

JOINT VIRTUAL MACHINE PLACEMENT AND MIGRATION IN

DYNAMIC POLICY-DRIVEN DATA CENTERS

A Thesis

Presented

to the Faculty of

California State University Dominguez Hills

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

 Computer Science

by

Hugo Flores J Lucas

Fall 2018

1

ACKNOWLEDGEMENTS

I would first like to thank Montserrat Hansack, without her support I would not have been

able to complete my Masters. I would also like to thank my thesis advisor, Dr. Bin Tang,

for all the help and feedback he has given me these past three years and for all the help

writing the paper on which this thesis is based on. Lastly I would like to thank my

committee members, Dr. Mohsen Beheshti and Dr. Liudong Zuo, for helping me write

this thesis.

2

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTS ii

TABLE OF CONTENTS iii

LIST OF TABLES v

LIST OF FIGURES vi

ABSTRACT vii

CHAPTER

1. INTRODUCTION 1

2. SYSTEM MODEL AND RELATED WORK 6

System Model 6
Related Work 10

3. VM2P: VM MIGRATION IN A PDDC 14

Ordered Policies 14
Unordered Policies 22

4. VMP2: VM PLACEMENT IN A PDDC 28

Ordered Policies 28
Unordered Policies 33

3

CHAPTER PAGE

5. PERFORMANCE EVALUATION 37

Simulation Setup 37
VMP2 Results 38
VM2P Results 42

6. CONCLUSION AND FUTURE WORK 44

REFERENCES 45

APPENDICES 51

A: ALGORITHM ONE CODE 53
B: ALGORITHM TWO CODE 56
C: ALGORITHM THREE CODE 60
D: GRAPH TOPOLOGY CONSTRUCTION CODE 64

4

LIST OF TABLES

PAGE

1. Summary of Notation 8

5

LIST OF FIGURES

PAGE

1. Example of a PDDC Policy Chain 2

2. PDDC with Two VM Pairs 4

3. PDDC to MFC Transformation 16

4. Example for VM2P 17

4. Example PDDC to MCF Transformation 18

6. Example Complete Graphs 23

7. Algorithm One Pseudocode 26

8. Algorithm Two Pseudocode 29

9. Example for VMP2 30

10. Theorem V Proof Aid 31

11. Algorithm Three Pseudocode 35

12. VMP2 Performance in Ordered Policies 33

13. VMP2 Performance in Unordered Policies 34

14. VMP2 Performance Difference Plot 35

15. VM2P Performance 35

6

7

ABSTRACT

Policy-Driven Data Centers (PDDCs) are data centers in which all Virtual

Machine (VM) traffic must traverse a sequence of Middleboxes (MBs). These MB

policies help guarantee a given level of security and performance for all applications

hosted in the PDDC at the cost of increased network traffic and energy consumption.

This thesis proposes a new VM optimization framework called VM2P (Virtual-Machine

Migration in PDDCs) which, when given an existing PDDC with existing VM

placements and policies, will migrate VMs within a PDDC in order to minimize energy

consumption while still maintaining all policy constraints. This thesis will also show how

the VM placement problem VMP2 (Virtual-Machine Placement in PDDCs), the problem

of distributing VMs into an empty PDDC such that energy consumption is minimized, is

actually a special case of VM2P. The performance of VM2P and VMP2 are evaluated via

simulations wherein the algorithms will compete with state-of-the-art policy-agnostic

algorithms.

8

9

CHAPTER 1

INTRODUCTION

Middleboxes (MBs), also known as “network functions" (NFs), are intermediary

network devices such as firewalls and load balancers that perform functions on network

traffic other than packet forwarding (Carpenter & Brim, 2002). In recent years, MBs have

been introduced into cloud data centers to improve the security and performance of cloud

VM applications (Sherry et al., 2012). MBs are usually either purpose-built hardware

placed inside the data center (Wang, Qian, Xu, Mao & Zhang, 2011) or they are

implemented as software, or as VMs, running on commodity hardware

(Gember-Jacobson et al., 2014). Popular examples of MBs include firewalls, intrusion

detection systems (IDSs), intrusion prevention systems (IPSs), load balancers, and

network address translators (NATs).

In particular, data center policies are established in data centers that demand VM

traffic traverse a chain of MBs (Joseph, Tavakoli, & Stocia, 2008). Figure 1 shows an

example of a possible data center policy. Traffic generated at VM1 first goes through a

firewall, then a load balancer, and lastly a cache proxy before it arrives at VM2. In doing

this, this policy can filter out malicious traffic, divert trusted traffic to avoid network

congestion, and finally cache the content to share with other cloud users in the data

center. Given the ever-increasing demands for security and performance from diverse

cloud user applications, data center policies have become a unified part of the Service

10

Level Agreement (SLA) of data centers. We refer to such cloud data centers as

policy-driven data centers (PDDCs).

Figure 1. An example of a data center policy.

VM placement (Mann, 2015), which maps VMs to their physical hosts (often

called Physical Machines (PMs)), and VM migration (Zhang, Liu, Fu, & Yahyapour,

2018), which moves VMs from one host to another, are popular and effective techniques

for network operators to optimize resource expenditures within PDDCs, load balance

network traffic, and increase fault tolerance. However despite their similarities VM

placement and migration are mostly studied independently by the research community

(Mann, 2015; Zhang et al., 2018). This separation may be due to the fact that each

strategy attempts to optimize different PDDC parameters. While VM placement

strategies primarily attempt to optimize total communication cost amongst VMs (e.g.

energy cost, data access delay, and bandwidth usage) (Alicherry & Lakshman, 2013;

Meng, Pappas, & Zhang, 2010; Li, Wu, Tang, & Lu, 2014; Cohen, Lewin-Eytan, Naor, &

Raz, 2013), VM migration strategies mainly attempt to optimize the total migration cost

11

of VMs (e.g. total migration time, downtime, network traffic, and service degradation

during live VM migration) (Wang, Li, Zhang, & Jin, 2015; Duong-Ba, Nguyen, Bose, &

Tran, 2014; Cui, Yang, Xiao, Wang, & Yan, 2017). As achieving one goal often

compromises the other, there is a need for the joint optimization of VM placement and

migration in order to achieve optimal resource utilization in cloud data centers. This is

especially true for PDDCs as VM communication along MB chains can generate more

network traffic and consume more network bandwidth and energy than VM

communications in traditional cloud data centers.

In this thesis we provide a new algorithmic framework called VM2P

(Virtual-Machine Migration in PDDCs) that jointly optimizes VM placement and

migration in PDDCs whose intra-VM traffic can fluctuate. In this model a set of distinct

MBs and communicating VM pairs have already been deployed in a PDDC. However, in

response to some change to PDDC traffic, there is a need to migrate the VMs in order

properly handle the changes in traffic. VM2P integrates communication cost optimization

and migration cost optimization into one scheme and therefore achieves joint

optimization. We explore the applications of VM2P using two types of PDDC policies:

ordered and unordered. Under an ordered policy all VM traffic must traverse a given

series of MBs in a specific order. In this case, a minimum-cost flow based policy-aware

VM migration algorithm is used that can solve the migration problem optimally. Under

an unordered policy all VM traffic must go through a given set of MBs but can do so in

any order. In this case the migration problem is NP-hard and thus there does not exist an

12

efficient polynomial algorithm. Instead, a 2-approximation policy-aware VM migration

algorithm is used to migrate VMs. For both ordered and unordered policies, the VM2P

framework can be periodically applied to respond to changes in traffic. An example

highlighting the difference between ordered and unordered policies can be found in

Figure 2.

Figure 2. A PDDC with a Fat Tree topology and two VM pairs.k = 4

In this thesis we also study a new VM placement problem called VMP2:

virtual-machine placement in PDDCs. Given a set of MBs already deployed in a PDDC

and a data center policy that communicating VM pairs must satisfy, VMP2 determines

how to place a new set of VMs onto empty PMs such that the total communication cost

between all VM pairs is minimized. This thesis will show that VMP2 is a special case of

VM2P and therefore techniques designed for VM2P can be adapted to solve VMP2.

Furthermore, by taking advantage of the discrete structures implicit in VMP2, it is

13

possible to design a more time efficient policy-aware VM placement algorithm while

achieving the same level of performance as the VM migration algorithms.

Via extensive simulations we compare these algorithms with state-of-the-art VM

placement and VM migration algorithms. For VM placement we compare VMP2 with a

well-known traffic-aware VM placement algorithm that is oblivious to data center

policies (Meng, Pappas, & Zhang, 2010). We show that VMP2 consistently outperforms it

in both ordered and unordered data center policies under different PDDC parameters. For

VM migration we compare VM2P with an algorithm called PLAN (Cui, Tso, Pezaros, Jia,

& Zhao, 2017), a policy-aware and network-aware VM management scheme. We show

that VM2P outperforms it for both ordered and unordered policies.

14

CHAPTER 2

SYSTEM MODEL AND RELATED WORK

System Model

We adopt a fat tree (Al-Fares, Loukissas, & Vahdat, 2008) topology, a popular

data center configuration, in order to illustrate the problem and its algorithmic solution.

However as the problem and its algorithms must be applicable to any data center

topology, we model a PDDC as an undirected general graph . Here,(V , E)G

 where is the set of all PMs and is the set ofV = V p ⋃ V s pm , m , .., m }V p = { 1 p 2 . p |V |p
V s

all switches. is the set of edges, each connecting either one switch to another switch orE

a switch to a PM. Figure 2 shows a PDDC of 16 PMs with where is the numberk = 4 k

of ports each switch has.

A set of either hardware or software based MBs, denoted asm

, have been deployed inside a PDDC, with being installedmb , b , .., b }M = { 1 m 2 . m m bm j

at switch . For each MB in the PDDC we adopt the commonly usedw(j)s ∈ V s

bump-off-the-wire design (Joseph, Tavakoli, & Stocia, 2008). This approach takes the

dedicated MB hardware out from the physical data path and uses a policy-aware

switching layer to explicitly redirect traffic to off-path MBs. Figure 2 shows three MBs

, , and installed to switches using this design.bm 1 bm 2 bm 3

15

There are VM pairs that have already beenl (v ,), v ,), .., v ,)}P = { 1 v′1 (2 v′2 . (l v′l

placed into the PMs of the PDDC. Here we focus on pairwise VM communication as

most traffic in cloud data centers is between pairs of VMs (Meng et al., 2010). For any

VM pair , its index is and we refer to as the source VM and asv ,)(i v′i i 1 ≤ i ≤ l vi v′i

the destination VM. Similarly, the PMs where and are placed are referred to as thevi v′i

source and destination PMs respectively. Denote the communication frequency vector as

, where the index of is , is the number of communicationsλ , , .., ⟩ λ
→

= ⟨ 1 λ2 . λl λi 1 ≤ i ≤ l

taking place between and per unit time. In a dynamic PDDC, the communicationvi v′i

frequencies among VM pairs are constantly changing and thus is not a constant vector.λ
→

Let . One unit amount of PDDC resources is neededv , , , , ..v , }V m = { 1 v′1 v2 v′2 . l v′l

to create and execute each VM. Here each unit resource is an aggregated characterization

of all the hardware resources (i.e., CPU, memory, storage, and bandwidth) needed to

create and execute VMs. We leave the more general case where different VMs could

need different amount of resources as future work. The resource capacity of the -th PMi

is denoted as , which means the -th PM has resource slots where each slotm(i) i (i)m

can be used to create and execute one VM. As there are VMs that each require one2 * l

resource slot, it must be the case that . A summary of all the notationm(i) Σi∈V p
≥ 2 * l

used can be found in Table 1.

Energy consumption in any cloud data center, which includes servers, cooling,

and networking, is still a big concern (Armbrust et al., 2010). Although the servers and

16

cooling generally comprise most of the power consumption, studies show that network

devices including various switches, routers, and links, can comprise nearly 50% of the

overall power consumption in a data center (Abts, Marty, Wells, Klausler, & Liu, 2010).

This is especially true for traffic-intensive data centers wherein energy consumption in

networking is comparable to the energy consumption of servers (Cohen et al., 2013). We

therefore focus on the networking component of energy consumption in PDDCs.

Table 1

Summary of Notation
Notation Meaning Notation Meaning

 E set of all edges m number of MBs

 V set of all vertices w(j) s switch that connects to bm j

 V p set of all PMs P set of all VM pairs

 V s set of all switches v ,) (i v′i the i-th VM pair

 V m set of all VMs l number of VM pairs

m p i the i-th PM λ
→

 the set of VM pair
communication frequencies

(i) m resource capacity of i-th PM λi communication frequency of the
i-th VM pair

 M set of all MBs k number of ports for each PM in a
fat-tree topology

bm j the j-th MB in a policy chain

17

Following (Meng et al., 2010), we model the communication cost of any VM pair

as the product of the number of links a message sent from the source to the destination

VM must traverse inside PDDC and the communication frequency of the VM pair. Let

 denote the minimum energy cost between any PM (or switch) and . We also(i,)c j i j

model the migration cost of migrating any VM as being proportional to the number of

links a VM must traverse to get from one PM to another. Thus for any VM migratedv

from to another , its migration cost is equal to where is referred tomp i mp j (i,)μ * c j μ

as the migration coefficient and is a weight parameter that quantifies the trade-off

between VM communication cost and VM migration cost. The migration coefficient

depends on factors such as VM sizes and available network bandwidth and thus must be

adjusted by PDDC operators depending on the current PDDC configuration.

Depending on the application requirements, some data center policies require that

VM traffic to go through MBs in a strict order. For example in the data center policy

shown in Figure 1, as security takes precedence over performance for many cloud

applications VM traffic must go through the firewall first for a security check, then the

load balancer, and finally the cache proxy for performance improvement. We refer to

such policies as ordered policies and denote them as . On the othermb , b , .., b)(1 m 2 . m m

hand as some MB functions are mostly independent from one another, many data center

policies are considered satisfied as long as all the MBs in the policies are visited by VM

traffic regardless of the order visited. We refer to such policies as unordered policies and

denote them as . An example of such a policy is given in (Li & Qian,mb , b , .., b }{ 1 m 2 . m m

18

2016) wherein the authors demonstrate that for traffic monitoring a passive monitor MB

can be placed before or after a deep packet inspector MB.

Concretely, refer to Figure 2 and assume . Here must traverse1, ⟩ λ
→

= ⟨ 2 v ,)(1 v′1

an ordered policy, denoted by , resulting in communication cost of 10.mb , b , b)(1 m 2 m 3

On the other hand must traverse an unordered policy, denoted byv ,)(2 v′2

, resulting in communication cost of 16. We refer to the switch wheremb , b , b }{ 1 m 2 m 3

the first MB visited is installed in as the ingress switch and the switch where the last MB

is installed in as the egress switch. Under an ordered policy the ingress switch is always

 and the egress switch is always . Under an unordered policy, no suchw(1)s w(m)s

constraint exists.

Related Work

VM placement and migration have each been studied intensively. For VM

placement, Meng et al. (Meng et al., 2010) designed one of the first traffic-aware VM

placement algorithms wherein VMs with large communication frequencies are assigned

to the same PMs or PMs in close proximity. Alicherry and Lakshman (Alicherry &

Lakshman, 2013) designed both optimal and approximation algorithms that place VMs in

data centers such that data access latencies are minimized while still satisfying system

constraints. Li et al. (Li et al., 2014) studied VM placement that aimed to reduce data

center network costs as well as the cost caused by the utilization of physical machines.

For VM migration, Wang et al. (Wang et al., 2015) studied how to schedule and allocate

19

network resources to migrate multiple VMs at the same time and they also designed a

fully polynomial time approximation algorithm. Li et al. (Li et al., 2016) developed an

energy-efficient VM migration and server consolidation algorithm based on modified

particle swarm optimization methods. However, none of work above considers the joint

optimization of VM placement and migration.

To the best of our knowledge the only two works that explicitly explore joint VM

placement and migration optimization are (Duong-Ba et al., 2014) and (Cui et al., 2017).

(Duong-Ba et al., 2014) optimizes the sum of VM migration and communication costs as

well as server energy cost. It proves that the problem is NP-hard and provides a heuristic

algorithm. In contrast, by focusing on the sum of VM migration and communication cost,

we are able to design optimal and approximation algorithms therefore providing

performance guarantees for VM placement and migration. (Cui et al., 2017) assumed that

data center topologies are adaptive, with reconfigurable wireless links or optical circuit

switches, and proposed a VM migration algorithm with a constant approximation ratio.

Although this a promising approach, its practicality is yet to be demonstrated due to the

performance hindrance caused by wireless links and the physical properties of data

centers (Ghobadi et al., 2016). We thus focus on traditional data center networks with

electrical packet switches arranged in a multi-tier topology. Furthermore, none of the

above VM placement and migration research considered data center policies and thus

falls short of maximizing the performance and security guarantees gained via the

deployment of MBs inside PDDCs.

20

PACE (E. Li et al., 2013) was one of the first to study the policy-aware VM

placement problem. It places a sequence of application requests into the cloud, each

associated with a prize, a number of compute resources, and MB instances needed. The

goal is to maximize the total prize amount of the allocated application requests. However,

it only considers one type of MB and thus does not consider the type of policy chains

addressed in this paper. The work most related to this thesis is from Cui et al. (Cui et al.,

2017) which is one of the first papers that studied policy-aware VM migration. It

considered multiple ordered policies wherein different VM pairs could take different

policies. They showed the problem to be NP-hard and presented utility-based heuristic

algorithms as possible solutions. They assumed that migration costs are measured and

provided by the hypervisor hosting the VM and therefore the costs can be treated as

constants for the optimization. In contrast, by considering the number of hops each VM

migrates as the migration cost, this paper’s model is network-topology aware and more

accurately represents the delay or energy consumption of network traffic induced by VM

migration. Unlike their work, which just provided heuristic algorithms for

ordered-policies, this thesis considers both ordered and unordered policies and provides

optimal, approximate, and heuristic algorithms.

There is another line of orthogonal research that studied the so called MB/VNF

placement or migration problem (Cui, Cziva, Tso, & Pezaros, 2016; Zhang et al., 2013;

Liu, Li, Zhang, Su, & Jin, 2017; Bhamare et al., 2017). Given VM placements and policy

specifications in the cloud data center, it determines the optimal locations to place the

21

MBs or VNFs such that the performance is optimized. While this is a promising approach

to improve service chaining performance, we note that many MBs in cloud data centers

and enterprise networks are still purpose-built hardware installed and configured

manually by network operators~\cite{unharmful}. As such, once physically deployed,

these MBs are not easy to move around to adjust to the dynamic network traffic. In

contrast, being mature technologies, VM placement and migration studied in this paper

are more flexible.

22

CHAPTER 3

VM2P: VM MIGRATION IN A PDDC

VM2P assumes that all VM pairs have already been placed inside a PDDC via

some algorithm dependant on taking the value of at some particular moment. Such anλ
→

initial placement is done by a VM placement function , i.e. VM p : V m → V p v ∈ V m

is placed in PM . We will solve the VM placement problem and obtain an(v)p ∈ V p

optimal or approximate in the next chapter. Generally speaking however, VM2P willp

work for any initial placement of VMs.

Due to dynamic traffic changes in PDDCs, will constantly change. This meansλ
→

that any placement computed by a VM placement algorithm that takes into consideration

the communication frequencies of the VM pairs may not be optimal if any value in the

communications vector changes. It could be the case that a previously frequently

communicating VM pair now communicates rarely and thus occupies resource slots that

would be better suited for highly communicative VM pairs. As VM migration consumes

energy in PDDC, the objective of VM2P is to migrate VMs in order to minimize the total

energy consumption of VM migration and VM communication. Below we formulate and

solve VM2P for both ordered and unordered policies respectively.

23

Ordered Policies

Problem Formulation
Under an ordered policy, for any VM pair communication the ingress switch is

always and the egress switch is always . Given any initial VM placementw(1)s w(m)s

function , we denote the total communication cost of all VM pairs as . Thus:p l (p)Cc

(p) (sw(j), w(j)) c(p(v), w(1)) (sw(m), (v)))Cc = ∑
l

i=1
λi * ∑

m−1

j=1
c s + 1 + ∑

l

i=1
λi * (i s + c p ′i

Next we define a VM migration function as , meaning that VMm : V m → V p

 will be migrated from to . Here it need not be the casev ∈ V m (v)p ∈ V p (v)m ∈ V p

that is always migrated, can be true. Let denote the totalv (v) (v)m = p (m)Cm

migration cost of all the VM pairs. Thus:

(m) (c(p(v), (v)) (p(v), (v)))Cm = μ * ∑
l

i=1
i m i + c ′i m ′i

Let denote the total migration and communication cost of all the VM pairs after(m)C t

VM migration . Thus which means:m (m) (m) (m)C t = Cm + Cc

(m) (sw(j), w(j)) (μ (p(v), (v)) (m(v), w(1)))C t = ∑
l

i=1
λi * ∑

m−1

j=1
c s + 1 + ∑

l

i=1
* c i m i + λi * c i s

(μ (p(v), (v)) (sw(m), (v)))+ ∑
l

i=1
* c ′i m ′i + λi * c m ′i

The objective of VM2P is to find a VM migration that minimizes whilem (m)C t

satisfying resource constraint of PMs: . One thing{v | m(v) }| , ∀i| ∈ V m = i ≤ mi ∈ V p

to note from the equations above is when using an ordered policy, we only need to

minimize the sum of the cost from the source VM to the ingress switch and the

24

destination VM to the egress switch as the MB traversal cost is constant for all VMs. We

will now show that VM2P in a PDDC is equivalent to the minimum cost flow (MFC)

problem (Ahuja, Magnanti, & Orlin, 1993) in a properly transformed flow network. We

do this as the minimum cost flow problem has many solutions which are efficient and

optimal.

Minimum Cost Flow Algorithm

Let be a directed graph. Denote the capacity of edge asV ,)G = (E u,)(v ∈ E

. Denote the cost of edge as . There exists a source node(u,)c v u,)(v ∈ E (u,)d v

that has a supply of amount . There is also a sink node with amount s ∈ V b t ∈ V b

as demand. Denote a flow on edge as , . Any flow isu,)(v (u,)f v f : E → ℝ+ (u,)f v

subject to the following constraints:

1. Capacity constraint:

.(u,) (u,), ∀(u,)f v ≤ c v v ∈ E

2. Flow conservation constraint:

 for each .f (u,) f (v,)Σu∈V v = Σu∈V u v ∈ V

The goal of the MCF problem is to find a flow function such that the total cost of thef

flow is minimized. The MCF problem can be solved efficiently(d(u,) (u,))Σ(u,v)∈E v * f v

by many combinatorial algorithms (Ahuja et al., 1993). In this paper, we adopt the

scaling push-relabel algorithm proposed by Goldberg (Goldberg, 1997), which works

well over a wide range of problem classes. For any flow network, the algorithm has the

25

time complexity of , where , , and are the number of nodes,(a og(a))O 2 * b * l * c a b c

number of edges, and maximum edge capacity in the flow network respectively.

As shown in Figure 3, we first transform the PDDC into a flow network(V ,)G E

 following the steps below:(V ,)G ′ E′

1. , where is the source node and is the sinks} t}V ′ = { ⋃ { ⋃ V m ⋃ V p s t

node in the flow network

2. (s,) } (v, m) , pm } E′ = { v : v ∈ V m ⋃ { p j : v ∈ V m j ∈ V p ⋃

. Note that this is a complete bipartite graph(pm ,) m }{ j t : p j ∈ V p

between and .V m V p

3. For each edge , set its capacity as one and its cost to zero. For eachs,)(v

edge , set its capacity as (the resource capacity of) and itspm ,)(j t mj mp j

cost to zero.

4. For each edge , , set its capacity to onev , m)(i p j , pmvi ∈ V m j ∈ V p

and its cost as . For each edge(p(v), m) (pm , w(1))μ * c i p j + λi * c j s

, set its capacity to one and its cost asv , m)(′i p j

.(p(v), m) (pm , w(m))μ * c ′i p j + λi * c j s

5. Set the supply of the source and the demand of the sink node to .2 * l

Figure 4(a) shows a small fat tree PDDC with . There are two PMs k = 2 mp 1

and , two edge switches, two aggregation switches, and one core switch. Each PMmp 2

has two resource slots; the four resource slots are . There is anrs , rs , rs , rs }{ 1 2 3 4

26

ordered policy , with installed on edge switch and onmb , mb)(1 2 bm 1 w(1)s bm 2

aggregation switch . There are two VM pairs and withw(2)s v ,)(1 v′1 v ,)(2 v′2

communication frequency of one-hundred and one respectively. and are initiallyv1 v2

placed on while and are initially on . For this example, we will assumemp 1 v′1 v′2 mp 2

.μ = 1

Figure 3. Summary of the PDDC to MFC transformation.

Figure 4. A working example for VM2P.

27

Creating an MCF representation of this problem, see Figure 6, and solving it

results in and migrating to and and migrate to . This migrationv1 v′1 mp 1 v2 v′2 mp 2

results in a total communication cost of (note here that00 1 06 01 221 + 1 + 2 + 4 + 1 = 4

101 is the communication cost between ingress switch and egress switch).w(1)s w(2)s

This cost can also be double checked against Figure 4(b). Because is initially locatedv1

in and in , only and actually migrate. Without migration, the totalmp 1 v′2 mp 2 v′1 v2

communication cost is . Therefore even though VM migration costs100) 066 * (+ 1 = 6

energy, selective migration of VM pairs can save energy via communication cost

reductions.

Figure 5. Example MCF transformation.

Theorem I

28

VM2P under an ordered policy in is equivalent to the minimum cost(V ,)G E

flow problem in .(V ,)G′ ′ E′

Proof. First we show that with the above transformation that sending amount2 · l

of flow from to ensures that each of the VMs can be migrated to a PM. Ins t 2 · l

particular since the amount of supply at is (Step 5), since the capacity of eachs 2 · l

edge is one (Step 3), and since there are VMs in , a valid flow of s,)(v 2 · l V m 2 · l

amount from to must consist of one amount on edge , one amount on ,s t s,)(v1 s,)(v2

..., one amount on edge , one amount on ,, and finally one amount ons,)(vl s,)(v′1

edge . Now, since the capacity on each edge is one (Step 4), according tos,)(v′l v, m)(p j

flow conservation one amount of flow must come out of any edge and go into exactlyv

one of the PM . Thus each VM is migrated to exactly one PM.mp j

Next, we show the above VM migration assignment does not violate the capacity

constraint of any PMs. Since the edge capacity of edge is (Step 3), no morepm ,)(j t mj

than amount of flow comes out of each node . This guarantees that eachmj bm j ∈ V p

PM will not store more than VMs which satisfies the capacity constraint of eachmp j mj

PM.

Finally for the cost note that the edge cost of isv , m)(i p j

, which is equal to the migration and communication(p(v , m) λ (pm , w(1))μ · c i p j + ′i · c j s

energy cost for . The cost of edge is ,vi v , m)(′j p j (p(v), m) (pm , w(m))μ · c ′i p j + λi′ · c j s

which is equal to the migration and communication energy cost for . All other edges inv′i

29

the flow network have zero cost. This indicates that only the VM migration and

communication costs are considered in the minimum cost flow. The minimum cost flow

algorithm gives the minimum cost of sending amount of flow from to ,2 · l s0 to

showing that the corresponding VM migration and communication cost obtained is

indeed minimum.

State of the Art VM Migration

Cui et al. (Cui et al., 2017) proposed a policy-aware VM management scheme

called PLAN. The core idea behind their techniques is the utility of a VM migration.

Utility is defined as the VM's communication cost reduction due to migration minus the

cost of the migration (Cui et al., 2017, Definition 1). The goal of PLAN is to find a

migration scheme that maximizes the total utility of all VMs. PLAN is a greedy

algorithm (Cui et al., 2017, Algorithm One) that works in rounds. In each round PLAN

determines which VM can be migrated to a PM with capacity such that the migration has

the highest utility possible any VM yet to be migrated. This continues until all the VMs

are either migrated or no migration exists that increases utility.

PLAN, however, is also a heuristic algorithm that does not offer any performance

guarantee. Thus it is not clear how well it can perform at all times. We state in Lemma I

that its goal is equivalent to our goal of minimizing the total communication and

migration cost in VM2P. Thus these two algorithms can be adequately compared later in

this thesis in order to measure the effectiveness of our algorithms.

Lemma I

30

Minimizing total communication and migration cost is equivalent to maximizing(m)C t

total utility in PLAN.

Proof. Under migration function , the utility of migrating a source VM fromm vi

its current PM to another PM is defined as the reduction of its(v)p i (v)m i

communication cost to the ingress switch minus the cost of migrating the VM. Similarly,

we can define the utility of migrating a destination VM as the reduction of its

communication cost to the egress switch minus the cost of migration. Denote the utility

of VM as . Thus:v (v)u

(v) c(p(v), w(1)) (m(v , w(1))) (p(v , (v))u i = λi · (i s − c i s − μ · c i m i

(v) c(p(v), w(m)) (m(v , w(m))) (p(v , (v))u ′i = λi · (′i s − c ′i s − μ · c ′i m ′i

We can also defined the total utility of migrating all VMs under migration m as:

(u(v) (v))U m = ∑
l

i=1
i + u ′i

As stated before the total migration and communication cost after migration is

equal to: . This means that minimizing is equivalent to(m) (m) (m)C t = Cm + Cc (m)C t

maximizing which means:(p) (m)Cc − C t

(p) (m) c(p(v), w(1)) (sw(m), (v)) (m(v), w(1))Cc − C t = ∑
l

i=1
λi · (i s + c p ′i − c i s −

 (sw(m), (v))) (p(v), (v))c m ′i − μ ∑

v∈V m

c m = U m

Unordered Policies

Problem Formulation

31

Under an unordered policy we must define a VM migration function

 as well as an MB traversal function form : V m → V p 1, , ..,] 1, , ..,]πi : [2 . m → [2 . m

each VM pair . The traversal function is a permutation function indicating thatv ,)(i v′i

after VM migration the MB that visits is . Let and letjth v ,)(i v′i bm π (j)i π , π , ..π ⟩ π→ = ⟨ 1 2 . l

 denote the total migration and communication cost of all the VM pairs with(m,)C t π→

VM migration and MB traversal . Thus:m π→

(m,) c (p(v), (v)) (p(v), (v)))C t π→ = ∑
l

i=1
μ · (i m i + c ′i m ′i +

 (sw(π (j)), w(π (j))) (m(v), w(π (1))) (sw(π (m)), m(v)))∑
l

i=1
λ · (∑

m−1

j=1
c i s i + 1 + c i s i + c i ′i

The first and second terms in the equation above are the total migration cost and

total communication cost of all the VM pairs, respectively. The objective of VM2P under

an unordered policy is to find an and a to minimize while satisfying them π→ (m,)C t π→

resource constraints of all PMs. We will show that VM2P is NP-hard even for one pair of

VMs and propose an approximation algorithm that achieves a total energy cost at most

twice that of the optimal configuration.

Theorem II

Even when there is only one pair of VMs to migrate (i.e.,), VM2Pv ,)(1 v′1 l = 1

is NP-hard.

Proof. We reduce a variation of the s-t traveling salesman path problem (TSPP)

(Hoogeveen, 1991), which is an NP-hard problem, down to the special case of an

32

unordered policy in VM2P. Given a complete undirected graph with a pairV ,)K = (K EK

of prespecified vertices and edge cost satisfying the triangle,s t ∈ V K c : EK → ℝ+

inequality for all , the TSPP finds the cheapest(u,) (u,) (v,)c v ≤ c v + c w , ,u v w ∈ V K

Hamiltonian path that starts at , visits each vertex exactly once, and ends at . Whens t

, the TSPP becomes the well-known traveling salesman problem (TSP) (Cormen,s = t

Leiserson, Rivest, & Stein, 2009), which finds the cheapest Hamiltonian cycle that starts

at , visits each vertex exactly once, and then returns to . For clarification, by variations s

of the TSPP we mean that nodes and each have a cost and thus the cost of thes t

Hamiltonian path or cycle also includes the costs of nodes and .s t

Given an instance PDDC graph where has a cost(V ,)G p ⋃ V s E mp i ∈ V p

, we create instances of complete graphs ,(pm)c i V | |V |)/2| p · (P + 1 V ,)K i,j = (k
i,j

 Ei,j
k

. Here with ., , V |1 ≤ i j ≤ | p pm , m , w(1), w(2), .., w(m)}V i,j
K = { i p j s s . s m , mp i p j ∈ V p

For edge , its cost is the cost of the shortest path connecting andu,)(v ∈ Ei,j
k (u,)c v u

 in . is the migration cost of from its current PM to andv G (pm)c i v1 (v)p 1 mp i

 is the migration cost of from its current PM to . If gives the(pm)c j v′1 (v)p ′1 mp j Ka,b

minimum cost Hamiltonian path then migrating to and to must be thev1 mp a v′1 mp b

minimum-cost migration for VM pair in , and vice versa.v ,)(1 v′1 G

Figure 6 shows the three complete graphs , , and that areK1,1 K1,2 K2,2

transformed from the linear PDDC graph in Figure 4(a) while only consideringG

. gives the minimum cost Hamiltonian path among the three completev ,)(1 v′1 K1,2

33

graphs. It starts from and visits , , and ends at with cost of six.mp 1 w(1)s w(2)s mp 2

Therefore, migrating to and to gives the minimum total migration andv1 mp 1 v′1 mp 2

communication cost of six for . As is initially located at and at ,v ,)(1 v′1 v1 mp 1 v2 mp 2

both VMs do not need to migrate.

Figure 6. Complete graphs generated from PDDC example figure.

Algorithms

The VM migration algorithm under an unordered policy (Algorithm One) works

as follows. For each VM pair (assuming), the algorithm tries tov ,)(i v′i ..λ1 ≥ λ2 ≥ . ≥ λl

find a target PM such that the total migration cost and communication cost of this pair is

minimized. To do that, it constructs complete graphs . For eachV | |V |)/2| p · (P + 1 K i,j

complete graph the algorithm:

1. Computes its minimum spanning tree.

2. Computes a walk that starts with , visits all the vertices using eachmp i

edge at most twice, and stops at .mp j

3. Calculates and stores the cost of the walk including and .(pm)c i (pm)c j

4. Finds the , which we call , that results in the minimum cost.K i,j Ka,b

34

5. Migrates to and to .vi mp a v′i mp b

This continues until all the VM pairs have been migrated. Constructing any of thel

 takes , computing its MST takes , finding a walkV | |V |)/2| p · (P + 1 K i,j (m)O 3 (m)O 2

takes , and (at least in fat tree topology) the number of switches is bounded by(m)O

. Therefore if , the time complexity of Algorithm One is(|V |)O p
2/3 (|V |)m = O p

2/3

. A description of Algorithm One can be found below.(l V |) (l V |)O · | p
2/3 · m = O · | P

4

Example Two

Using the same PDDC as in Figure 4, Algorithm One will migrate and tov1 v2

 and and to , which means all the VMs stay in their initial placement.mp 1 v′1 v′2 mp 2

The total migration and communication cost is .01 061 · 6 = 6

Theorem III

Algorithm One achieves a two-approximation when .l = 1

Proof. Let the pair of PMs that store be and let be thev ,)(1 v′1 pm , m)(a p b W

walk from to in the MST in the complete graph . Let denote themp a mp b Ka,b W *

optimal walk from to in . The cost of the MST computed in line 10 ofmp a mp b Ka,b

Algorithm One is a lower bound on the cost of the optimal walk, .(MST) (W)c ≤ c *

Since the walk visits all vertices using each edge of the MST at most twice,W

. Therefore we have .(W) (MST)c ≤ 2 · c (W) (W)c ≤ 2 · C *

35

Figure 7. Pseudocode for Algorithm One.

36

CHAPTER 4

VMP2: VM PLACEMENT IN A PDDC

When new cloud applications are initially submitted and created as VMs, cloud

providers must optimize the usage of cloud resources by carefully allocating VMs to

PMs. We study this VM placement problem and call it VMP2 (Virtual Machine

Placement in PDDCs). We show that VMP2 is a special case of VM2P under both

ordered and unordered policies. Therefore the algorithms outlined in the previous

sections can be used here as well. However, we will also design specialized algorithms

for the VM placement problem in this section that are more time-efficient than the

migration algorithms while still being optimal (for ordered policies) or two-approximate

(for unordered policies).

Ordered Policies

Problem Formulation

The total communication cost of all the l VM pairs under VM placement p is

denoted as (Equation 1). The objective of VMP2 is to find a placement p that(p)Cc

minimizes while satisfying the resource constraints of all PMs.(p)Cc

Theorem IV

Under an ordered policy, VMP2 is a special case of VM2P when .μ = 0

Proof. When we plug in into Equation 2 we get the following:μ = 0

37

(m) (sw(j), w(j)) (c(m(v), w(1)) (sw(m), (v)))C t = ∑
l

i=1
λi · ∑

m−1

j=1
c s + 1 + ∑

l

i=1
λi i s + c m ′i

Replacing in the equation above with , which essentially means we’re finding am p

placement rather than a migration, yields .(m) (p) (p)C t = C t = Cc

As the VM placement problem is a special case of the migration problem, the

MCF algorithm proposed earlier solves VM placement optimally. However by taking

advantage of the unique characteristics of the problem in a PDDC, we are able to design a

more time efficient algorithm below.

Algorithms

The key to minimizing the communication cost of a VM pair is to find a resource

slot as close as possible to the ingress switch for the source VM and a resource slot asvi

close as possible to the egress switch for the destination VM . Recall that there arev′i

 resource slots in the PDDC. For the purposes of our algorithm, eachmΣi∈V p i ≥ 2 · l

resource slot will now have an ID, an ingress cost, and an egress cost. A resource slot’s

ingress and egress cost is the number of hops a message would have to make to travel

from the slot to the ingress and egress switch respectively.

Definitions. We refer to the l resource slots that will contain all l of the VM pairs

in the PDDC as the ingress and egress resource sets (IRS and ERS). Therefore any slot in

the IRS cannot appear in the ERS and vice versa. The cost of the IRS or ERS is the sum

of the ingress and egress costs of each slot respectively. A pair of IRS and ERS are

optimal if the sum of their costs in minimized. The following algorithm, Algorithm Two,

38

attempts to find an IRS and ERS, denoted as , such that their costs is minimized.I ,)(E

The complexity of this algorithm is where is(|V | og(|V |))O p · mavg · l p · mavg + l2 mavg

the average resource capacity of the PMs.

Figure 8. Pseudocode for Algorithm Two.

39

Example Three. Consider the same scenario outlined in Example One, but instead of VM

migration we now try to place two sets of VM pairs into a PDDC: and .v ,)(1 v′1 v ,)(2 v′2

Figure 9(a) shows a placement calculated with Algorithm Two. As is closer to bothmp 1

 and than , it could be that . Howeverbm 1 bm 2 mp 2 rs , s , s , s }A = B = { 1 r 2 r 3 r 4

Algorithm Two should create and meaning that VMs.id rs , s }I = { 1 r 3 .id rs , s }E = { 2 r 4

 are placed in while are placed in . The total communicationv ,)(1 v′1 mp 1 v ,)(2 v′2 mp 2

cost for this configuration is .00 0 101 · 4 + 1 · 1 = 4

Figure 9. Example for VMP2.

Theorem V. Algorithm Two finds the VM placement that minimizes the total

communication cost for the l VM pairs.

40

Proof. Assume that Algorithm Two is not optimal and there exists an

optimal algorithm called O. Therefore there must exist a problem instance such that the

VM placements resulting from both algorithms are different. Let's assume that ,r

, is the smallest index at which the pair of resource slots store a different pair of1 ≤ t ≤ l

VMs for Algorithm Two and O for such an instance. There are two possible cases in this

situation.

Figure 10. Proof aid for (a) is the order for Algorithm One, (b) is the ordering for
Case 1, and (c) is the ordering for Case 2.

Case 1: only one of the two resource slots at r differ, i.e. either or [r].idI [r].idE

stores a different VM but not both as in Figure 10(b). We denote the VMs placed by O at

slot r as and those placed by Algorithm Two as . We denote the indexv ,)(r vs v , v)(r ′r

where was placed by O as u where r < u. Because VMs are placed by Algorithm Twov′r

in decreasing order with respect to communication frequency, . This means that ifλs ≤ λr

41

we were to switch the positions of and in the ordering from O, we would reducevs v′r

the communication cost as the slot at u is farther from ingress/egress switch than the slot

at r. By placing the VM with the higher frequency closer, we reduce the communication

cost of the PDDC and thus contradict the notion that O is optimal.

Case 2: both resource slots and E[r].id store different VMs for both[r].idI

algorithms as in Figure 10(c). Like before the VMs placed by Algorithm Two atv , v)(r ′r

r must have a higher communication frequency than those placed by O in the same index.

This means that O placed in slots farther away from either the ingress or egressv , v)(r ′r

switches. If we were to swap back to index r in O’s ordering we would thus bev , v)(r ′r

reducing the communication cost as we are placing VMs with higher communication

frequencies in better slots. This is a contradiction as O is suppose to be optimal.

In both cases we are able to swap resources in Optimal to further reduce the

energy cost. This contradicts the notion that Optimal is optimal and Algorithm Two is not

optimal, therefore Algorithm Two is optimal.

Unordered Policies

Problem Formulation

For unordered policies, VMP2 needs to find both a placement function p and the

optimal MB traversal path for each VM pair. With the help of an MB traversal function

 for a VM pair , we denote the MB that a VM1, , ..,] 1, , ..,]πi : [2 . m → [2 . m v ,)(i v′i jth

42

pair must visit as . Given both a placement p and a traversal function , webm π (j)i πi

denote the energy cost for a VM pair as . Thus:cp,πi

i

(p(v , w(π (1))) (sw(π (j)), w(π (j))) (sw(π (m)), (v))cp,πi

i = λi · c i s i + λi ∑
m−1

j=1
c i s i + 1 + λi · c i p i′

Let . The objective of VMP2 for an unordered policy is to minimize π , , .., ⟩ π→ = ⟨ 1 π2 . π
l

the total communication cost such that the resource constraints of the(p,)Cc π→ = ∑
l

i=1
ci

p,πi

PDDC PMs are not violated. Below we show that for unordered policies VMP2 is a

special case of VM2P when . We then design a VM placement algorithm,μ = 0

Algorithm Three, that is more efficient than Algorithm One while still being

two-approximate.

Theorem VI

For an unordered policy, VMP2 is a special case of VM2P when .μ = 0

Proof. Plug in into Equation Three:μ = 0

(m,) (sw(π (j)), w(π (j))) (m(v), w(π (1))) (sw(π (m)), m(v)))C t π→ = ∑
l

i=1
λ · (∑

m−1

j=1
c i s i + 1 + c i s i + c i ′i

When this equation becomes the total communication cost of a VM placementμ = 0

algorithm.

Algorithms

The difference between Algorithm One and Algorithm Three is that in Algorithm

Three we only need to create complete graphs one time and we onlyV | |V |)/2| p · (p + 1

43

need to sort them with respect to the cost of their Hamiltonian path one time. The running

time of Algorithm Three is thus .O(|V | m og|V |)) (|V |) p
2 · (3 + l p + l = O p

4 + l

 Example Four

Using the same PDDC as in Figure 9, Algorithm Three works as follows. We first

sort the PM pairs by the walk cost: . Next are(1, ,), 1, ,), 2, , 0)}X = { 1 4 (2 6 (2 1 v ,)(1 v′1

placed into while are placed into because has a highermp 1 v ,)(2 v′2 mp 2 v ,)(1 v′1

communication frequency than and has the most efficient walk. Thus thev ,)(2 v′2 mp 1

total communication cost is .00 0 101 · 4 + 1 · 1 = 4

Theorem VII

Algorithm Three achieves a two approximation when .l = 1

Proof. The first VM pair in X is (see line 11 of Algorithm Three). Lets ,)(1 t1

, let , and let denote the optimal walk from to in themp a = s1 mp b = t1 W * mp a mp b

complete graph . The cost of the MST computed is a lower bound on the cost of theKa,b

optimal walk, . Since the walk found in Algorithm Three visits all(MST) (W)c ≤ C * W

vertices using each edge in the MST at most twice, . Therefore we(W) (MST)c ≤ 2 · c

have .(W) (W)c ≤ 2 · c *

44

Figure 11. Pseudocode for Algorithm Three.

45

CHAPTER 5

PERFORMANCE EVALUATION

Simulation Setup

We investigate the performance of our policy-aware VM placement and migration

algorithms in this chapter. We will refer to ordered policy Algorithm Two as Optimal and

to the unordered policy Algorithm Three as Approximation. Our simulation will consider

a PDDC with a Fat Tree topology and 128 PMs. In the VMP2 simulations we varyk = 8

two parameters:

1. The number of MBs: , 3, 5m = 1

2. The number of VM Pairs: 00, 1000, 1500, 2000l = 5

The communication frequency of each VM pair will always be in the range .1, 000][1

For all simulation plots, each bar represents the average of 20 independent runs with error

bars indicating the confidence interval.5%9

Traffic Aware VM Placement

Meng et al. (Meng et al., 2010) proposed a traffic-aware VM placement algorithm

that optimizes the placement of VMs into PMs. The authors observed that VMs with a

large amount of communication traffic should be assigned to PMs as close as possible,

ideally even the same PM. We refer to the algorithm outlined in this paper as

TrafficAware. We use this algorithm in the upcoming section as a benchmark for own

algorithms.

46

TrafficAware is policy-oblivious though, not taking into account the policies

present in the PDDC. In an ordered policy TrafficAware considers all the VM pairs in

their descending order of communication frequencies, and places each VM pair to the PM

that is closest to the ingress switch until all the VM pairs are placed. In unordered-policy,

it works as Algorithm Three while only considering the case of , asm mp 1 = p 2

TrafficAware always places each VM pair in the same PM if possible. We compare our

algorithms with TrafficAware for both ordered- and unordered-policies, and show that

our algorithms consistently outperform TrafficAware.

VMP2 Results

Ordered Policies

For our first simulation, we vary the number of VM pairs from 500 to 2,000, inl

increments of 500, while maintaining the number of MBs constant at . Here wem = 3

also keep the resource capacity of each PM at . The results of this scenario arec 0r = 4

outlined in Figure 12(a). From these results it is obvious that as the number of VM pairs

increases the total energy cost for both algorithms increases but the cost of the Optimal

algorithm is always at least below that of the TrafficAware algorithm. In5 0%1 − 2

Figure 12(b) we see the results of varying the number of MBs while keeping 000l = 1

and . Again we see here how important it is to keep policies in mind whenc 0r = 4

placing VMs as the Optimal algorithm outperforms the TrafficAware algorithm by an

average of . Lastly in Figure 12(c) we see how well Optimal performs when the5%1

number of resource slots vary per physical machine. Unlike the other scenarios where the

47

gap between Optimal and TrafficAware stays relatively the same, in this scenario the

performance of Optimal relative to Trafficware increases as more resource slots become

available.

Figure 12. Simulation results for VMP2 for ordered policies.

48

Unordered Policies

In an unordered policy, the ingress and egress switches are not constant for every

VM pair as the traversal of the MB set can vary from pair to pair. Therefore for the case

of unordered policies, we devise another benchmark algorithm to compare the

performance of the Approximation algorithm. The Greedy algorithm is a new algorithm

that places the first VM in a pair into the resource slot that is closest to an MB in the

policy chain. Next, the algorithm calculates the shortest path through the remaining MBs

in the policy chain and places the other VM in the pair into the resource slot closest to the

last MB visited. One can see how this algorithm performs against the TrafficAware and

Approximation algorithms in Figure 13(a) and Figure 13(b). It is obvious that

Approximation outperforms TrafficAware and Greedy for all cases.

Comparison

We compare the energy consumptions for all VM pairs for both ordered and

unordered policies. We observe that unordered policies yield less energy costs than

ordered policies for all VM pairs. We define the performance difference (PD) as the

energy cost difference between ordered and unordered policies divided by energy cost of

the ordered policy. In general, unordered policies cost around 20-30% less energy than

ordered policies as shown in Figure 14. This is because unlike ordered policies, wherein

each VM must traverse the MBs in a specific order, unordered policies allow VM pairs to

49

Figure 13. Simulation results for VMP2 for unordered policies

50

choose the order of the MBs traversal in order to reduce their energy cost. Note that as

TrafficAware is totally oblivious to policies, its performance stays relatively constant.

Figure 14. Performance difference plot between ordered and unordered VMP2.

VM2P Results

Figure 15. Simulation results for VM2P.

51

Finally we compare our VM migration algorithms with PLAN for both ordered

and unordered policies. We consider 1000 VM pairs and 3 MBs in a data centerk = 8

where each PM has resource capacity of 70. We vary the migration coefficient from 1,μ

500, to 1000, which is comparable to the range of VM communication frequencies.

Figure 15(a) shows that under an ordered policy, our MCF-based optimal migration

algorithm performs much better for equal to 1 and only marginally better for all otherμ

values. Figure 15(b) shows the under an unordered policy, our approximation algorithm

outperforms PLAN by at least 40%. This indirectly validates the optimality and

approximately of our designed VM migration algorithms.

52

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis we proposed an algorithmic framework called VM2P, that jointly

optimizes VM placement and VM migration in PDDCs. PDDCs have become important

infrastructure for cloud computing as the MB-based policies provide the cloud user

applications with security and performance guarantees. In particular, we uncover a suite

of new algorithmic problems that migrate and place VMs inside PDDCs while respecting

the existing policies and also minimize the total energy consumption of the VM

applications. We solved VM2P by designing both optimal and approximation algorithms

under ordered and unordered policies, respectively, and show that VM placement is a

special case of VM2P. For future work, we are working on real data traces from

production data centers to further validate our algorithms. We will also study if the

optimality and approximability of our algorithms still hold when different VMs require

different amount of resources. Finally we will focus on network function virtualization,

when both MBs and VMs can be placed easily inside PDDCs, to design a holistic and

synergistic MB and VM placement approach to achieve ultimate energy-efficiency in

PDDCs.

53

REFERENCES

54

REFERENCES

Abts, D., Marty, M. R., Wells, P. M., Klausler, P., & Liu, H. (2010, 06). Energy

proportional datacenter networks. ACM SIGARCH Computer Architecture News,

38(3), 338. doi:10.1145/1816038.1816004

Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms,

and applications. Prentice-Hall.

Al-Fares, M., Loukissas, A., & Vahdat, A. (2008). A scalable, commodity data center

network architecture. Proceedings of the ACM SIGCOMM 2008 Conference on

Data Communication - SIGCOMM '08. doi:10.1145/1402958.1402967

Alicherry, M., & Lakshman, T. V. (2013, 04). Optimizing data access latencies in cloud

systems by intelligent virtual machine placement. 2013 Proceedings IEEE

INFOCOM. doi:10.1109/infcom.2013.6566850

Armbrust, M., Stoica, I., Zaharia, M., Fox, A., Griffith, R., Joseph, A. D., . . . Rabkin, A.

(2010, 04). A view of cloud computing. Communications of the ACM, 53(4), 50.

doi:10.1145/1721654.1721672

Bhamare, D., Samaka, M., Erbad, A., Jain, R., Gupta, L., & Chan, H. A. (2017, 04).

Optimal virtual network function placement in multi-cloud service function

chaining architecture. Computer Communications, 102, 1-16.

doi:10.1016/j.comcom.2017.02.011

Carpenter, B., & Brim, S. (2002, 02). Middleboxes: Taxonomy and Issues.

55

doi:10.17487/rfc3234

Cohen, R., Lewin-Eytan, L., Naor, J. S., & Raz, D. (2013, 04). Almost optimal virtual

machine placement for traffic intense data centers. 2013 Proceedings IEEE

INFOCOM. doi:10.1109/infcom.2013.6566794

Cormen, T. H., & Leiserson, C. E. (2009). Introduction to algorithms, 3rd edition.

Cui, L., Cziva, R., Tso, F. P., & Pezaros, D. P. (2016, 04). Synergistic policy and virtual

machine consolidation in cloud data centers. IEEE INFOCOM 2016 - The 35th

Annual IEEE International Conference on Computer Communications.

doi:10.1109/infocom.2016.7524354

Duong-Ba, T., Nguyen, T., Bose, B., & Tran, T. (2014, 12). Joint virtual machine

placement and migration scheme for datacenters. 2014 IEEE Global

Communications Conference. doi:10.1109/glocom.2014.7037154

Gember-Jacobson, A., Viswanathan, R., Prakash, C., Grandl, R., Khalid, J., Das, S., &

Akella, A. (2014). OpenNF. Proceedings of the 2014 ACM Conference on

SIGCOMM - SIGCOMM '14. doi:10.1145/2619239.2626313

Goldberg, A. V. (1992). An efficient implementation of a scaling minimum-cost flow

algorithm. Stanford University, Dept. of Computer Science.

Hoogeveen, J. A. (1990). Analysis of Christofides' heuristic: Some paths are more

difficult than cycles. Centrum voor Wiskunde en Informatica.

Joseph, D. A., Tavakoli, A., & Stoica, I. (2008). A policy-aware switching layer for data

centers. Proceedings of the ACM SIGCOMM 2008 Conference on Data

56

Communication - SIGCOMM '08. doi:10.1145/1402958.1402966

Li, H., Zhu, G., Cui, C., Tang, H., Dou, Y., & He, C. (2015, 07). Energy-efficient

migration and consolidation algorithm of virtual machines in data centers for cloud

computing. Computing, 98(3), 303-317. doi:10.1007/s00607-015-0467-4

Li, L. E., Liaghat, V., Zhao, H., Hajiaghayi, M., Li, D., Wilfong, G., . . . Guo, C. (2013,

04). PACE: Policy-Aware Application Cloud Embedding. 2013 Proceedings IEEE

INFOCOM. doi:10.1109/infcom.2013.6566849

Li, X., Wu, J., Tang, S., & Lu, S. (2014, 04). Let's stay together: Towards traffic aware

virtual machine placement in data centers. IEEE INFOCOM 2014 - IEEE

Conference on Computer Communications. doi:10.1109/infocom.2014.6848123

Li, X., & Qian, C. (2016, 01). A survey of network function placement. 2016 13th IEEE

Annual Consumer Communications & Networking Conference (CCNC).

doi:10.1109/ccnc.2016.7444915

Liu, J., Li, Y., Zhang, Y., Su, L., & Jin, D. (2017, 07). Improve Service Chaining

Performance with Optimized Middlebox Placement. IEEE Transactions on

Services Computing, 10(4), 560-573. doi:10.1109/tsc.2015.2502252

Mann, Z. Á. (2015, 08). Allocation of Virtual Machines in Cloud Data Centers—A

Survey of Problem Models and Optimization Algorithms. ACM Computing

Surveys, 48(1), 1-34. doi:10.1145/2797211

Meng, X., Pappas, V., & Zhang, L. (2010, 03). Improving the Scalability of Data Center

Networks with Traffic-aware Virtual Machine Placement. 2010 Proceedings IEEE

57

INFOCOM. doi:10.1109/infcom.2010.5461930

Sherry, J., Hasan, S., Scott, C., Krishnamurthy, A., Ratnasamy, S., & Sekar, V. (2012,

09). Making middleboxes someone else's problem. ACM SIGCOMM Computer

Communication Review, 42(4), 13. doi:10.1145/2377677.2377680

Walfish, M., Stribling, J., Krohn, M., Balakrishnan, H., Morris, R., & Shenker, S. (2004).

Middleboxes no longer considered harmful. OSDI'04 Proceedings of the 6th

Conference on Symposium on Opearting Systems Design & Implementation, 6,

15-15. Retrieved September 29, 2018, from

https://dl.acm.org/citation.cfm?id=1251269.

Wang, H., Li, Y., Zhang, Y., & Jin, D. (2015, 04). Virtual machine migration planning in

software-defined networks. 2015 IEEE Conference on Computer Communications

(INFOCOM). doi:10.1109/infocom.2015.7218415

Wang, Z., Qian, Z., Xu, Q., Mao, Z., & Zhang, M. (2011, 10). An untold story of

middleboxes in cellular networks. ACM SIGCOMM Computer Communication

Review, 41(4), 374. doi:10.1145/2043164.2018479

Xiao, S., Cui, Y., Wang, X., Yang, Z., Yan, S., & Yang, L. (2016, 11). Traffic-aware

virtual machine migration in topology-adaptive DCN. 2016 IEEE 24th

International Conference on Network Protocols (ICNP).

doi:10.1109/icnp.2016.7784441

Zhang, F., Liu, G., Fu, X., & Yahyapour, R. (2018). A Survey on Virtual Machine

Migration: Challenges, Techniques, and Open Issues. IEEE Communications

58

Surveys & Tutorials, 20(2), 1206-1243. doi:10.1109/comst.2018.2794881

Zhang, Y., Beheshti, N., Beliveau, L., Lefebvre, G., Manghirmalani, R., Mishra, R., . . .

Tatipamula, M. (2013, 10). StEERING: A software-defined networking for inline

service chaining. 2013 21st IEEE International Conference on Network Protocols

(ICNP). doi:10.1109/icnp.2013.6733615

59

APPENDICES

60

61

APPENDIX A

ALGORITHM ONE CODE

62

63

64

APPENDIX B

ALGORITHM TWO CODE

65

66

67

68

APPENDIX C

ALGORITHM THREE CODE

69

70

71

72

APPENDIX D

GRAPH TOPOLOGY CONSTRUCTION CODE

73

74

75

