Enddef

"""

Checks if vm pair is part of the set.

"""

def check_vm_in_set(vm):

global vmpairs3

src=vm[0]

dst=vm[1]

#for vm in vmpairs3:

 #print vm

71

print ("::New Func Def/New Edit::")

if (src,dst) in vmpairs3:

 print "(new func def)[FOUND VM]-> (",src,",",dst,"). "

 return True

#elif (dst,src) in vmpairs3:

 #print "[FOUND VM]-> (",dst,",",src,"). "

 #return True

else:

 print "(new func def)FAIL:VM Pair Not Found->(",src,",",dst,"). "

 return False

#Enddef

"""

get if vm pair is part of the set.

"""

def get_vm_in_set(vm):

global vmpairs3

src=vm[0]

dst=vm[1]

#print "::get_vm_in_set(vm)"

#for vm in vmpairs3:

 #print vm

#print "Checking VM:",vm

if (src,dst) in vmpairs3:

 #rint "Check:Found in Set.->(",src,",",dst,"). "

 return (src,dst)

elif (dst,src) in vmpairs3:

 #print "Check:Found in Set.->(",dst,",",src,"). "

 return (dst,src)

else:

 print "FAIL:Not Found->(",src,",",dst,"). "

 return False

#Enddef

"""

def call_get_path_2(vm,mb):

This method will prepare vm,mb format and call the

method in correct format

call_get_path(vm,mb)

This method will calculate the costs.

Should be called by original VM pairs from main list.

"""

def call_get_path_cost_2(vm,mb): # Turns vm 2-tuple into 5-tuple

global host_to_eth

global eth_to_host

path=[]

src=vm[0]

dst=vm[1]

#get_path(src sw id, dst sw id,

src sw port, dst sw port,

mb)

path=get_path_cost_2(

 mymac[host_to_eth[src]][0],

 mymac[host_to_eth[dst]][0],

 mymac[host_to_eth[src]][1],

 mymac[host_to_eth[dst]][1],

 mb)

72

return path

#End

"""

This method will prepare vm,mb format and call the

method in correct format

call_get_path(vm,mb)

Used this for the returning traffic.

Designed for ping testing.

Should not be needed for (UDP traffic)

"""

def call_get_path_cost_2_reverse(vm,mb): # Turns vm 2-tuple into 5-tuple

global host_to_eth

global eth_to_host

global vm_mb_paths

path=[]

src=vm[1]

dst=vm[0]

#EDIT jul 3 2019

vm=()

vm=(src,dst) # Reversed

Installs path in hash table. #

Includes sw and ports. #

path=call_get_path_cost_2(vm,mb)

vm_mb_paths[vm]=path[1]

Enddef

"""

Calculate: Path, Cost

def get_path_cost_2()

This function will get_path.

Input is vm pair set and mb.

Output is a list of 3 elements.

Output results->[[cost of path with only switches],

 [path of only switches],

 [path of switches and ports]]

"""

def get_path_cost_2(

 src,dst,first_port,final_port,mb):

Algorithm #

originalsrc=src

originaldst=dst

localpath=[]

path=[]

cost_path=[]

cost=0

localswitchesA=mb

for i in range(2):

 if i==0:

 src=originalsrc

 dst=localswitchesA # mb

 else:

 src=localswitchesA # mb

 dst=originaldst

73

 #Endif

 #print "current src=%s, dst=%s"%(src,dst)

 #Dijkstra's Algorithm

 distance={}

 previous={}

 for dpid in switches:

 distance[dpid]=float('Inf')

 previous[dpid]=None

 #Endfor

 distance[src]=0

 Q=set(switches)

 while len(Q)>0:

 u=minimum_distance(distance,Q)

 Q.remove(u)

 for p in switches:

 if adjacency[u][p] != None: # Edge

 w=1 # Weight

 new_dist=distance[u]+w

 if new_dist<distance[p]:

 distance[p]=new_dist

 previous[p]=u

 #Endif

 #Endif

 #Endfor

 #Endwhile

 r=[]

 p=dst #goal

 #print "goal p=",p

 r.append(p)

 q=previous[p]

 while q is not None:

 if q==src:

 r.append(q)

 break

 p=q

 r.append(p)

 q=previous[p]

 #Endwhile

 r.reverse()

 if src==dst:

 path=[src]

 else:

 path=r

 #Endif

 localpath.append(path)

 #print "appended path->",path

#Endfor range(2)

a=localpath[1][1:]

path=localpath[0] + a

#cost_path

path_only_sw=path

cost=len(path)

Attach Ports #

global GLOBAL_IN_PORT

r=[]

in_port=first_port

for s1,s2 in zip(path[:-1],path[1:]):

74

 out_port=adjacency[s1][s2]

 # Ensure in_port,out_port are valid.

 if out_port==in_port :

 #print "[UPDATE]Path Contains: OUT_PORT==IN_PORT"

 #print "out_port:",out_port," in_port:",in_port

 out_port=GLOBAL_IN_PORT

 #print " SET-> out_port=GLOBAL_IN_PORT"

 # Endif

 r.append((s1,in_port,out_port))

 in_port=adjacency[s2][s1]

#Endfor

r.append((dst,in_port,final_port))

Store Data

cost_path.append([cost]) # Cost (total sw)

cost_path.append(r) # Path (with ports)

cost_path.append(path) # Path (only sw)

#print "Calculation:\nCost->%s\nPath (switches/ports)->%s\nPath

(switches)->%s"%(cost_path[0],cost_path[1],cost_path[2])

#print "Returning cost_path..."

return cost_path

#Enddef

"""

Module to start Algorithm

Receives Packet In.

Decides which algorithm to run.

Runs Algorithm.

Looks up calculated flows from table.

Return a path.

"""

#def get_path_module_TEST(mymac[src][0],mymac[dst][0],mymac[src][1],mymac[dst][1],src,dst):

def get_path_module(src,dst,first_port,final_port,srchost,dsthost):

Local Vars

global eth_to_host

global host_to_eth

global ALGO_EXECUTED

global vm_mb_paths

global ALGO_CHOICE

Extract hosts #

vm=(eth_to_host[srchost],eth_to_host[dsthost])

#Start Module#

print("\n\t** Start: M O D U L E **")

#date#

ts=time.time()

st=datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S')

print ("[DATE] %s" %(st))

Check if algorithm has been executed. #

if ALGO_EXECUTED is not True:

 print "[CHECK] Next-> START ALGORITHM..."

 if ALGO_CHOICE==1:

 run_algo_vm() # VM ALGORITHM #

 elif ALGO_CHOICE==2:

75

 run_algo_mb() # MB ALGORITHM #

 elif ALGO_CHOICE==3:

 run_algo_vm_mb_based() # VM+MB ALGORITHM #

 elif ALGO_CHOICE==4:

 print "MCF_ALGO NOT DONE-> EXIT"

 #run_algo_vm_mb_based() # VM+MB ALGORITHM #

 elif ALGO_CHOICE==5: # ALL ALGOS #

 run_algo_vm() # 1 #

 run_algo_mb() # 2 #

 run_algo_vm_mb_based() # 3 #

 else:

 print "\nALGO_CHOICE: INVALID!\n***\n"

else:

 print "CHECK IF ALGO_EXECUTED-> TRUE Next-> READY."

#Endif

Print incoming flow. #

print "[FLOW] Traffic FROM: %s(%s) TO: %s(%s)"%(vm[0],srchost,vm[1],dsthost)

Check vmpairs list #

if check_vm_in_set(vm):

 print "Lookup: VM Pair ->",vm

 print "Found : Assigned MB ->",vmpairs3[get_vm_in_set(vm)]

 print "Found : Path ->",vm_mb_paths[vm]

 print "Cost : ->",len(vm_mb_paths[vm])

 print "Status: -> Done"

 return vm_mb_paths[vm]

else: # VM is not in set. Get normal path. #

 return get_path(src,dst,first_port,final_port)

print "Module Done.\nEnd\n\t* * * *."

End function #

"""

Module TEST

Pseudoflow 1

Check vm in path

Calculate Algo

Check Alog Calculated (Tmp Disabled)

Run Algo if Not Calculated

"""

def get_path_module_TESTER_(src,dst,first_port,final_port,src_host,dst_host):

global ALGO_EXECUTED

print("\n\t** Start: M O D U L E **")

print "[TEST] run_algo_2() " #Check:New

check()->",check_vm_in_set((eth_to_host[src_host],eth_to_host[dst_host]))

print "Algo Executed: ",ALGO_EXECUTED

run_algo_mb()

print "End.\n\n\t* * * *\n"

print "[Not Found] Run Normal Path. No Middleboxes."

return get_path(src,dst,first_port,final_port)

If Algo vm based has finished

the, return paths stored in the table that

were calculated at start of the module.

76

#Enddef

"""

V M B A S E D

VM Based ALGORITHM

run_algo_()

Run algorithms for all paths.

Calculates all paths for i assigned to j.

Stores results.

"""

#def run_algo(src,dst,first_port,final_port):

def run_algo_vm():

Run Reset()

init_reset()

Globals

global capacity

global load

global vmpairs3

global localswitches2

global costtotal

global vm_mb_paths

global algo_paths_calculated

global ALGO_EXECUTED

print "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"

print "~* V M B A S E D ALGORITHM*~"

print "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"

Print vmpairs,mb set, capacity #

printheader()

for vm in vmpairs3: # Tuples

 costmin= float('Inf')

 cost=0

 path=[]

 vm_i=None

 mb_j=None

 for mb in localswitches2: # Integer

 if load[mb]<capacity:

 # #

 # cost_path = [[cost] , [sw & ports] , [sw only]] #

 # #

 cost_path = call_get_path_cost_2(vm,mb)

 cost=cost_path[0][0] # Cost

 if(cost<costmin):

 vm_i = vm # Tuple i.e. ("h1","h7")

 mb_j = mb # Integer

 costmin = cost

 path = cost_path[1] # SW & Ports

 path_sw = cost_path[2] # Switch only list

 #Endif

 #Endfor mb

 # Update Load #

 load[mb_j]=load[mb_j] + 1

 # Update Cost #

 costtotal=costtotal + costmin

 vmpairs3[vm_i]=mb_j # Assignment i->j

77

 vm_mb_paths[vm_i]=path #[Tuple]->Path

 # #

 # Get Reverse Flow->

 # Needed for reply

 # Store flow in table

 # Does not affect the cost.

 call_get_path_cost_2_reverse(vm_i,mb_j)

 # Update #

 #print "[NEW ASSIGNMENT] "

 #print "VM Pair-> %s Assigned MB-> %s"%(vm_i,mb_j)

 #print "Flow (SW Only) : %s" %(path_sw)

 #print "Flow (SW,Ports) : %s" %(vm_mb_paths[vm_i])

 #print "Cost : %s" %(costmin)

 #print "Load[%s] : %s" %(mb_j,load[mb_j])

#Endfor VM

"[RESULTS]" #

report_path_results()

print ""

print "TOTAL COST : ",costtotal

ALGO has been executed. Set to True.

ALGO_EXECUTED = True

#print "SET: ALGO_EXECUTED=",ALGO_EXECUTED

print "[FINISHED]\n\t****\n"

End of V M B A S E D #

"""

MB-BASED auxiliary parts...

Function:

Part of MB-BASED, VM+MB BASED

"""

def clonevm(): # Clone original vmpairs set

global vmpairs3

vmlist=[]

for vm in vmpairs3:

 vmlist.append(vm)

#print"Cloned:",vmlist,"\nEnd."

return vmlist

#Enddef

"""

Sort vm list in relation to a mb.

part of MB BASED

List of VM Pairs will be sorted and it

will depend on the minimum cost path

produced in relation to middlebox j.

"""

def sort(availablevm,mb): # Sort vm pairs in relation to mb

Start #

sortlist=[]

cost =None

#print "START: Sorting VM Pairs List in relation to-> MB:",mb

availablevm2=availablevm

#availablevm2=clonevm()

while (len(availablevm2)>0):

 costmin=float('Inf')

 vm_i=None

 for vm in availablevm2:

 cost_path =call_get_path_cost_2(vm,mb)

78

 cost =cost_path[0][0]

 if cost<costmin:

 costmin=cost

 vm_i=vm

 #Endif

 #Endfor

 sortlist.append(vm_i)

 availablevm2.remove(vm_i)

 #print "\tVM->%s Cost->%s"%(vm_i,costmin)

#Endwhile

return sortlist

#Enddef

"""

Function Store Paths

Part of MB Based

"""

def store_paths_mb(mb_assigned_vmlist):

Globals #

global costtotal

global vm_mb_paths

#print "\n\tStoring flows in flow table."

Iterate each MB #

for mb in mb_assigned_vmlist:

 # Reset list of vmpairs #

 vmlist=[]

 # Get list of assigned vmpairs #

 vmlist=mb_assigned_vmlist[mb]

 path_sw_ports=[]

 path_sw=[]

 # Iterate each vm in the list of vmpairs assigned to current MB #

 for vm in vmlist:

 # Get Paths #

 cost_path=call_get_path_cost_2(vm,mb)

 # Ger Reverse() for reply messages #

 call_get_path_cost_2_reverse(vm,mb)

 # Populate Table #

 costmin =cost_path[0][0] # Cost #

 path_sw_ports =cost_path[1]# Path SW and Ports #

 path_sw =cost_path[2] # Path SW Only #

 # Add paths to table #

 # The table Contains paths for VM Pairs in relation to the MB it was assigned.

 vm_mb_paths[vm] =path_sw_ports # Table of (vm_i,mb_j) and assigned paths

 # Update Total Cost

 costtotal=costtotal +costmin

 # Print Stats #

 #print "[UPDATE] New VM for current MB"

 #print "Current MB :",mb

 #print "VM: %s assigned MB: %s"%(vm,mb)

 #print "Flow (SW Only) : %s" %(path_sw)

 #print "Flow (SW,Ports) : %s" %(vm_mb_paths[vm])

 #print "Cost : %s" %(costmin)

#Endfor End MB iteration

#Enddef

"""

79

MB-BASED ALGORITHM

"""

def run_algo_mb():

Run Reset()

init_reset()

Globals #

global localswitches2

global mb_assigned_vmlist

global ALGO_EXECUTED

global capacity

Start #

print "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"

print "~* M B B A S E D ALGORITHM*~"

print "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"

Print #

printheader()

availablevm=clonevm()

for mb in localswitches2: # Iterate Middleboxes

 x_sort=[]

 x_sort=sort(availablevm,mb) # Sort VM Pairs List in relation a Middlebox

 # Add assgined vms to mb #

 x_sort.reverse() # Reverse list, move small to end, pop() minimum cost pairs.

 # Reset #

 tempsort=[]

 #print "[UPDATE] MB:",mb," Assigning the following VM Pairs -> "

 for i in range(capacity):

 #check if emtpy

 if len(x_sort)==0: # Empty list

 break

 #Endif

 # Pop next least min cost vmpair #

 element=x_sort.pop()

 # Add vmpair to MB's set #

 tempsort.append(element)

 #print "\t ",element

 # Assign vm pair to current mb #

 vmpairs3[get_vm_in_set(element)]=mb

 #Endfor

 mb_assigned_vmlist[mb]=tempsort

 availablevm=x_sort # Store remaining vm-pairs #

#Endfor

Store the paths and assignments #

#print "Storing paths..."

store_paths_mb(mb_assigned_vmlist)

"[RESULTS]"

report_path_results()

print ""

print "TOTAL COST : ",costtotal

ALGO has been executed. Set to True.

ALGO_EXECUTED = True

#print "SET: ALGO_EXECUTED=",ALGO_EXECUTED

print "[FINISHED]\n\t****\n"

End #

80

Enddef #

"""

VM+MB BASED ALGORITHM

"""

def run_algo_vm_mb_based():

Run Reset()

init_reset()

Global #

global vmpairs3

global localswitches2

global load

global capacity

global vm_mb_paths

global costtotal

global ALGO_EXECUTED

Start #

print "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"

print "~* V M + M B B A S E D ALGORITHM*~"

print "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"

Print vmpairs,mb set, capacity #

printheader()

vmlist = clonevm() # Clone list of vm pairs

while len(vmlist)>0:

 costmin=float('Inf') # Set to INF #

 vm_i=None

 mb_j=None

 path_sw_ports=[]

 for vm in vmlist:

 for mb in localswitches2:

 if load[mb]<capacity: # Capacity available #

 cost_path =call_get_path_cost_2(vm,mb) # 3-Element Array #

 cost =cost_path[0][0]

 if cost<costmin: # Check if minimum cost #

 costmin =cost # Update Cost #

 path_sw_ports =cost_path[1] # Path SW, Ports #

 path_sw =cost_path[2] # Path SW Only #

 vm_i =vm

 mb_j =mb

 #print

 #Endif

 #Endfor

 #Endfor

 vmpairs3[get_vm_in_set(vm_i)] = mb_j # Assigne vm->mb #

 vm_mb_paths[vm_i] = path_sw_ports # store path for vm->mb #

 costtotal = costtotal+costmin # Total Cost #

 load[mb_j] = load[mb_j]+1 # Increment Load #

 call_get_path_cost_2_reverse(vm_i,mb_j) # Reverse() for vm responses #

 vmlist.remove(vm_i) # pop() #

#Endwhile

"[RESULTS]"

report_path_results()

81

print ""

print "TOTAL COST : ",costtotal

ALGO has been executed. Set to True. #

ALGO_EXECUTED = True

#print "SET: ALGO_EXECUTED=",ALGO_EXECUTED

print "[FINISHED]\n\t****\n"

#Enddef

#def run_algo_4():

#print "MCF Algorithm"

##Enddef

"""

Print vm list

"""

def printvm(vmdict):

Dict -> List #

vmlist=[vm for vm in vmdict]

Print #

i=0

while i<len(vmlist):

 print "\t",vmlist[i],

 if((i+1)%2==0):

 print ""

 i=i+1

#Enddef

"""

Print Paths: Switches,ports

"""

def printpaths(vmmbpaths):#vm_mb_paths

#print ("")

for vm in vmmbpaths:

 print ("%s-> %s"%(vm,vmmbpaths[vm]))

#Endfor

print("")

#Enddef

"""

Print Header

"""

def printheader():

Globals #

global vmpairs3

global localswitches2

global capacity

Print #

print "Total VM Pairs :",len(vmpairs3.items())

print "Total Middleboxes :",len(localswitches2)

print "CAPACITY :",capacity

print ""

print "Middlebox Set :%s"%(localswitches2)

print "VM Pairs Set :"

printvm(vmpairs3)

print ""

#Enddef

82

#End printheader()

def printresults():

global vmpairs3

global vm_mb_paths

print ""

for vm in vmpairs3:

 #print "[ASSIGNMENT] "

 print "."

 print "VM Pair :",(vm)

 print "Assigned MB : %s" %(vmpairs3[vm])

 print "Flow (SW,Ports) : %s" %(vm_mb_paths[vm])

 print "Cost : %s" %(len(vm_mb_paths[vm]))

#end

Update #

def report_path_results():

if REPORT_PATH_RESULTS_ENABLED:

 print "[PATH RESULTS]"

 printresults()

else:

 print "[REPORT_PATH_RESULTS_ENABLED] IS OFF"

Minimum Distance for Dijkstra

def minimum_distance(distance, Q):

min = float('Inf')

node = 0

for v in Q:

 if distance[v] < min:

 min = distance[v]

 node = v

return node

"""

Calculates path between vm pairs but does not consider

any middleboxes. A shortest path algorithm is used to

fin the path.

"""

def get_path (src,dst,first_port,final_port): #Regular, No middlebox

 #label::VM-Based

 # similar to MB-Based?

#localswitches = [6,18] #17] #Added by Darshit src to 6, 6 to dest; src to 17, 17 to

dest ---start

#vmpairs=[101,102,201,202,301,302] # No vm in set so Algo runs with no mb

originalsrc = src

originaldst = dst

localpath = []

for i in range(1): #For MB. Any VM-Pair with source h1,h2,h7,h8 will be assigned mb0 or

j=0

 #print "Shortest Path with No Middleboxes"

 if i==0:

 src=originalsrc

 dst=originaldst

 #Endif

 #Dijkstra's algorithm

 #print ("Called get_path(). src sw: %s, port: %s-> dst sw: %s, port: %s"%(

 #src,first_port,dst,final_port))

 distance = {}

83

 previous = {}

 for dpid in switches:

 distance[dpid] = float('Inf')

 previous[dpid] = None

 #Endfor

 distance[src]=0

 Q=set(switches)

 #print "Q=", Q # commented by Darshit -- on December 7, 2018

 while len(Q)>0:

 u = minimum_distance(distance, Q)

 Q.remove(u)

 for p in switches:

 if adjacency[u][p]!=None:

 w = 1

 if distance[u] + w < distance[p]:

 distance[p] = distance[u] + w

 previous[p] = u

 #Endif

 #Endif

 #Endfor

 #Endwhile

 r=[]

 p=dst

 r.append(p)

 q=previous[p]

 while q is not None:

 if q == src:

 r.append(q)

 break

 #Endif

 p=q

 r.append(p)

 q=previous[p]

 #Endwhile

 r.reverse()

 if src==dst:

 path=[src]

 else:

 path=r

 #Endif

 localpath.append(path) #Added by Darshit ---start

#Endfor in range()

path = localpath[0] # zip works with list not set for Non MB Version

#print "path-> ", path #Added by Carlos

r = []

in_port = first_port

for s1,s2 in zip(path[:-1],path[1:]):

 out_port = adjacency[s1][s2]

 r.append((s1,in_port,out_port))

 in_port = adjacency[s2][s1]

#Endfor

r.append((dst,in_port,final_port))

print "[NORMAL PATH] Shortest Path with No Middleboxes-> ", r #Added by Carlos

return r

#Enddef

class ProjectController(app_manager.RyuApp):

OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

84

def __init__(self, *args, **kwargs):

 super(ProjectController, self).__init__(*args, **kwargs)

 self.mac_to_port = {}

 self.topology_api_app = self

 self.datapath_list=[]

 self.cnt=0

#init_vars() # --Added by Carlos

Handy function that lists all attributes in the given object

def ls(self,obj):

 print("\n".join([x for x in dir(obj) if x[0] != "_"]))

def add_flow(self, datapath, in_port, dst, actions):

 ofproto = datapath.ofproto

 parser = datapath.ofproto_parser

 match = datapath.ofproto_parser.OFPMatch(in_port=in_port, eth_dst=dst)

 inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,actions)]

 mod = datapath.ofproto_parser.OFPFlowMod(datapath=datapath, match=match,

cookie=0,command=ofproto.OFPFC_ADD, idle_timeout=0,

hard_timeout=0,priority=ofproto.OFP_DEFAULT_PRIORITY, instructions=inst)

 datapath.send_msg(mod)

def install_path(self, p, ev, src_mac, dst_mac):

 #print "install_path is called"

 #print "p=", p, " src_mac=", src_mac, " dst_mac=", dst_mac

 msg = ev.msg

 datapath = msg.datapath

 ofproto = datapath.ofproto

 parser = datapath.ofproto_parser

 for sw, in_port, out_port in p:

 #print src_mac,"->", dst_mac, "via ", sw, " in_port=", in_port, " out_port=",

out_port

 match=parser.OFPMatch(in_port=in_port, eth_src=src_mac, eth_dst=dst_mac)

 actions=[parser.OFPActionOutput(out_port)]

 datapath=self.datapath_list[int(sw)-1]

 inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS , actions)]

 mod = datapath.ofproto_parser.OFPFlowMod(datapath=datapath, match=match,

idle_timeout=0, hard_timeout=0,priority=1, instructions=inst)

 datapath.send_msg(mod)

@set_ev_cls(ofp_event.EventOFPSwitchFeatures , CONFIG_DISPATCHER)

def switch_features_handler(self , ev):

 #print "switch_features_handler is called"

 datapath = ev.msg.datapath

 ofproto = datapath.ofproto

 parser = datapath.ofproto_parser

 match = parser.OFPMatch()

 actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)]

 inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,actions)]

 mod = datapath.ofproto_parser.OFPFlowMod(datapath=datapath, match=match,

cookie=0,command=ofproto.OFPFC_ADD, idle_timeout=0, hard_timeout=0,priority=0,

instructions=inst)

 datapath.send_msg(mod)

85

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)

def _packet_in_handler(self, ev):

 # Global #

 global SW_NOT_DISCOVERED

 #print "dir->ev.msg->",dir(ev.msg.buffer_id)#--

ev.msg.buffer_id;;ev.msg.buffer_id#--added carlos

 #print "ev.msg.buffer_id->",(ev.msg.buffer_id)#-- ev.msg.buffer_id;;ev.msg.buffer_id

 msg = ev.msg

 datapath = msg.datapath

 ofproto = datapath.ofproto

 parser = datapath.ofproto_parser

 in_port = msg.match['in_port']

 pkt = packet.Packet(msg.data)

 eth = pkt.get_protocol(ethernet.ethernet)

 #print "eth.ethertype=", eth.ethertype

 #avodi broadcast from LLDP

 if eth.ethertype==35020:

 return

 dst = eth.dst

 src = eth.src

 dpid = datapath.id

 self.mac_to_port.setdefault(dpid, {})

 if src not in mymac.keys():

 mymac[src]=(dpid, in_port)

 self.cnt=self.cnt+1

 print ("::Added (count:%d):: Host:%s detected by switch:%s in port:%s"

%(self.cnt,src,dpid,in_port))

 #print (". dir(datapath)->",dir(datapath)

 #print("datapaht.address->",datapath.address)

 #print("datapath.xid->",datapath.xid)

 #print ("datapath->",datapath)

 #print ("datapath._get_ports->",datapath._get_ports())

 #print (". Done\n")

 #print "mymac=", mymac

 if dst in mymac.keys():

 #

 # Test host name to eth to swid to port number

 if SW_NOT_DISCOVERED:

 SW_NOT_DISCOVERED=False

 init_vars() # --Added by Carlos

 #printmyname()

 # PACKET IN COUNTER #

 global packet_in_cnt

 packet_in_cnt=packet_in_cnt+1

 # Pring Packet In #

 print ("\n*")

 print ("[PACKET IN] PACKET_IN (count): %s" %(packet_in_cnt))

 print ("[NEW FLOW] Switch: %s Flow: %s(%s) -> %s(%s) (Not in Flow Table)"

%(dpid,eth_to_host[src],src,eth_to_host[dst],dst))

 #print ("[NEW FLOW] Switch:%s Flow: %s->%s (Not in Flow Table) "

%(dpid,mymac[src][0],mymac[dst][0]))

86

 #print ("[NEW FLOW] From: (%s) %s -> To: (%s) %s"

%(eth_to_host[src],src,eth_to_host[dst],dst))

 #

 #p = get_path(mymac[src][0], mymac[dst][0], mymac[src][1], mymac[dst][1])

 #p = get_path_module(mymac[src][0],mymac[dst][0],mymac[src][1],mymac[dst][1])

p=get_path_module(mymac[src][0],mymac[dst][0],mymac[src][1],mymac[dst][1],src,dst)

#p=get_path_module_TESTER_(mymac[src][0],mymac[dst][0],mymac[src][1],mymac[dst][1],src,dst)

 #print "p received->",p

 self.install_path(p, ev, src, dst)

 out_port = p[0][2]

 #print "out_port->",out_por

 #print "ofproto.OFPP_IN_PORT: ",ofproto.OFPP_IN_PORT

 else:

 out_port = ofproto.OFPP_FLOOD

 actions = [parser.OFPActionOutput(out_port)]

 # install a flow to avoid packet_in next time

 if out_port != ofproto.OFPP_FLOOD:

 match = parser.OFPMatch(in_port=in_port, eth_src=src, eth_dst=dst)

 data=None

 if msg.buffer_id==ofproto.OFP_NO_BUFFER:

 data=msg.data

 #data=None #--added by carlos

 out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,

in_port=in_port,actions=actions, data=data)

 #if out_port != ofproto.OFPP_FLOOD:# -- added by Carlos

 #print "of_packet_out->",out," out_port->",out_port

 datapath.send_msg(out)

@set_ev_cls(event.EventSwitchEnter)

def get_topology_data(self, ev):

 global switches

 switch_list = get_switch(self.topology_api_app, None)

 #print ("::TEST::from self.topology_api_app-> switch_list")

 #print (switch_list) # Prints Switch Object memory locations

 #print ("::END switch_list")

 switches=[switch.dp.id for switch in switch_list]

 #print ("::TEST from switch.dp.id in switch_list get-> ",switches) # Prints list Switch

Id Integer number (1,2,3,...) for each switch

 #print (":::TEST::ls(self,obj)->",ls(self,switches)) # error not Print

 self.datapath_list=[switch.dp for switch in switch_list]

 #print ("::TEST from switch.dp in switch_list get-> ",self.datapath_list) # Prints

ryu.controller.controller.Datapath Object for each switch

 #print "self.datapath_list=", self.datapath_list

 print ("switches=", switches) # Prints list Switch Id number (1,2,3,...) for each

switch

 links_list = get_link(self.topology_api_app, None)

 mylinks=[(link.src.dpid,link.dst.dpid,link.src.port_no,link.dst.port_no) for link in

links_list]

 for s1,s2,port1,port2 in mylinks:

 adjacency[s1][s2]=port1

 adjacency[s2][s1]=port2

 #print s1,s2,port1,port2

87

 #Endfor

10.2. Ryu VM Pairs Data

Python File

List of VMPairs

Total 240

vmlist=[]

vmlist.append(('h3', 'h1'))

vmlist.append(('h2', 'h16'))

vmlist.append(('h2', 'h8'))

vmlist.append(('h1', 'h7'))

vmlist.append(('h3', 'h13'))

vmlist.append(('h4', 'h14'))

vmlist.append(('h5', 'h15'))

vmlist.append(('h6', 'h16'))

vmlist.append(('h5', 'h8'))

vmlist.append(('h6', 'h9'))

vmlist.append(('h7', 'h13'))

vmlist.append(('h8', 'h4'))

vmlist.append(('h9', 'h2'))

vmlist.append(('h10', 'h6'))

vmlist.append(('h11', 'h15'))

vmlist.append(('h12', 'h13'))

vmlist.append(('h14', 'h12'))

vmlist.append(('h11', 'h5'))

vmlist.append(('h8', 'h11'))

vmlist.append(('h10', 'h7'))

vmlist.append(('h5', 'h12'))

vmlist.append(('h12', 'h16'))

vmlist.append(('h10', 'h3'))

vmlist.append(('h14', 'h3'))

vmlist.append(('h16', 'h2'))

vmlist.append(('h16', 'h6'))

vmlist.append(('h7', 'h14'))

vmlist.append(('h3', 'h14'))

vmlist.append(('h15', 'h14'))

vmlist.append(('h15', 'h11'))

vmlist.append(('h7', 'h12'))

vmlist.append(('h10', 'h2'))

vmlist.append(('h3', 'h16'))

vmlist.append(('h12', 'h6'))

vmlist.append(('h8', 'h2'))

vmlist.append(('h15', 'h6'))

vmlist.append(('h8', 'h1'))

vmlist.append(('h6', 'h15'))

vmlist.append(('h12', 'h4'))

vmlist.append(('h4', 'h12'))

vmlist.append(('h16', 'h10'))

vmlist.append(('h1', 'h13'))

vmlist.append(('h13', 'h12'))

vmlist.append(('h8', 'h16'))

88

vmlist.append(('h1', 'h10'))

vmlist.append(('h11', 'h6'))

vmlist.append(('h2', 'h12'))

vmlist.append(('h1', 'h12'))

vmlist.append(('h11', 'h1'))

vmlist.append(('h13', 'h10'))

vmlist.append(('h7', 'h16'))

vmlist.append(('h13', 'h15'))

vmlist.append(('h7', 'h9'))

vmlist.append(('h8', 'h5'))

vmlist.append(('h15', 'h2'))

vmlist.append(('h8', 'h9'))

vmlist.append(('h12', 'h11'))

vmlist.append(('h3', 'h4'))

vmlist.append(('h9', 'h4'))

vmlist.append(('h1', 'h14'))

vmlist.append(('h12', 'h5'))

vmlist.append(('h10', 'h12'))

vmlist.append(('h16', 'h11'))

vmlist.append(('h15', 'h9'))

vmlist.append(('h15', 'h4'))

vmlist.append(('h9', 'h8'))

vmlist.append(('h12', 'h14'))

vmlist.append(('h16', 'h8'))

vmlist.append(('h2', 'h15'))

vmlist.append(('h10', 'h5'))

vmlist.append(('h9', 'h12'))

vmlist.append(('h16', 'h12'))

vmlist.append(('h2', 'h7'))

vmlist.append(('h6', 'h5'))

vmlist.append(('h1', 'h11'))

vmlist.append(('h10', 'h1'))

vmlist.append(('h2', 'h6'))

vmlist.append(('h5', 'h2'))

vmlist.append(('h8', 'h14'))

vmlist.append(('h2', 'h1'))

vmlist.append(('h1', 'h6'))

vmlist.append(('h6', 'h4'))

vmlist.append(('h9', 'h5'))

vmlist.append(('h13', 'h6'))

vmlist.append(('h9', 'h7'))

vmlist.append(('h14', 'h7'))

vmlist.append(('h10', 'h14'))

vmlist.append(('h14', 'h15'))

vmlist.append(('h13', 'h1'))

vmlist.append(('h12', 'h10'))

vmlist.append(('h5', 'h14'))

vmlist.append(('h7', 'h11'))

vmlist.append(('h3', 'h11'))

vmlist.append(('h13', 'h14'))

vmlist.append(('h4', 'h1'))

vmlist.append(('h11', 'h12'))

vmlist.append(('h13', 'h16'))

vmlist.append(('h10', 'h9'))

vmlist.append(('h12', 'h2'))

vmlist.append(('h12', 'h1'))

vmlist.append(('h1', 'h3'))

89

vmlist.append(('h8', 'h6'))

vmlist.append(('h4', 'h5'))

vmlist.append(('h4', 'h8'))

vmlist.append(('h3', 'h12'))

vmlist.append(('h5', 'h7'))

vmlist.append(('h13', 'h7'))

vmlist.append(('h4', 'h10'))

vmlist.append(('h1', 'h5'))

vmlist.append(('h14', 'h16'))

vmlist.append(('h6', 'h7'))

vmlist.append(('h1', 'h16'))

vmlist.append(('h3', 'h10'))

vmlist.append(('h9', 'h16'))

vmlist.append(('h15', 'h1'))

vmlist.append(('h16', 'h7'))

vmlist.append(('h11', 'h7'))

vmlist.append(('h4', 'h9'))

vmlist.append(('h2', 'h9'))

vmlist.append(('h5', 'h3'))

vmlist.append(('h14', 'h6'))

vmlist.append(('h4', 'h13'))

vmlist.append(('h10', 'h8'))

vmlist.append(('h14', 'h10'))

vmlist.append(('h2', 'h3'))

vmlist.append(('h13', 'h2'))

vmlist.append(('h13', 'h11'))

vmlist.append(('h11', 'h3'))

vmlist.append(('h16', 'h13'))

vmlist.append(('h8', 'h12'))

vmlist.append(('h13', 'h9'))

vmlist.append(('h10', 'h13'))

vmlist.append(('h13', 'h3'))

vmlist.append(('h10', 'h4'))

vmlist.append(('h3', 'h6'))

vmlist.append(('h7', 'h4'))

vmlist.append(('h1', 'h9'))

vmlist.append(('h8', 'h15'))

vmlist.append(('h13', 'h8'))

vmlist.append(('h16', 'h1'))

vmlist.append(('h14', 'h1'))

vmlist.append(('h5', 'h16'))

vmlist.append(('h11', 'h16'))

vmlist.append(('h12', 'h9'))

vmlist.append(('h4', 'h2'))

vmlist.append(('h15', 'h7'))

vmlist.append(('h6', 'h12'))

vmlist.append(('h8', 'h10'))

vmlist.append(('h9', 'h13'))

vmlist.append(('h15', 'h13'))

vmlist.append(('h3', 'h15'))

vmlist.append(('h7', 'h2'))

vmlist.append(('h1', 'h15'))

vmlist.append(('h6', 'h3'))

vmlist.append(('h15', 'h10'))

vmlist.append(('h11', 'h13'))

vmlist.append(('h4', 'h7'))

vmlist.append(('h11', 'h4'))

90

vmlist.append(('h5', 'h1'))

vmlist.append(('h7', 'h10'))

vmlist.append(('h3', 'h8'))

vmlist.append(('h11', 'h10'))

vmlist.append(('h15', 'h3'))

vmlist.append(('h9', 'h3'))

vmlist.append(('h6', 'h13'))

vmlist.append(('h14', 'h8'))

vmlist.append(('h14', 'h2'))

vmlist.append(('h13', 'h5'))

vmlist.append(('h15', 'h8'))

vmlist.append(('h16', 'h14'))

vmlist.append(('h6', 'h11'))

vmlist.append(('h9', 'h14'))

vmlist.append(('h6', 'h8'))

vmlist.append(('h2', 'h13'))

vmlist.append(('h10', 'h11'))

vmlist.append(('h7', 'h5'))

vmlist.append(('h15', 'h16'))

vmlist.append(('h16', 'h3'))

vmlist.append(('h14', 'h4'))

vmlist.append(('h11', 'h9'))

vmlist.append(('h4', 'h15'))

vmlist.append(('h5', 'h13'))

vmlist.append(('h9', 'h10'))

vmlist.append(('h4', 'h6'))

vmlist.append(('h2', 'h10'))

vmlist.append(('h10', 'h15'))

vmlist.append(('h6', 'h2'))

vmlist.append(('h3', 'h5'))

vmlist.append(('h8', 'h7'))

vmlist.append(('h12', 'h15'))

vmlist.append(('h9', 'h6'))

vmlist.append(('h14', 'h11'))

vmlist.append(('h9', 'h15'))

vmlist.append(('h16', 'h5'))

vmlist.append(('h6', 'h10'))

vmlist.append(('h5', 'h4'))

vmlist.append(('h14', 'h5'))

vmlist.append(('h14', 'h13'))

vmlist.append(('h3', 'h2'))

vmlist.append(('h5', 'h6'))

vmlist.append(('h16', 'h9'))

vmlist.append(('h5', 'h9'))

vmlist.append(('h14', 'h9'))

vmlist.append(('h12', 'h8'))

vmlist.append(('h1', 'h8'))

vmlist.append(('h5', 'h10'))

vmlist.append(('h10', 'h16'))

vmlist.append(('h5', 'h11'))

vmlist.append(('h12', 'h7'))

vmlist.append(('h2', 'h11'))

vmlist.append(('h15', 'h5'))

vmlist.append(('h4', 'h16'))

vmlist.append(('h9', 'h11'))

vmlist.append(('h4', 'h3'))

vmlist.append(('h13', 'h4'))

91

vmlist.append(('h7', 'h15'))

vmlist.append(('h11', 'h14'))

vmlist.append(('h6', 'h14'))

vmlist.append(('h1', 'h2'))

vmlist.append(('h7', 'h6'))

vmlist.append(('h16', 'h4'))

vmlist.append(('h7', 'h3'))

vmlist.append(('h11', 'h2'))

vmlist.append(('h2', 'h4'))

vmlist.append(('h15', 'h12'))

vmlist.append(('h4', 'h11'))

vmlist.append(('h3', 'h9'))

vmlist.append(('h16', 'h15'))

vmlist.append(('h6', 'h1'))

vmlist.append(('h7', 'h1'))

vmlist.append(('h12', 'h3'))

vmlist.append(('h7', 'h8'))

vmlist.append(('h1', 'h4'))

vmlist.append(('h8', 'h3'))

vmlist.append(('h3', 'h7'))

vmlist.append(('h2', 'h14'))

vmlist.append(('h8', 'h13'))

vmlist.append(('h11', 'h8'))

vmlist.append(('h2', 'h5'))

vmlist.append(('h9', 'h1'))

10.3. Ryu Superclass

Copyright (C) 2011-2014 Nippon Telegraph and Telephone Corporation.

Copyright (C) 2011 Isaku Yamahata <yamahata at valinux co jp>

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.

See the License for the specific language governing permissions and

limitations under the License.

"""

The central management of Ryu applications.

- Load Ryu applications

- Provide `contexts` to Ryu applications

- Route messages among Ryu applications

"""

import inspect

92

import itertools

import logging

import sys

import os

import gc

from ryu import cfg

from ryu import utils

from ryu.app import wsgi

from ryu.controller.handler import register_instance, get_dependent_services

from ryu.controller.controller import Datapath

from ryu.controller import event

from ryu.controller.event import EventRequestBase, EventReplyBase

from ryu.lib import hub

from ryu.ofproto import ofproto_protocol

LOG = logging.getLogger('ryu.base.app_manager')

SERVICE_BRICKS = {}

def lookup_service_brick(name):

return SERVICE_BRICKS.get(name)

def _lookup_service_brick_by_ev_cls(ev_cls):

return _lookup_service_brick_by_mod_name(ev_cls.__module__)

def _lookup_service_brick_by_mod_name(mod_name):

return lookup_service_brick(mod_name.split('.')[-1])

def register_app(app):

assert isinstance(app, RyuApp)

assert app.name not in SERVICE_BRICKS

SERVICE_BRICKS[app.name] = app

register_instance(app)

def unregister_app(app):

SERVICE_BRICKS.pop(app.name)

def require_app(app_name, api_style=False):

"""

Request the application to be automatically loaded.

If this is used for "api" style modules, which is imported by a client

application, set api_style=True.

If this is used for client application module, set api_style=False.

"""

if api_style:

 frm = inspect.stack()[2] # skip a frame for "api" module

else:

 frm = inspect.stack()[1]

93

m = inspect.getmodule(frm[0]) # client module

m._REQUIRED_APP = getattr(m, '_REQUIRED_APP', [])

m._REQUIRED_APP.append(app_name)

LOG.debug('require_app: %s is required by %s', app_name, m.__name__)

class RyuApp(object):

"""

The base class for Ryu applications.

RyuApp subclasses are instantiated after ryu-manager loaded

all requested Ryu application modules.

__init__ should call RyuApp.__init__ with the same arguments.

It's illegal to send any events in __init__.

The instance attribute 'name' is the name of the class used for

message routing among Ryu applications. (Cf. send_event)

It's set to __class__.__name__ by RyuApp.__init__.

It's discouraged for subclasses to override this.

"""

_CONTEXTS = {}

"""

A dictionary to specify contexts which this Ryu application wants to use.

Its key is a name of context and its value is an ordinary class

which implements the context. The class is instantiated by app_manager

and the instance is shared among RyuApp subclasses which has _CONTEXTS

member with the same key. A RyuApp subclass can obtain a reference to

the instance via its __init__'s kwargs as the following.

Example::

 _CONTEXTS = {

 'network': network.Network

 }

 def __init__(self, *args, *kwargs):

 self.network = kwargs['network']

"""

_EVENTS = []

"""

A list of event classes which this RyuApp subclass would generate.

This should be specified if and only if event classes are defined in

a different python module from the RyuApp subclass is.

"""

OFP_VERSIONS = None

"""

A list of supported OpenFlow versions for this RyuApp.

The default is all versions supported by the framework.

Examples::

 OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION,

 ofproto_v1_2.OFP_VERSION]

94

If multiple Ryu applications are loaded in the system,

the intersection of their OFP_VERSIONS is used.

"""

@classmethod

def context_iteritems(cls):

 """

 Return iterator over the (key, contxt class) of application context

 """

 return cls._CONTEXTS.iteritems()

def __init__(self, *_args, **_kwargs):

 super(RyuApp, self).__init__()

 self.name = self.__class__.__name__

 self.event_handlers = {} # ev_cls -> handlers:list

 self.observers = {} # ev_cls -> observer-name -> states:set

 self.threads = []

 self.events = hub.Queue(128)

 if hasattr(self.__class__, 'LOGGER_NAME'):

 self.logger = logging.getLogger(self.__class__.LOGGER_NAME)

 else:

 self.logger = logging.getLogger(self.name)

 self.CONF = cfg.CONF

 # prevent accidental creation of instances of this class outside RyuApp

 class _EventThreadStop(event.EventBase):

 pass

 self._event_stop = _EventThreadStop()

 self.is_active = True

def start(self):

 """

 Hook that is called after startup initialization is done.

 """

 self.threads.append(hub.spawn(self._event_loop))

def stop(self):

 self.is_active = False

 self._send_event(self._event_stop, None)

 hub.joinall(self.threads)

def register_handler(self, ev_cls, handler):

 assert callable(handler)

 self.event_handlers.setdefault(ev_cls, [])

 self.event_handlers[ev_cls].append(handler)

def unregister_handler(self, ev_cls, handler):

 assert callable(handler)

 self.event_handlers[ev_cls].remove(handler)

 if not self.event_handlers[ev_cls]:

 del self.event_handlers[ev_cls]

def register_observer(self, ev_cls, name, states=None):

 states = states or set()

 ev_cls_observers = self.observers.setdefault(ev_cls, {})

 ev_cls_observers.setdefault(name, set()).update(states)

95

def unregister_observer(self, ev_cls, name):

 observers = self.observers.get(ev_cls, {})

 observers.pop(name)

def unregister_observer_all_event(self, name):

 for observers in self.observers.values():

 observers.pop(name, None)

def observe_event(self, ev_cls, states=None):

 brick = _lookup_service_brick_by_ev_cls(ev_cls)

 if brick is not None:

 brick.register_observer(ev_cls, self.name, states)

def unobserve_event(self, ev_cls):

 brick = _lookup_service_brick_by_ev_cls(ev_cls)

 if brick is not None:

 brick.unregister_observer(ev_cls, self.name)

def get_handlers(self, ev, state=None):

 """Returns a list of handlers for the specific event.

 :param ev: The event to handle.

 :param state: The current state. ("dispatcher")

 If None is given, returns all handlers for the event.

 Otherwise, returns only handlers that are interested

 in the specified state.

 The default is None.

 """

 ev_cls = ev.__class__

 handlers = self.event_handlers.get(ev_cls, [])

 if state is None:

 return handlers

 def test(h):

 if not hasattr(h, 'callers') or ev_cls not in h.callers:

 # dynamically registered handlers does not have

 # h.callers element for the event.

 return True

 states = h.callers[ev_cls].dispatchers

 if not states:

 # empty states means all states

 return True

 return state in states

 return filter(test, handlers)

def get_observers(self, ev, state):

 observers = []

 for k, v in self.observers.get(ev.__class__, {}).iteritems():

 if not state or not v or state in v:

 observers.append(k)

 return observers

def send_request(self, req):

 """

 Make a synchronous request.

96

 Set req.sync to True, send it to a Ryu application specified by

 req.dst, and block until receiving a reply.

 Returns the received reply.

 The argument should be an instance of EventRequestBase.

 """

 assert isinstance(req, EventRequestBase)

 req.sync = True

 req.reply_q = hub.Queue()

 self.send_event(req.dst, req)

 # going to sleep for the reply

 return req.reply_q.get()

def _event_loop(self):

 while self.is_active or not self.events.empty():

 ev, state = self.events.get()

 if ev == self._event_stop:

 continue

 handlers = self.get_handlers(ev, state)

 for handler in handlers:

 handler(ev)

def _send_event(self, ev, state):

 self.events.put((ev, state))

def send_event(self, name, ev, state=None):

 """

 Send the specified event to the RyuApp instance specified by name.

 """

 if name in SERVICE_BRICKS:

 if isinstance(ev, EventRequestBase):

 ev.src = self.name

 LOG.debug("EVENT %s->%s %s",

 self.name, name, ev.__class__.__name__)

 SERVICE_BRICKS[name]._send_event(ev, state)

 else:

 LOG.debug("EVENT LOST %s->%s %s",

 self.name, name, ev.__class__.__name__)

def send_event_to_observers(self, ev, state=None):

 """

 Send the specified event to all observers of this RyuApp.

 """

 for observer in self.get_observers(ev, state):

 self.send_event(observer, ev, state)

def reply_to_request(self, req, rep):

 """

 Send a reply for a synchronous request sent by send_request.

 The first argument should be an instance of EventRequestBase.

 The second argument should be an instance of EventReplyBase.

 """

 assert isinstance(req, EventRequestBase)

 assert isinstance(rep, EventReplyBase)

97

 rep.dst = req.src

 if req.sync:

 req.reply_q.put(rep)

 else:

 self.send_event(rep.dst, rep)

def close(self):

 """

 teardown method.

 The method name, close, is chosen for python context manager

 """

 pass

class AppManager(object):

singletone

_instance = None

@staticmethod

def run_apps(app_lists):

 """Run a set of Ryu applications

 A convenient method to load and instantiate apps.

 This blocks until all relevant apps stop.

 """

 app_mgr = AppManager.get_instance()

 app_mgr.load_apps(app_lists)

 contexts = app_mgr.create_contexts()

 services = app_mgr.instantiate_apps(**contexts)

 webapp = wsgi.start_service(app_mgr)

 if webapp:

 services.append(hub.spawn(webapp))

 try:

 hub.joinall(services)

 finally:

 app_mgr.close()

 for t in services:

 t.kill()

 hub.joinall(services)

 gc.collect()

@staticmethod

def get_instance():

 if not AppManager._instance:

 AppManager._instance = AppManager()

 return AppManager._instance

def __init__(self):

 self.applications_cls = {}

 self.applications = {}

 self.contexts_cls = {}

 self.contexts = {}

def load_app(self, name):

 mod = utils.import_module(name)

 clses = inspect.getmembers(mod,

 lambda cls: (inspect.isclass(cls) and

98

 issubclass(cls, RyuApp) and

 mod.__name__ ==

 cls.__module__))

 if clses:

 return clses[0][1]

 return None

def load_apps(self, app_lists):

 app_lists = [app for app

 in itertools.chain.from_iterable(app.split(',')

 for app in app_lists)]

 while len(app_lists) > 0:

 app_cls_name = app_lists.pop(0)

 context_modules = map(lambda x: x.__module__,

 self.contexts_cls.values())

 if app_cls_name in context_modules:

 continue

 LOG.info('loading app %s', app_cls_name)

 cls = self.load_app(app_cls_name)

 if cls is None:

 continue

 self.applications_cls[app_cls_name] = cls

 services = []

 for key, context_cls in cls.context_iteritems():

 v = self.contexts_cls.setdefault(key, context_cls)

 assert v == context_cls

 context_modules.append(context_cls.__module__)

 if issubclass(context_cls, RyuApp):

 services.extend(get_dependent_services(context_cls))

 # we can't load an app that will be initiataed for

 # contexts.

 for i in get_dependent_services(cls):

 if i not in context_modules:

 services.append(i)

 if services:

 app_lists.extend([s for s in set(services)

 if s not in app_lists])

def create_contexts(self):

 for key, cls in self.contexts_cls.items():

 if issubclass(cls, RyuApp):

 # hack for dpset

 context = self._instantiate(None, cls)

 else:

 context = cls()

 LOG.info('creating context %s', key)

 assert key not in self.contexts

 self.contexts[key] = context

 return self.contexts

99

def _update_bricks(self):

 for i in SERVICE_BRICKS.values():

 for _k, m in inspect.getmembers(i, inspect.ismethod):

 if not hasattr(m, 'callers'):

 continue

 for ev_cls, c in m.callers.iteritems():

 if not c.ev_source:

 continue

 brick = _lookup_service_brick_by_mod_name(c.ev_source)

 if brick:

 brick.register_observer(ev_cls, i.name,

 c.dispatchers)

 # allow RyuApp and Event class are in different module

 for brick in SERVICE_BRICKS.itervalues():

 if ev_cls in brick._EVENTS:

 brick.register_observer(ev_cls, i.name,

 c.dispatchers)

@staticmethod

def _report_brick(name, app):

 LOG.debug("BRICK %s", name)

 for ev_cls, list_ in app.observers.items():

 LOG.debug(" PROVIDES %s TO %s", ev_cls.__name__, list_)

 for ev_cls in app.event_handlers.keys():

 LOG.debug(" CONSUMES %s", ev_cls.__name__)

@staticmethod

def report_bricks():

 for brick, i in SERVICE_BRICKS.items():

 AppManager._report_brick(brick, i)

def _instantiate(self, app_name, cls, *args, **kwargs):

 # for now, only single instance of a given module

 # Do we need to support multiple instances?

 # Yes, maybe for slicing.

 LOG.info('instantiating app %s of %s', app_name, cls.__name__)

 if hasattr(cls, 'OFP_VERSIONS') and cls.OFP_VERSIONS is not None:

 ofproto_protocol.set_app_supported_versions(cls.OFP_VERSIONS)

 if app_name is not None:

 assert app_name not in self.applications

 app = cls(*args, **kwargs)

 register_app(app)

 assert app.name not in self.applications

 self.applications[app.name] = app

 return app

def instantiate(self, cls, *args, **kwargs):

 app = self._instantiate(None, cls, *args, **kwargs)

 self._update_bricks()

 self._report_brick(app.name, app)

 return app

def instantiate_apps(self, *args, **kwargs):

100

 for app_name, cls in self.applications_cls.items():

 self._instantiate(app_name, cls, *args, **kwargs)

 self._update_bricks()

 self.report_bricks()

 threads = []

 for app in self.applications.values():

 t = app.start()

 if t is not None:

 threads.append(t)

 return threads

@staticmethod

def _close(app):

 close_method = getattr(app, 'close', None)

 if callable(close_method):

 close_method()

def uninstantiate(self, name):

 app = self.applications.pop(name)

 unregister_app(app)

 for app_ in SERVICE_BRICKS.values():

 app_.unregister_observer_all_event(name)

 app.stop()

 self._close(app)

 events = app.events

 if not events.empty():

 app.logger.debug('%s events remians %d', app.name, events.qsize())

def close(self):

 def close_all(close_dict):

 for app in close_dict.values():

 self._close(app)

 close_dict.clear()

 for app_name in list(self.applications.keys()):

 self.uninstantiate(app_name)

 assert not self.applications

 close_all(self.contexts)

