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ABSTRACT 
 
 
 
 

There have been researches that studied selfish data caching in ad hoc networks 

using game-theoretic analysis. However, due to the caching problem’s theoretical root in 

classic facility location problem and k-median problem, most of the researches assume: 

1) The data is initially outside of the network; 2) The caching cost is either a constant or 

not considered at all. 

In reality, there are many applications, such as ad-hoc and sensor networks and 

peer to peer networks, in which data is initially collected or stored in the network and the 

caching cost depends on the network topology. This thesis addresses the problem of in-

network data caching (referred to as in-caching problem) in multi-hop stationary ad hoc 

networks where the data is initially stored in the network and both caching and accessing 

costs are distance dependent. We first show that the problem is NP-hard. For selfish data 

caching game of the problem, we show that a pure Nash Equilibrium exists, in which a 

node will not deviate its caching strategy if  others keep their own strategy. However, a 

Nash Equilibrium may not guarantee social optimal cost – due to the selfishness of each 

node, the p rice anarchy, which is the relative cost of the lack of cooperation among 

nodes, could be as large as O(n), where n is a number of nodes in the network. Using an 

external incentive mechanism based upon a payment model, we show a Nash 

Equilibrium and social optimal can both be achieved simultaneously via extensive 

simulations. 
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Chapter   1 

 

 
 

Introduction 
 
 
 
 

Ad hoc networks are multi-hop wireless networks consisting of small wireless comput- 

ing devices with limited processing power, communication  power, and storage capacity. The 

computing devices could be conventional  computers  such as PDAs or laptops, or embedded 

processors such as tiny, low-cost,  and low-power  sensor motes.  Ad hoc networks are con- 

structed mainly for the information sharing and task coordination among a group of people, 

without the support of any communication infrastructure.  Each node in ad hoc networks 

not only participates in routing by forwarding data for other nodes, but also cooperate with 

each other to achieve a specific application goal. For example, in an ad hoc network estab- 

lished for spontaneous meeting, several authors can meet and coordinate to modify the same 

document (e.g., an article or a powerpoint slides) in a distributed fashion. Similarly, in a 

rescue and emergency operation, information sharing among wireless devices in an ad hoc 

networks enables coordination  and cooperation of rescue personnel  as well as gathering  and 

distribution of information. 

Caching has been proposed to be an effective technique to facilitate information access 

in ad hoc networks. Besides the traditional advantages brought by caching  such as less data 

access latency, improved data reliability  and fault tolerance, utilizing caching to optimize 

network performance of ad hoc networks is motivated by the following two aspects.  First, 

the ad hoc networks are multi-hop networks. Thus, remote  access of information typically 

occurs via multi-hop routing, wherein access latency can be particularly reduced by data 

caching. Second, ad hoc networks are generally resource constrained  in terms  of wireless 

bandwidth, memory capacity and battery energy of nodes. Data caching can help reduce 

communication  cost among nodes, which results in conserving battery energy and minimizing 

bandwidth usage in ad hoc networks. 
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As such, many caching techniques have been developed recently to achieve good overall 

performance of the ad hoc network [5, 21, 20, 18, 4] (please refer to Chapter 2 for a com- 

prehensive literature review). They are all cooperative caching techniques, wherein nodes 

follow carefully designed protocols to achieve overall good system performance. However, 

it is not always possible for nodes to cooperate with each other. Difference nodes could be 

under the control of different group and authorities, with different objectives. Even for the 

individual nodes under the same group domain, they could be autonomous,  and as such, 

their staying in a group is solely due to their selfish goal of benefiting from the group. These 

are further aggravated by the fact that ad hoc networks are usually resource constraints, 

with limited wireless bandwidth, storage capacity, and processing power. Therefore, com- 

municating nodes tend to be unwilling to contribute their own resource for the benefit of 

the entire network. For example, to achieve optimal data access in a network, some nodes 

will possibly cache data items which are most  accessed by other nodes instead of themselves. 

Such mistreatment  phenomenon [12] renders those nodes to break away from the group 

instead,  so that they can store the data they access most. Therefore it is important to take 

into consideration  such selfish behaviors when we want to improve the system performance. 

On the other hand, several research work, among many others, has been performed 

to address the selfish data caching behavior using game-theoretic analysis in the context of 

distributed systems or Web environment [7, 2, 10, 3, 11]. Historically, data caching and the 

related cache placement problem have the theoretical root in facility location problem [6] 

and k-median problem [1]. Both problems concern how to place facilities in the network to 

satisfy the access demands from the client nodes with least amount of cost. Here the facility 

could be a delivery center, a distribution  center, a transportation hub, a restaurant, or a 

cache node in a network.  In the facility location problem, setting up a facility at a node 

incurs a certain fixed cost, and the goal is to minimize the sum of total access cost of clients 

and the setting-up costs of all facilities.  The k-median problem is to minimize the total 

access cost under the constraint that at most k nodes can be selected as facilities, without 

considering setting-up costs. In both problems, the facilities to be set up are not initially 

in the network. As a result, most of work of selfish data caching  assume that i) the data 
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items are initially  outside of the network (except for [7]), and ii) the caching cost is either 

a constant [2], does not exist [7, 3], or is only roughly categorized into only three difference 

values [11, 10]. 

While this assumption is valid in many scenarios, there are applications where the 

data items are instead in the network and caching cost depends on where the data is located 

inside the network. For example, in P2P networks,  each peer initially  has some data objects 

and shares them with other peers; in sensor networks, sensor nodes sense and generate data 

which are transmitted back to the base station for analysis or accessed by other sensor nodes 

in the network. In both cases, data are originally generated and stored in the network and 

the caching cost depends on where the data is cached from. Our model is geared towards 

such multi-hop ad hoc network, where the data items are initially  stored at some nodes in 

the network (referred to as source nodes), and are subsequently cached by other nodes to 

better satisfy the access demands  of the network.  Unlike previous work, the efficiency of 

data caching scheme in in Caching problem depends on not only the network topology and 

nodes’ access patterns, but also the locations of the data item and its replica in the network.1 

We refer to our data caching problem  as in  Caching problem. 
 

In our model, there is one data item initially  stored in a single source node, and there 

are multiple client nodes that wish to access the data item. Different nodes have different 

demands (referred to as access frequencies) to access the data item. They can either cache 
1  There exists, however, another data caching model wherein the data is initially  in the network.  We 

discuss it and elucidate its difference with our model in the Related Work. 
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the data from other existing cache node and store it in its local memory for future access, 

or just access the data from cache nodes whenever  needed. The goal of the data caching 

problem is to determine a set of nodes in the network to cache the given data item, such that 

the total cost incurred in caching the data item and accessing the data item is minimized. 

While selfishness is considered, which we call selfish caching game, it endeavors to achieve 

optimal total cost based upon the selfish behavior of individual nodes. 

We show that this problem itself is NP-hard. For the selfish caching  game, we show 

that a pure Nash Equilibrium exists. Nash Equilibrium [14] is a solution concept of a game 

involving two or more players, in which no player has anything to gain by changing only 

its strategy unilaterally.  It is important since it characterizes a “stable”  outcome of the 

strategic interaction of several decision makers. In our problem, the strategy take by each 

node has two aspects:  first, whether the node caches or not; second, if so, from where it 

caches, if not, from where it accesses the data. However, due to the selfish behavior of self- 

interested nodes, Nash Equilibrium may not guarantee system-wide performance;  that is, 

the resultant social cost (or total cost) in Nash Equilibrium could be much larger than the 

social optimal cost (minimum total cost). Papadimitriou et al. [9, 16] quantify this as price 

of anarchy, which is the ratio of the social cost of the worst possible Nash equilibrium to 

the cost of the social optimal solution. We show that in our constructed Nash Equilibrium, 

the price of anarchy could be as large  as O(n), where n is number of nodes in the network. 

More importantly, we endeavor to show that that social optimal and Nash Equilibrium can 

be achieved simultaneously  (i.e., with the price of anarchy  as O(1)). We design an external 

incentive mechanism based upon a payment model, in which nodes benefit from other nodes’ 

being caches offer some payment to such nodes. 

Thesis Organization.   The rest of the thesis is organized  as follows. Chapter 2 reviews 

both cooperative  and selfish data caching in the literature.   In Chapter 3, we introduce 

in-networking data caching network model and formulate the problem, and show that it is 

NP-hard. In Chapter 4 we formalize the selfish data caching game of the problem and demon- 
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strate by a centralized construction that a pure  Nash  Equilibrium exists. Chapter 5 

presents our  payment model  which  achieves  the  optimal social  cost  as well as 

aN ash  E quilibrium.  I n Chapter 7, we conclude the  paper   and  poi nt  out   s ome  

future work. 
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Chapter   2 
 

 
 

Related Work 
 
 
 
 
 
 

2.1  Cooperative Caching in Ad Hoc Networks 
 
 

There are lot of research designing distributed caching algorithms in ad hoc networks. 

Hara and Madria [5] are among the first to propose replica allocation methods in ad hoc 

networks, by taking into account the access frequency  from mobile hosts to each data item 

and the status of the network connection. Yin and Cao [20] design and evaluate three simple 

distributed caching techniques, viz., CacheData  which caches the passing-by data item, 

CachePath which caches the path to the nearest  cache of the passing-by data item, and 

HybridCache which caches the data item if its size is small enough,  else caches the path to 

the data. Fiore et al. [4] design a cooperative caching scheme to create a content diversity in 

ad hoc networks,  so that a requesting user likely finds the desired information nearby. Zhao 

et al. [21] propose a novel asymmetric cooperative cache approach, where the data requests 

are transmitted to the cache layer on every node, but the data replies are only transmitted 

to the cache layer at the intermediate nodes that need to cache the data. 

Ko and Rubenstein [8] propose a distributed protocol that palaces replicated  resources 

in a network such that the distance between identical copies of the same resource is large 

and each node is “close” to some copy of any resource. They study it by coloring each node, 

where each color is a replica the node is assigned.  It proves the network can converge to a 

stable state following such protocol. In our previous work [18], we present a polynomial-time 

centralized approximation algorithm to replicate data, which reduces the total data access 

delay at least half of that obtained from the optimal solution. We also show a distributed 

caching technique derived from the centralized approximation algorithm. 
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Our data caching problem is closely related to the rent-or-buy problem [17], a special 

case of the connected facility location problem [13, 17, 15] (please refer to Chapter 3 for 

the detailed comparison of these two problems). Swamy et al. [17] give a 5-approximation 

algorithm. Nuggehalli et al. [15] study the same problem in the context of energy-efficient 

caching strategies in ad hoc networks.  They provide a distributed solution that is within a 

factor of 6 of the optimal solution. 

However, all of above work do not take into consideration of selfishness of the network 

node, which is the topic of this work. 

 
2.2  Selfish Caching in Ad Hoc Networks and Distributed  Systems 

 
 

Chun et al. [2] are among the first to propose to study selfish caching in distributed 

systems using a game-theoretic approach. They consider one data object which is outside of 

the network. When a node decides to cache the data object, it assumes that the node always 

gets this data from outside of the network, which incurs a constant caching cost. A node 

either caches the data object in its local memory or accesses it from another node storing 

the object, depending on which costs less. They show that there exists a pure strategy Nash 

Equilibrium based on above model. However, the total social cost can not achieve optimum 

due to selfish behavior of players. They propose a payment model, in which each node bids 

for having an object replicated at another node, and show that both social optimal and Nash 

Equilibrium can be achieved. 

Laoutaris et al. [10] study distributed selfish replication and caching of multiple objects. 

In their model, the set of objects are also not in the network initially  and the caching cost is 

not considered. Moreover, the distances between nodes are not factored in when playing the 

game. Rather, it assumes that for each node, accessing an object from its local cache always 

costs tl , from another  cache node tr , and from the origin server always ts, with tl ≤ tr ≤ ts. 
 

The contributions of their paper are two fold: a) they consider memory capacity of each 

node since multiple objects are involved; b) the Nash Equilibrium object placement 

strategies are implemented in a distributed manner. The authors further extend their work 

by identifying and and investigating the causes of mistreatment [11, 12]. 
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Our work considers one in-network data item in a multi-hop ad hoc network, wherein 

both accessing cost and caching cost not only exist, but also are topology dependent. 
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Chapter   3 

 

 
 

Network  Model and Problem Formulation 
 
 
 
 
 

In this section, we first present the network model including the cost model, formulate 

the problem, and discuss its difference with closely related rent-or-buy problem. We then 

present an important entity,  called cache tree, in the problem. Finally we prove that the 

problem is NP-hard. 

 

Network  Model  and Notations.  We model the ad hoc network as a connected general 

graph, G(V, E), where V = {1, 2, 3, ..., n = |V |} is set of nodes and E is set of edges.  Two 

nodes are connected by an edge if they are within the transmission range of each other and 

thus can communicate directly. There is a single data item D in the network, which is stored 
in its original source node S ∈ V . D is requested by the nodes in the network – each node 

has its own access frequency  towards the data; the access frequency  of node i is ai  ∈ R+. 

Let dij  be the shortest distance (in terms of number of hops) between node i and node j. 

For a set of nodes X ⊆ V , let d(i, X ) = minj∈X dij  be the shortest distance from i to 
some node in X , and the metric closure of X is defined as the complete graph upon X , 
wherein an edge between  two nodes in X  is a shortest path between them in the original 
network graph G(V, E).  Let mst mc(X ) denote the cost of a minimum spanning tree of 
the metric closure upon X . 
 

Cost Model. For a given set of cache nodes M ⊆ V (source node S is also considered  as a 
 

cache node), a non-cache node i always  accesses D from the closest cache node among M ; 

its access cost is aid(i, M ). The total access cost is therefore  
∑

i 

 

∈V  ai × d(i, M ). For the
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set of cache nodes M , any cache node i ∈ M caches the data from another cache node in M , 

say j, by following a shortest path between these two nodes (we call such shortest path the 

caching path); and its caching cost is γ × dij . Here γ, referred to as caching coefficient, 

is a constant that indicates the relative weight of caching cost compared to access cost. We 

emphasize that j, however, might not be the closest cache node to i in M , due to the fact 

that caching has time sequence in which a later cache node in M , say k, might be closer to 

i than j is. The total caching cost of all the nodes in M is therefore γ × mst mc(M ). 
 

Let τ (M ) denote the total cost in the network with a set of cache nodes M (source 

node S ∈ M ), we have: 
 
 

τ (M ) = ∑
 
ai × d(i, M ) + γ × mst mc(M )  (3.1) 

i∈V 

In above equation, the two terms on the right hand side represent total access cost 

and total caching cost in the network respectively. Notice that, by varying γ, we can model 

different network scenarios and requirements. 

Problem  Formulation  of in  Caching Problem.  Given a network graph G(V, E), one 

data item D and its source node S, and access frequencies  of all client nodes, the objective 

is to select a set of cache nodes M  ⊆ V , such that the total cost in the network given by 
 
Equation 3.1 is minimized, i.e., 

 
 
 

min τ (M )  (3.2) 
M 

 
Let τ opt  denote the optimal cost, τ opt = minM  τ (M ). Let C opt  denote the set of cache 

nodes (including S) in the optimal solution, C opt = argminM τ (M ). 

Discussion. In Caching problem is closely related to the well studied rent-or-buy problem 

[17]. The rent-or-buy problem is defined as follows. One facility is already open, along with 

a set of locations at which facilities can be further built.  Connecting the facilities incurs a 

cost which is proportional to the weight of the Steiner tree [19] connecting all the facilities, 
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and each client accesses its closest facility.  The objective is to select the locations to build 

facilities and connect them by a Steiner tree, to minimize the total access cost and connecting 

cost. The rent-or-buy problem is known to be NP-hard [17].1    In our problem setting, the 

opened facility represents the source node S, the set of opened facilities corresponds to the 

set of cache nodes. 

The difference between in Caching problem and rent-or-buy problem lies in the caching 

models. In rent-or-buy problem, the total caching cost is the cost of the Steiner tree con- 

necting all the facilities; while in in Caching, the total caching cost is the cost of minimum 

spanning tree of the metric closure upon all the cache nodes. Essentially, in Steiner tree 

model, an intermediate  node between two cache nodes can make a copy of the data, which is 

then cached by other nodes; while in our model, however, a cache node caches the data from 

an already existing cache node in the network. While Steiner tree has been used widely to 

model communication connectivity among nodes, it is not suitable to model data caching in 

ad hoc networks, for the following two reasons. 
 

• The ad hoc nodes such as sensor nodes and laptops have very limited storage capacity. 
 

By requiring the intermediate  nodes between two cache nodes to make a copy of the 

data, steiner tree caching model further aggravates the situation of limited storage 

capacity for ad hoc networks. 

• Even though Steiner tree is the optimal tree to connect all the cache nodes, in many 

applications  such as wireless P2P networks [21], two participating nodes (client node 

and server node of the shared file) do not want all other peers in their communication 

path to make and store a copy of the shared file, for reasons like ownership, trust, 

and privacy. 
 
 
 
Cache Tree. The caching paths give the parent-child relationship of all the cache nodes, 

 
1  If everything else being the same, except that there is no open facility initially,  the problem is called 

connected facility location, which is also NP-hard [13, 17, 15]. 
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indicating from which parent cache node that each child cache node directly caches the data 

item from. Such relationships form a tree, referred to as the cache tree, which is rooted at 

source node S. Below we give definitions related to the cache tree.2 

 

Definition  1 (Parent Cache and Child Cache.) In cache tree, cache node i is the parent 

cache of cache node j, denoted  as P (i), if j directly fetches the data from i.  j is a child 

cache of i.                                                                                                                         ✷ 
 

Definition  2 (Ancestor Cache and Descendant Cache.) Cache node i is an ancestor cache 

of cache node j (i = j) if i is on the unique path from S to j (including S but not j) in 

the cache tree. That is, j directly or indirectly fetches the data from i.  j is a descendant 

cache of i.                                                                                                                         ✷ 
 

Definition  3 (Descendant Set.) The descendant set of cache node i, denoted  as D(i), is 

the set of i’s descendant caches. In other words, D(i) is all the nodes in the subtree rooted 

at i (including node i).  For example, the descendant set D(S) of source node S is the entire 

cache tree.                                                                                                                        ✷ 
 
 
Definition  4 (Selected Time of Cache Node.) Cache tree mandates the timeline of cache 

node selection, i.e the cache nodes in the cache tree can be ordered using the time at which 

they are selected  as cache nodes. We use t(i) to indicate the time sequence at which i is 

selected as cache node and assume t(S) = 0. For any cache node i, we have t(D(i)) > t(i). 

✷ 
 
 
Theorem 1 The in Caching problem is NP-hard. 

 
 
Proof:  The in Caching problem can be proved to be NP-hard via a reduction from the 

facility location problem (FLP)  [6].  The FLP is similar to in Caching problem with two 
2 Note that the cache tree is a “logical”  tree, because its corresponding caching paths do not necessarily 

form a tree, with possible overlapping edges or even loops. 
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differences: i) the data item is initially  outside of the network and ii) the caching cost is a 

constant. In in caching problem, the caching cost of a cache node depends on its distance 

to another cache node from which it caches the data, thus is not the same for all the cache 

nodes. Therefore FLP is a special case of in Caching when caching cost is a constant, which 

shows in Caching problem is also NP-hard. 
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Chapter   4 

 

 
 

Basic Selfish Caching Game 
 
 
 
 
 

In selfish caching game, however, whether a node caches the data itself or accesses the 

data from other cache nodes depends on which costs less, not according to optimal solution. 

Below we first discuss the cost model in the selfish caching game, which is different from that 

of in Caching problem discussed in Chapter 3. Then we show that a pure Nash Equilibrium 

exists.  Finally we discuss the performance of Nash Equilibrium in terms of the price of 

anarchy, which quantifies the cost of the lack of cooperation among nodes. 

 
4.1  Cost Model 

 
 

For each non-source node, it either caches the data in its local memory (cache node) 

or accesses the data from others (non-cache node). For node i, its access cost and caching 

cost are denoted  as αi  or βi  respectively. 

Access Cost. For a non-cache node i, once all the cache nodes are selected and have data 

cached in their local memories, i accesses D from its closest cache node (including the source 

node). Assuming k is i’s closest cache node storing D, then i’s access cost αi  is aidik . 

Caching Cost. When a cache node i decides to cache data from other existing cache nodes, it 

goes to the closest one, say k, to fetch the data and cache it into its local memory. Thus i’s 

caching cost βi  is also proportional to the shortest distance to cache node k and βi  = γdik . 

As in Chapter 3, γ is a constant indicating the relative weight of caching cost to access cost. 
 
Total Cost in Nash Equilibrium.  In a caching game, each node is either a cache node or 

 
non-cache node; whether a node i is a cache node or not depends on ai  and γ: if ai  ≥ γ, 

i is a cache node and caches the data from its nearest existing cache node1 ; if ai  < γ, it 

is a non-cache node and accesses the data from the nearest one among all the cache nodes.  

 

 



  

14 
 

V 

Let the cost of node i of requesting D be τi, then τi  equals either αi  or βi.  Let τ N  denote 

the total cost of the network in Nash Equilibrium, τ N  = 
∑

i∈ 

 

τi.  Let C N  denote the set of 

cache nodes (including S) in a Nash Equilibrium, C N  = {i|ai  ≥ γ, 1 ≤ i ≤ n} ∪ {S}. Let 

m = |C N |. 
 

Caching Strategy. The caching strategy of node i,  denoted as Ci,  includes the following. 

First, it decides whether it is a cache node or not. Second, if yes, it decides from which cache 

node (its parent cache) it fetches the data and caches in its local memory; if no, it decides 

from which cache node it accesses the data item D. More formally, Ci  = (ni, P (i), ci), where 

ni  ∈ {yes, no} indicates if i is a cache or not, P (i) is the parent cache node of i if i is a cache 

node, otherwise i accesses D from its closest cache node ci.  Let SP denote the strategy 

profile of the game, SP = {C1, C2, ..., Cn} shows the global cache placement and data access 

in the entire network. 
 

Before we present the algorithm that achieves Nash Equilibrium, we first show a prop- 

erty of the Nash Equilibrium achieved in the caching game, which says that a cache node in 

Nash Equilibrium is still a cache node in the optimal solution. 

 

Lemma 1 C N  ⊆ C opt. 
 

Proof:  We  prove  it by contradiction.  Assume node i ∈  C N   is not a cache node in the 

optimal solution, i.e i ∈/ C opt. We have that ai  ≥ γ. In an optimal solution (there could be 

multiple optimal solutions),  assume i accesses another cache node l for the data item D. To 

further reduce the total cost, i can cache the data from l. This further reduces the total cost 

of the entire network by (ai − γ) × dil , contradicting that it is an optimal solution. Therefore 

C N  ⊆ C opt. 
 

1  Here we emphasize that this cache node is the nearest one to i among the existing cache nodes at the 
time when i becomes a cache node. 
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We use C A  to denote the set of non-cache nodes in Nash Equilibrium in the basic selfish 

caching game that are cache nodes in the optimal solution, i.e., C A  = C opt − C N . 
 
 

4.2  Nash Equilibrium  Construction 
 
 

Below, we first present the algorithm leading to a Nash Equilibrium. Then we present 

some observation  from the algorithm, which serves as the basis of Nash Equilibrium proof in 

Theorem 2 at the end of this subsection. For the clarity of the presentation,  we call a cache 

node before it caches data a potential cache node. 

Nash Equilibrium  Construction.  The algorithm takes place in iterations.  In each it- 

eration, a potential cache node is selected as cache node and caches data from an already 

existing cache node, the caching path being a shortest path between them. There are m − 1 
 

non-source  cache nodes, so the algorithm stops after m − 1 iterations. 
 
 

Source Node S Cache Nodes in NE 
Non-cache Nodes in NE 

 
 

4  S 
    1  1 1    2 

3        S 1  2  3 

2  
2 3 3 2  5 

    5         6      7 4  6  8 
2 3 3 

9  8  10 7  10  9 
1 

11  11 
 

(a)  (b) 
 
Figure 4.1: Nash Equilibrium construction in a grid-like  ad hoc network.  (a) shows the 
caching paths.  The ID of a cache node is the time sequence at which it gets a data copy 
from its parent cache following the direction of the arrowed edge. Note that some edges are 
used multiple times, indicated by the double arrowed edges. (b) shows the cache tree in the 
Nash Equilibrium, with nodes  as the cache nodes and the number on the edge the cost of 
the shortest path between each pair of parent-child cache nodes. 

 
 
 
 
Minimum Caching Cost Algorithm for Nash Equilibrium. 
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(1) Start with  the source node S, find the potential cache  node with  the minimum 

shortest distance to the source node (when there is a tie, the potential cache node 

with smaller ID is selected). It is a new cache node. Move a copy of the data from 

the source node to the new cache node along the shortest path between them. 
 

(2) while (there is still un-cached potential cache node) 
 

Among all the shortest path linking any existing cache node to any potential cache 

node, find the one with the minimum cost. When there is a tie of the parent cache 

and/or child cache, choose the one with smaller ID. Move a copy of the data from 

the selected parent cache node to the selected child cache node along the shortest 

path between them. 
 

(3) For each of the non-cache nodes, it accesses the data from its nearest cache node. 
 

 
Above is essentially the minimum spanning tree algorithm upon the metric closure of 

all the cache nodes. Furthermore, above algorithm results in a unique minimum spanning 

tree because all the ties are broken following the unique IDs of nodes. Note also that the 

algorithm is in the same line as the total caching cost modeled in Chapter 3. 
 

EXAMPLE 1 Figure 4.1 (a) shows  such Nash Equilibrium  construction for a grid-like 

network topology, where each node can only communicate directly with its (at most four) 

neighbors.2 All the caching paths are shown  as the arrowed edges, the direction of which 

indicating the movement of the data item from parent cache node to child cache node. For 

the ease of presentation, the ID of each node in the figure now indicates the iteration (time 

sequence) at which the cache node  gets a data copy from its parent  cache following the 

caching path.                                                                                                                    ✷ 
 
 
Cache Tree in Nash Equilibrium.  Figure 4.1 (b) shows the cache tree corresponding 

to the caching paths in Figure 4.1 (a).  The nodes of the cache tree are the set of cache 
2 Note that the grid-like topology is only for the purpose of ease of presentation,  above Nash Equilibrium 

construction is applicable to any topologies. 



  

17 
 

 
nodes. Each edge represents  a parent-child cache node relationship. The number on the 

edge indicates  the cost of the shortest path between each pair of parent-child cache nodes. 

It is noted that corresponding shortest paths do not comprise of tree, since the cache path 

between 2 and 6 and the cache path between 2 and 8 overlaps partially, as shown in Figure 4.1 

(a) 

Selection of Parent Cache. In the caching game, when i is selected to become a cache node, 

it chooses the nearest existing  cache node, P (i), as its parent cache and fetches the data 

from P (i).  However, a later selected cache node j could be closer to i than P (i), causing 

cache node i to deviate and cache the data from j instead. Surprisingly, we show that for 

all the cache nodes selected after i, only nodes in D(i) can possibly be closer to i than P (i). 

More generally, Lemma 2 below shows that if a cache node j is not a descendant cache of i, 

then i does not have incentive to deviate to cache from j. 

Lemma 2 For two cache nodes i and j in a cache tree, if j ∈/ D(i), then diP (i) ≤ dij , which 

means that i does not have incentive  to deviate from its parent cache P (i) to have j as its 

parent cache. 
 
 
Proof:  When t(i) > t(j)  and j ∈/ D(i),  we have diP (i)  ≤ dij .  This is because following 

 

minimum caching cost algorithm, at the iteration when i is selected as the cache node and 

caches data from P (i),  iP (i) is the minimum shortest path among all the shortest paths 

connecting any cache node to any potential cache node, i.e., diP (i) ≤ dij . 
 

When t(i) < t(j) and j ∈/ D(i), as shown  in Figure 4.2, along the path from j to S 
 
(including j and S), there must exist one cache node, say k, with t(P (k)) < t(i) < t(k) (note 
P (k) and P (i) could be the same node). We have diP (i) ≤ dkP (k)   following the minimum 

caching cost algorithm. Using similar argument, we have dkP (k)  ≤ dji.  Therefore diP (i) ≤ dij , 

indicating that i does not have incentive to cache from j. 
 

For example, in Figure 4.1 (a), since t(6) < t(9) and node 9 ∈/ D(6), node 6 will not 

deviate from its parent cache node 2 to cache from node 9. This can be confirmed  by that 
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the distance between node 6 and node 2 is 3 hops, which is less than distance between node 

 
6 and node 9, which is 7 hops. 

 
 
Observation 1 In our in-network data caching model, we observe that an ancestor node 

can not access or cache data from its descendant cache nodes. Because otherwise,  it vio- 

lates the intrinsic ancestor-descendant relationship between ancestor  and descendant nodes. 

This observation, together with Lemma 2, lead to below theorem about the Nash Equilibrium 

construction. 

 
Theorem 2 The minimum caching cost algorithm reaches Nash Equilibrium. 

 

Proof: To prove that Nash Equilibrium exists, we need to show each node does not unilater- 

ally deviate from its caching strategy. That is, the caching node keeps its parent cache node, 

while non-cache  node accesses data from the same cache node. For any non-cache node i, it 

will not deviate to be a caching node since its access cost is less than its caching cost, due 

to ai  < γ; it will not access from another cache node since it accesses the data from closest 

cache node. 

For any cache node i, it will not deviate to be a non-cache node because ai  ≥ γ. Below 

we show it will not deviate from its parent cache node P (i) to any other cache node, say j. 

This is true when j ∈/ D(i), because from Lemma 2, i will not deviate to have j as its parent 

cache node. When j ∈ D(i), it does not deviate either since it is prohibited that ancestor 

node  accesses or caches data from its descendant cache. 

No node deviates unilaterally. We conclude that the minimum caching cost algorithm 

reaches Nash Equilibrium. 
 
 

4.3  Price of Anarchy (PoA) 
 
 

Price of Anarchy is defined  as the ratio between the social cost of the worst possible 
 
Nash equilibrium to the cost of the social optimal solution [9, 16]. Below we discuss the PoA 
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in our constructed Nash Equilibrium. 

 
 
Lemma 3 If ai  ≥ γ for all i ∈ V , the PoA of the data caching game is O(1). 

 
 
Proof:  In this case, all the nodes in the network are cache nodes,  and the total cost is 

τ  = 
∑

i 
 

∈V  γdiP (i).   The metric closure upon all the cache nodes is the same as G(V, E). 
 

The minimum caching cost algorithm upon the metric closure is essentially the same as the 

minimum spanning tree algorithm upon G(V, E). Thus both yield the same cost, PoA of the 

game is O(1). 
 
 
Lemma 4 If ∃ i ∈ V , such that ai  < γ, the PoA of the game can be O(n). 

 
 
Proof: We prove this by showing an example depicted in Figure 4.3. In this example, nodes 

{2, 3, ..., n − 1, n} are all non-cache nodes, with a2 = a3 = an = a < γ. The distance between 

node 2 and source node S is 1 and the distance  between nodes 3, 4, ..., n − 1, n to node 2 

is 0. The Nash Equilibrium is that all the non-cache  nodes access the data from S, giving 

total cost τ N  = a × (n − 1). However, the social optimal solution is that node 2 caches the 

data while nodes 3, 4, ..., n − 1, n access it from node 2, yielding optimal total cost τ opt = γ. 

Therefore PoA = 𝜏 𝑁

𝜏 𝑜𝑝𝑡
 
  =(𝑛−1)𝑎

𝛾
, which is O(n). opt   

 

Lemma 4 shows that due to the non-cooperation  among selfish nodes, the social optimal 

is not achieved in the Nash Equilibrium.  Below, we present a payment-based mechanism 

wherein some non-cache  nodes are made payment by other nodes. We show our proposed 

mechanism can achieve both Nash Equilibrium and social optimal. 
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S 
 

t(P(k)) < t(i) < t(k) 
 

P(i) P(k) 
 

i  k 
 

j 
 
 
 
 
 
 
 
Figure 4.2: In a cache tree, if t(j) > t(i) and j ∈/ D(i), then diP (i) ≤ dij , which means i does 
not have incentive to deviate from P (i) to have cache node j as its parent cache. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Source Node S 
 
 
 

1 

2 
0 0 

3 n 
0 0 

0 
n-1 

4 
5 

Non-cache node 
 
 

Figure 4.3: An example showing P oA = O(n) in the selfish caching game.
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Chapter   5 
 

 
 

Payment-based Selfish Caching Game With Optimal  Solution 
 
 
 
 
 
 

In this section, we design a payment-based mechanism wherein a Nash Equilibrium and 

a social optimal solution are achieved simultaneously  (we call it the NE-based  optimal 

solution for the rest of the paper). Recall C A  is the set of non-cache nodes in basic game 

Nash Equilibrium that are cache nodes in the optimal solution. The idea of the payment- 

based mechanism is to incentivize the nodes in C A  to cache data so that the optimal solution 

can be obtained and meanwhile they do not deviate unilaterally.  Specifically,  we need to 

answer the following three questions: 
 

• For node i ∈ C A, being a selfish player, at least how much incentive it needs to get 

to stay as a cache node in the optimal solution? 
 

• Among all the nodes in V , which nodes should incentivize node i by offering some 

payments to i? 
 

• How much payment each should offer? 
 
 

Before we answer these questions, we consider again the grid-like ad hoc network shown 

in Figure 4.1 (a), and study the data caching in the NE-based optimal solution. 

 

Cache Tree in Optimal  Solution. Figure 5.1 (a) shows the set of cache nodes and cache 

paths in the NE-based optimal solution for the grid-like ad hoc network shown in Figure 4.1 

(a).  It shows that C A  = {11, 21, 31, 41}.  For the nodes in C N   (recall that the set of cache 
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nodes in basic game Nash Equilibrium are still the cache nodes in the optimal solution), we 

keep their IDs the same as in Figure 4.1 (a) for simplicity.  Therefore all the node IDs in 

Figure 5.1 (a) no longer reflect the time sequence each cache node caches the data from its 

parent cache. Figure 5.1 (b) shows the corresponding  cache tree. Below we use it to illustrate 

our observations for the NE-based optimal solution and to answer above three questions. 
 
 

Source Node S Non-cache Nodes 
 

Cache Nodes in CN  Cache Nodes in CA 
 
 
 

4 1’ 
1 4’ 

3 S 3’ 
2 

5 6 7 
 

 
9 8 2’ 10 

S 
1 1 2 

1 2 3 
 

2 2 3 2 

4 1’  6 5 
2 2 3 3 

7 2’  3’  9 
1 2 2 

10 8 4’ 
11 11 1 

(a) (b) 
 
 
Figure 5.1: Illustration of the NE-based optimal solution. (a) shows the cache nodes and 
caching paths. (b) shows the corresponding  cache tree. 

 

 
 
 

Lemma 5 At least (γ − ai) × diP (i) amount of payment is needed to incentivize i to stay as 

a cache node, where P (i) is the parent cache of node i in the optimal solution. Otherwise, i 

will deviate to access the data from P (i). 
 

Proof:  If node i decides to deviate from being a cache node, it will access the data from 

the nearest cache node in C opt − {i}.  From Observation 1, node i can not access data from 

its descendant cache nodes D(i).  From Lemma 2, for two cache nodes i and j in a cache 

tree, if j ∈/ D(i), then diP (i) ≤ dij . Therefore, the nearest cache node in C opt − {i} for i to 

access is P (i).  To stay as a cache node, it incurs caching cost γ × diP (i).  Therefore, at least 

(γ − ai) × diP (i) amount of payment is needed as incentive for i to stay as a cache node. 



 

For the that the which are willing to pay to incen- 
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tivize cache node i ∈ C A  are in two categories. First, they are those non-cache nodes whose 

access cost will possibly increase if i accesses the data instead of caching it.  Obviously, they 

are the non-cache nodes that access data from i.  Second, they are the cache nodes whose 

caching cost will possibly increase if i accesses the data instead of caching it.  Such set of 

cache nodes can be easily found by running the minimum spanning tree algorithm upon the 

metric closure of all the nodes in C opt − {i}.  Lemma 6 below demonstrates such cache nodes. 
 

Lemma 6 If i ∈ C A  decides to access the data instead of caching it from P (i), among all 

the cache node j ∈ C opt, only the cache node in D(i) could possibly incur increased caching 

cost. 
 
 
Proof:  It suffices to show that for j ∈/ D(i), if i decides not to cache, j’s parent cache is 

 
still P (j), and its caching cost does not change. 

If t(j)  < t(i),  j’s caching path is not affected  because due to the uniqueness of the 

caching tree, j still caches before i does. If t(j) > t(i), since j ∈/ D(i), by way of contradiction, 

if j changes its parent cache from P (j) to another cache node, say k, as the result of minimum 

spanning tree algorithm upon the metric closure of all the nodes in C opt − {i}, this results 

that the cache tree of all nodes in C opt is not minimum, which contradicts with the fact that 

such tree is minimum spanning tree upon the metric closure of all the nodes in C opt. 
 

Second, we show j ∈ D(i)’s caching cost will possibly increases if i decides not to cache. 
 
 

Below we answer the third question that how much amount payment each of the nodes 

which benefit from i’s being cache node is willing to pay i.  We give the following definitions. 

For each cache node i ∈ C A, we denote the set of non-cache nodes accessing data from i as 
 
Θi. 

 
Definition  5 (Benefit of cache node i ∈ C A  to a non-cache node j ∈ Θi.)  We define the 
benefit of cache node i ∈ C A  to non-cache node j ∈ Θi  (aj   < γ), denoted  as ψj , as the 



 

minimum extra cost incurred to if not to cache. the data 
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from the closest cache node in C opt − {i}.  Formally, ψj  = aj  × (minl ∈(C opt −{i}) djl − dji ).  ✷ 
 
 
Definition  6 (Benefit of cache node i ∈  C A  to a cache node k ∈  D(i).)   We  define the 

benefit of cache node i ∈ C A  to a cache node k ∈ D(i) (ak  ≥ γ), denoted  as φk , as the 

minimum extra cost incurred to k if i decides not to cache. k has to cache the data from 

another cache node in C opt − {i}.  Formally, φk = γ × (dkP I (k)  − dkP (k)), where P 1(k) is the 

parent cache of k following the minimum spanning tree algorithm over the metric closure of 

the set of cache nodes C opt − {i}, and P (k) is the parent cache of k when the set of cache 

nodes are C opt.                                                                                                                  ✷ 
 

Definition  7 (Benefit and average benefit of cache node i ∈  C A  to the entire network.) 

Now, the benefit of cache node i ∈ C A  to the entire network, denoted as Ξi, is the increase of 

the total cost of the entire network if i decides not to cache the data from P (i), but to access 

it from P (i).  Formally, N Bi  = 
∑
j 

 
∈Θi ψj + 

∑ 
 
k∈D(i) φk − (γ − ai) × diP (i).  The average benefit 

 

of node i to the entire network, denoted as nbi, is the average cost saving for all the nodes in 
Θi  and D(i), plus itself, if node i decides to cache.  That it, nbi  = N Bi/(|Θi| + |D(i)| + 1). 

✷ 
 

 
Lemma 7 nbi  ≥ 0. 

 
 

Proof: By way of contradiction, assume nbi  < 0 in the optimal solution. That is, ∑j 
 

 
∈Θi ψj + 

k∈D(i) φk − (γ − ai) × diP (i) < 0. Consider the new caching solution where i decides not to 
 

cache and thus each node in Θi  and D(i) chooses its next best strategy, and all other nodes 
in C opt − {i} are still cache nodes. With Lemma 6, it is easy to see that the optimal cost

∑ 
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minus the cost of the new caching solution is equal to: 
 
 

(γ × diP (i) + ∑
 
aj  × dji + ∑  γ × dkP (k)) − 

j∈Θi k∈D(i) 

(ai × diP (i) + ∑
 
aj  × min 

l∈(C opt −{i}) 
j∈Θi 

djl + ∑  
k∈D(i) 

γ × dkP I (k)) 

=  (γ − ai) × diP (i) − ∑
  

aj  × (  min 
l∈(C opt −{i}) 

djl − dji) + 

 
 

k∈D(i) 

j∈Θi 

γ × (dkP I (k)  − dkP (k)) 

=  (γ − ai) × diP (i) − ( ∑
 
ψj  +   ∑  

 

φk ) 
 

>  0, 
j∈Θi k∈D(i) 

 
 
which contradicts the optimality of the optimal solution. 

 

Payment Mechanism. For each cache node i ∈ C A, the nodes who benefit from its being 

cache nodes, i.e., the nodes in Θi  ∪ D(i), each makes some amount of bid to node i.  For 

cache node j ∈ C opt, it could have multiple ancestor cache node i ∈ C A, so it needs to make 

bid to each of them. If this node caches the data, then the bidding node must pay the bided 

amount to the caching node. The payment mechanism also decides for each caching node in 

C A, beyond how much bid it receives that it is willing to cache the data. Using this payment 

mechanism, we show that both Nash Equilibrium and social optimal can be achieved. 

We define the strategy of each node i as ((v1, b1), (v2, b2), ..., (vpi , bpi ), ti), where v1, v2, ..., vpi   ∈ 
i i i i i i i i i 

N , b1, b2, ....bpi   ∈ R+, and ti ∈ R+, indicating i) node i, if a non-cache node, makes b1 amount i i i i 

of bid to cache node v1; if a cache node itself, makes bids to each of its pi  ancestor cache 

nodes, v1, v2, ..., vpi , with the amount b1, b2, ....bpi  respectively, and ii) node i’s threshold value i i i i i i 
 

of received bid is ti beyond which i will cache the data. We use Bi  to denote the total amount 

of bid that node i receives, i.e., Bi  =  
∑

 
if Bi  ≥ ti. 

 
{j|i=vx } 

 
bj . A node i will cache the data if and only 

 

The bid of each  node is set as  follows. For each  j ∈  Θi,  the amount  j bids i is 
bj  = max{0, ψj  − nbi}.  For each k ∈ D(i), the amount k bids i is bk  = max{0, φk − nbi}.
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That is, each node bids the amount which it benefits more than the average benefit of the 

network due to i’s caching. For other nodes l ∈/ Θi ∪ D(i) ∪ {i}, the amount l bids i is bl  = 0. 

The threshold of i ti is given as: 
 
 0    if i ∈ C N 

ti =  ∑
j∈Θi  

bj  + 
∑

k∈D(i) bk if i ∈ C 
 

For all the non-cache nodes in the optimal solution, their threshold is 0 too. 
 

Below we show that above payment mechanism yields social optimal as well as Nash 
 
Equilibrium. 

 
 
Theorem 3 The payment mechanism reaches Nash Equilibrium, and it yields social optimal 

for the entire network. 
 

Proof: We need to show with the payment mechanism, all the nodes in the optimal solution 

has no incentive to deviate,  as long as others  stay with their strategies. 

First, we show that for node i ∈ C A, it better off caches the data in spite of the fact 
 
that ai  < γ. We have 

 
 
 

Bi = ∑
 
bj  +  ∑ bk 

j∈Θi 
 

≥ 
j∈Θi 

k∈D(i) 

(ψj  − nbi)  + 
 

 
 
k∈D(i) 

 
(φk − nbi) 

= ∑
 
ψj  +   ∑  φk − ( ∑

 
+     ∑

 
) × nbi 

j∈Θi 
 

≥ 
j∈Θi 

 
 
ψj  + 

k∈D(i) 
 

φk 
k∈D(i) 

j∈Θi k∈D(i) 

−(|Θi| + |D(i)|) × N Bi/(|Θi| + |D(i)| + 1) 
 

≥ 
j∈Θi 

 
ψj  + 

 ∑
φk 

k∈D(i) 

−N Bi + N Bi/(|Θi| + |D(i)| + 1) 
 

≥  (γ − ai) × diP (i) + nbi Definition of nbi 
 

≥  (γ − ai) × diP (i)  From Lemma 7 

{ 

∑ ∑ 

 

∑ ∑
   

∑ 

∑ 
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Above  shows  that for  cache  nodes  in the  optimal solution that  are  not  cache  
node  in the  previous Nash  Equilibrium, the  amount of bids  they collect  is more  
than the  extra cost they  incur  due  to  caching.  They  better off to  caching and  
has  no incentive to  deviate. 
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Chapter   6 

 

 
 

Simulation Results 
 
 
 
 
 

In this chapter we mainly focus on basic caching game, since for payment model, the 

PoA is always equals to one. We study a 3 × 4 sensor grid with 12 nodes. One of the 12 

nodes is randomly chosen as source node. Access frequency of each node is a random integer 

number between 1 and 12 inclusive. 
 

Optimal Algorithm. Our optimal algorithm (denoted  as OPT) is an exhaustive approach. It 

works by enumerating all the possible cache node sets in a network of |V | nodes. There are 

2|V |−1 number of possible cache node sets since there is one source node. For each cache node 
set, finding the minimum spanning tree among its metric closure takes at most |E| × log|V |. 

Therefore the time complexity of the optimal algorithm is O|E| × log|V | × 2|V |−1. 
 

Figure 6.1 shows the total cost in both NE and OPT, by varying the caching coefficient 
 
 

 
 

Figure 6.1: Total Cost in basic game, by varying caching coefficient γ. 
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γ from 0 to 70, and Figure 6.2 shows the corresponding PoA with respect to γ.  To more 

accurately compare NE and OPT, we also list the representative  values of both NE and 

OPT in Table 6.1 in a typical run, including their costs, number of cache nodes, and PoA. 

It shows that when γ = 0, 1, the number of cache nodes in NE is 12, while when γ = 2, the 

number of cache nodes in NE is 10. This says that there are two nodes with the minimum 

access frequency  of 1 among all the nodes. With the increase of γ, the total costs of both 

NE and OPT increase, while the number of cache nodes in both NE and OPT decreases. 

For NE, this is because that a node being a cache node or not only depends on its access 

frequency and γ, with increase of γ, less and less nodes  want to be cache node. However, 

for OPT, increased γ necessitates less number  of cache nodes, even though less cache nodes 

results in more access cost. 
 

Table 6.1: Representative Values in NE and OPT by Varying γ 
 

γ NE Cost # of Cache Nodes in NE OPT Cost # of Cache Nodes in OPT PoA 
0 0 12 0 12 1 
1 11 12 11 12 1 
2 22 10 22 11 1 
3 34 9 31 10 1.097 

11 119 3 91 7 1.308 
12 200 1 97 5 2.062 
13 200 1 101 5 1.98 
63 200 1 199 2 1.005 
64 200 1 200 1 1 

 
 
 

When γ increases to 12, there is only one cache node (the source node) in NE, and 

the total cost is the total access cost in the network, which is the maximum cost of 200 

with maximum PoA of 2.062. This says that the maximum access frequency  among  all the 

nodes is 11, therefore when γ = 12, all the nodes access the source node for the data, which 

costs less compared  to caching the data. However, there are still 5 cache nodes in the OPT, 

to keep the OPT cost low.  After that, with the further increase of γ, NE cost stays the 

same, while the OPT cost still increases. This continues until γ = 64, when the source node 
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Figure 6.2: Price of anarchy in basic caching game, by varying caching coefficient γ. 
 
 
 
 
 

becomes the only cache node in OPT, at which time the total costs of both NE and OPT 

are the total access costs in the network. From then on, PoA stays as 1 with the further 

increase of γ. 

Figure 6.3 shows the change of the number of cache nodes in both NE and OPT, with 

the increase of γ. It shows that the number of cache nodes in NE is always less than or equal 

to the number of cache nodes in OPT, indicating the under supply of cache nodes in NE. By 

studying Figure 6.3 and Figure 6.2 together, we notice when PoA is 1, the number of cache 

nodes for both NE and OPT are the same. And when PoA gets large, there is a biggest gap 

between number of cache nodes in game theory and optimal solution. So we can say that 

optimal solution has a tendency to have more cache nodes than game theory. These extra 

cache nodes are together bringing down the total cost from game theory. 

 
6.1         Greedy Heuristic 

 
 

Since in C aching problem is NP-hard, we can not find optimal solution for a large 

number of sensors. In this section, we design a greedy heuristic strategy to find a good- 

enough solution in polynomial time, and use it (instead of the brute-force optimal algorithm) 

to measure total cost, price of anarchy, and number of cache nodes for large network. 

Greedy Heuristic.  The idea of the greedy heuristic is that we already know that C N  ⊆ C opt 
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Figure 6.3: Number of cache nodes in basic caching game, by varying caching coefficient γ. 
 
 
 
 
from Lemma 1 (Chapter 4.1). In each iteration we add a node in (V − C N ) to C N  in such a 

way that the total cost will be reduced the most. We will keep continue adding more nodes 

until the total cost cannot be reduced further. 

The time complexity of the Greedy algorithm is O(|E| × log(|V |) × |V |2) where |E| 
 

is number of edges, |V | is number of vertices in a graph. This can help us to run 300, 400 

sensors node in polynomial time efficiently. 

With Greedy heuristic, we can experiment with network with more nodes. Below we 

simulate on a network with 48 nodes. Again, we choose a source node randomly, and access 

frequency of each node is a random number between 1 and 10 inclusively. Figure 6.4 shows the 

comparison of total cost between basic game and Greedy.  It shows that when γ is small, when 

γ increases, it quickly reaches the maximum of PoA. It also demonstrates  that in a larger 

scale network, it takes larger caching coefficient γ for the cost of Greedy to be comparable 

with that of basic game. Figure 6.5 shows the corresponding PoA. Finally, Figure 6.6 shows 

the number of cache nodes in both cases. Again we observe that the number of cache nodes 

in basic game is always less than or equal to that of Greedy, indicating the reluctance of 

nodes to be a cache when its caching coefficient is larger than its access frequency. 
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Figure 6.4: Comparison of total costs between basic game and Greedy. 
 
 
 

 
 

Figure 6.5: Comparison of PoA between basic caching game and Greedy. 
 
 
 

 
 
Figure 6.6: Comparison of number of nodes between basic caching game and Greedy.
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Chapter   7 

 

 
 

Conclusion and Future  Work 
 
 
 
 
 
 

We apply game-theoretical analysis for the selfish caching in wireless ad hoc networks. 

Our model considers distance-dependent caching cost, which is different from previous work. 

We  first show a pure Nash Equilibrium exists in our model. We  then design a payment 

model, in which the selfish caching game achieves both optimal cost and Nash Equilibrium 

simultaneously.  Our model is more general and applicable than existing work for such 

emerging networks as P2P and wireless ad hoc sensor networks. We validate our findings 

using simulations under various network scenarios. As the ongoing and future work, we are 

investigating distributed algorithm approach while considering selfish behavior of individual 

nodes. Our goal is to find efficient mechanism in distributed environment, such that both 

social optimal and Nash Equilibrium can be achieved. 
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