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ABSTRACT 
 

 
Policy-Driven Data Centers (PDDCs) are data centers in which all Virtual 

Machine (VM) traffic must traverse a sequence of Middleboxes (MBs). These MB 

policies help guarantee a given level of security and performance for all applications 

hosted in the PDDC at the cost of increased network traffic and energy consumption. 

This thesis proposes a new VM optimization framework called VM2P (Virtual-Machine 

Migration in PDDCs) which, when given an existing PDDC with existing VM 

placements and policies, will migrate VMs within a PDDC in order to minimize energy 

consumption while still maintaining all policy constraints. This thesis will also show how 

the VM placement problem VMP2 (Virtual-Machine Placement in PDDCs), the problem 

of distributing VMs into an empty PDDC such that energy consumption is minimized, is 

actually a special case of VM2P. The performance of VM2P and VMP2 are evaluated via 

simulations wherein the algorithms will compete with state-of-the-art policy-agnostic 

algorithms. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

Middleboxes (MBs), also known as  “network functions" (NFs), are intermediary 

network devices such as firewalls and load balancers that perform functions on network 

traffic other than packet forwarding (Carpenter & Brim, 2002). In recent years, MBs have 

been introduced into cloud data centers to improve the security and performance of cloud 

VM applications (Sherry et al., 2012). MBs are usually either purpose-built hardware 

placed inside the data center (Wang, Qian, Xu, Mao & Zhang, 2011) or they are 

implemented as software, or as VMs, running on commodity hardware 

(Gember-Jacobson et al., 2014). Popular examples of MBs include firewalls, intrusion 

detection systems (IDSs), intrusion prevention systems (IPSs), load balancers, and 

network address translators (NATs).  

In particular, data center policies are established in data centers that demand VM 

traffic traverse a chain of MBs (Joseph, Tavakoli, & Stocia, 2008). Figure 1 shows an 

example of a possible data center policy. Traffic generated at VM1 first goes through a 

firewall, then a load balancer, and lastly a cache proxy before it arrives at VM2. In doing 

this, this policy can filter out malicious traffic, divert trusted traffic to avoid network 

congestion, and finally cache the content to share with other cloud users in the data 

center. Given the ever-increasing demands for security and performance from diverse 

cloud user applications, data center policies have become a unified part of the Service 
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Level Agreement (SLA) of data centers. We refer to such cloud data centers as 

policy-driven data centers (PDDCs). 

 
Figure 1. An example of a data center policy. 

 

VM placement (Mann, 2015), which maps VMs to their physical hosts (often 

called Physical Machines (PMs)), and VM migration (Zhang, Liu, Fu, & Yahyapour, 

2018), which moves VMs from one host to another, are popular and effective techniques 

for network operators to optimize resource expenditures within PDDCs, load balance 

network traffic, and increase fault tolerance. However despite their similarities VM 

placement and migration are mostly studied independently by the research community 

(Mann, 2015; Zhang et al., 2018). This separation may be due to the fact that each 

strategy attempts to optimize different PDDC parameters. While VM placement 

strategies primarily attempt to optimize total communication cost amongst VMs (e.g. 

energy cost, data access delay, and bandwidth usage) (Alicherry & Lakshman, 2013; 

Meng, Pappas, & Zhang, 2010; Li, Wu, Tang, & Lu, 2014; Cohen, Lewin-Eytan, Naor, & 

Raz, 2013), VM migration strategies mainly attempt to optimize the total migration cost 
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of VMs (e.g. total migration time, downtime, network traffic, and service degradation 

during live VM migration) (Wang, Li, Zhang, & Jin, 2015; Duong-Ba, Nguyen, Bose, & 

Tran, 2014; Cui, Yang, Xiao, Wang, & Yan, 2017). As achieving one goal often 

compromises the other, there is a need for the joint optimization of VM placement and 

migration in order to achieve optimal resource utilization in cloud data centers. This is 

especially true for PDDCs as VM communication along MB chains can generate more 

network traffic and consume more network bandwidth and energy than VM 

communications in traditional cloud data centers. 

In this thesis we provide a new algorithmic framework called VM2P 

(Virtual-Machine Migration in PDDCs) that jointly optimizes VM placement and 

migration in PDDCs whose intra-VM traffic can fluctuate. In this model a set of distinct 

MBs and communicating VM pairs have already been deployed in a PDDC. However, in 

response to some change to PDDC traffic, there is a need to migrate the VMs in order 

properly handle the changes in traffic. VM2P integrates communication cost optimization 

and migration cost optimization into one scheme and therefore achieves joint 

optimization. We explore the applications of VM2P using two types of PDDC policies: 

ordered and unordered. Under an ordered policy all VM traffic must traverse a given 

series of MBs in a specific order. In this case, a minimum-cost flow based policy-aware 

VM migration algorithm is used that can solve the migration problem optimally. Under 

an unordered policy all VM traffic must go through a given set of MBs but can do so in 

any order. In this case the migration problem is NP-hard and thus there does not exist an 
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efficient polynomial algorithm. Instead, a 2-approximation policy-aware VM migration 

algorithm is used to migrate VMs. For both ordered and unordered policies, the VM2P 

framework can be periodically applied to respond to changes in traffic.  An example 

highlighting the difference between ordered and unordered policies can be found in 

Figure 2.  

 

 
Figure 2. A PDDC with a  Fat Tree topology and two VM pairs.k = 4   
 

In this thesis we also study a new VM placement problem called VMP2: 

virtual-machine placement in PDDCs. Given a set of MBs already deployed in a PDDC 

and a data center policy that communicating VM pairs must satisfy, VMP2 determines 

how to place a new set of VMs onto empty PMs such that the total communication cost 

between all VM pairs is minimized. This thesis will show that VMP2 is a special case of 

VM2P  and therefore techniques designed for VM2P can be adapted to solve VMP2. 

Furthermore, by taking advantage of the discrete structures implicit in VMP2, it is 

 



13 

possible to design a more time efficient policy-aware VM placement algorithm while 

achieving the same level of performance as the VM migration algorithms. 

Via extensive simulations we compare these algorithms with state-of-the-art VM 

placement and VM migration algorithms. For VM placement we compare VMP2 with a 

well-known traffic-aware VM placement algorithm that is oblivious to data center 

policies (Meng, Pappas, & Zhang, 2010). We show that VMP2 consistently outperforms it 

in both ordered and unordered data center policies under different PDDC parameters. For 

VM migration we compare VM2P with an algorithm called PLAN (Cui, Tso, Pezaros, Jia, 

& Zhao, 2017), a policy-aware and network-aware VM management scheme. We show 

that VM2P outperforms it for both ordered and unordered policies. 
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CHAPTER 2 
 
 

SYSTEM MODEL AND RELATED WORK 
 
 

System Model 

We adopt a fat tree (Al-Fares, Loukissas, & Vahdat, 2008) topology, a popular 

data center configuration, in order to illustrate the problem and its algorithmic solution. 

However as the problem and its algorithms must be applicable to any data center 

topology, we model a PDDC as an undirected general graph . Here,(V , E)G   

 where is the set of all PMs and is the set ofV = V p ⋃ V s pm , m , .., m }V p = { 1 p 2 . p |V |p
V s  

all switches. is the set of edges, each connecting either one switch to another switch orE  

a switch to a PM. Figure 2 shows a PDDC of 16 PMs with  where  is the numberk = 4 k  

of ports each switch has.  

A set of  either hardware or software based MBs, denoted asm  

, have been deployed inside a PDDC, with  being installedmb , b , .., b }M = { 1 m 2 . m m bm j  

at switch . For each MB in the PDDC we adopt the commonly usedw(j)s ∈ V s  

bump-off-the-wire design (Joseph, Tavakoli, & Stocia, 2008). This approach takes the 

dedicated MB hardware out from the physical data path and uses a policy-aware 

switching layer to explicitly redirect traffic to off-path MBs. Figure 2 shows three MBs 

, , and  installed to switches using this design.bm 1 bm 2 bm 3  
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There are  VM pairs  that have already beenl (v , ), v , ), .., v , )}P = { 1 v′1 ( 2 v′2 . ( l v′l  

placed into the PMs of the PDDC. Here we focus on pairwise VM communication as 

most traffic in cloud data centers is between pairs of VMs (Meng et al., 2010). For any 

VM pair , its index  is  and we refer to  as the source VM and  asv , )( i v′i i 1 ≤ i ≤ l vi v′i  

the destination VM. Similarly, the PMs where  and  are placed are referred to as thevi v′i  

source and destination PMs respectively. Denote the communication frequency vector as 

, where the index of is , is the number of communicationsλ , , .., ⟩  λ
→

= ⟨ 1 λ2 . λl λi 1 ≤ i ≤ l  

taking place between  and  per unit time. In a dynamic PDDC, the communicationvi v′i  

frequencies among VM pairs are constantly changing and thus  is not a constant vector.λ
→

  

Let . One unit amount of PDDC resources is neededv , , , , ..v , }V m = { 1 v′1 v2 v′2 . l v′l  

to create and execute each VM. Here each unit resource is an aggregated characterization 

of all the hardware resources (i.e., CPU, memory, storage, and bandwidth) needed to 

create and execute VMs. We leave the more general case where different VMs could 

need different amount of resources as future work. The resource capacity of the -th PMi  

is denoted as , which means the -th PM has  resource slots where each slotm(i) i (i)m  

can be used to create and execute one VM. As there are  VMs that each require one2 * l  

resource slot, it must be the case that . A summary of all the notationm(i) Σi∈V p
≥ 2 * l  

used can be found in Table 1. 

Energy consumption in any cloud data center, which includes servers, cooling, 

and networking, is still a big concern (Armbrust et al., 2010). Although the servers and 
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cooling generally comprise most of the power consumption, studies show that network 

devices including various switches, routers, and links, can comprise nearly 50% of the 

overall power consumption in a data center (Abts, Marty, Wells, Klausler, & Liu, 2010). 

This is especially true for traffic-intensive data centers wherein energy consumption in 

networking is comparable to the energy consumption of servers (Cohen et al., 2013). We 

therefore focus on the networking component of energy consumption in PDDCs.  

 

Table 1 

Summary of Notation 
Notation Meaning Notation Meaning 

 E  set of all edges  m  number of MBs 

 V  set of all vertices w(j)  s  switch that connects to bm j  

 V p  set of all PMs  P  set of all VM pairs 

 V s  set of all switches v , )  ( i v′i  the i-th VM pair 

 V m  set of all VMs  l  number of VM pairs 

m  p i  the i-th PM  λ
→

 the set of VM pair 
communication frequencies 

(i)  m  resource capacity of i-th PM  λi  communication frequency of the 
i-th VM pair 

 M  set of all MBs  k  number of ports for each PM in a 
fat-tree topology 

bm j  the j-th MB in a policy chain  

 
 

 



17 

Following (Meng et al., 2010), we model the communication cost of any VM pair 

as the product of the number of links a message sent from the source to the destination 

VM must traverse inside PDDC and the communication frequency of the VM pair. Let 

 denote the minimum energy cost between any PM (or switch)  and . We also(i, )c j i j  

model the migration cost of migrating any VM as being proportional to the number of 

links a VM must traverse to get from one PM to another. Thus for any VM  migratedv  

from  to another , its migration cost is equal to  where  is referred tomp i mp j (i, )μ * c j μ  

as the migration coefficient and is a weight parameter that quantifies the trade-off 

between VM communication cost and VM migration cost. The migration coefficient 

depends on factors such as VM sizes and available network bandwidth and thus must be 

adjusted by PDDC operators depending on the current PDDC configuration.  

Depending on the application requirements, some data center policies require that 

VM traffic to go through MBs in a strict order. For example in the data center policy 

shown in Figure 1, as security takes precedence over performance for many cloud 

applications VM traffic must go through the firewall first for a security check, then the 

load balancer, and finally the cache proxy for performance improvement. We refer to 

such policies as ordered policies and denote them as . On the othermb , b , .., b )( 1 m 2 . m m  

hand as some MB functions are mostly independent from one another, many data center 

policies are considered satisfied as long as all the MBs in the policies are visited by VM 

traffic regardless of the order visited. We refer to such policies as unordered policies and 

denote them as . An example of such a policy is given in (Li & Qian,mb , b , .., b }{ 1 m 2 . m m  
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2016) wherein the authors demonstrate that for traffic monitoring a passive monitor MB 

can be placed before or after a deep packet inspector MB.  

Concretely,  refer to Figure 2 and assume . Here  must traverse1, ⟩  λ
→

= ⟨ 2 v , )( 1 v′1  

an ordered policy, denoted by , resulting in communication cost of 10.mb , b , b )( 1 m 2 m 3  

On the other hand   must traverse an unordered policy, denoted byv , )( 2 v′2  

, resulting in communication cost of 16. We refer to the switch wheremb , b , b }{ 1 m 2 m 3  

the first MB visited is installed in as the ingress switch and the switch where the last MB 

is installed in as the egress switch. Under an ordered policy the ingress switch is always 

 and the egress switch is always . Under an unordered policy, no suchw(1)s w(m)s  

constraint exists. 

Related Work 

VM placement and migration have each been studied intensively. For VM 

placement, Meng et al. (Meng et al., 2010) designed one of the first traffic-aware VM 

placement algorithms wherein VMs with large communication frequencies are assigned 

to the same PMs or PMs in close proximity. Alicherry and Lakshman (Alicherry & 

Lakshman, 2013) designed both optimal and approximation algorithms that place VMs in 

data centers such that data access latencies are minimized while still satisfying system 

constraints. Li et al. (Li et al., 2014) studied VM placement that aimed to reduce data 

center network costs as well as the cost caused by the utilization of physical machines. 

For VM migration, Wang et al.  (Wang et al., 2015) studied how to schedule and allocate 
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network resources to migrate multiple VMs at the same time and they also designed a 

fully polynomial time approximation algorithm. Li et al. (Li et al., 2016) developed an 

energy-efficient VM migration and server consolidation algorithm based on modified 

particle swarm optimization methods. However, none of work above considers the joint 

optimization of VM placement and migration.  

To the best of our knowledge the only two works that explicitly explore joint VM 

placement and migration optimization are (Duong-Ba et al., 2014) and (Cui et al., 2017). 

(Duong-Ba et al., 2014) optimizes the sum of VM migration and communication costs as 

well as server energy cost. It proves that the problem is NP-hard and provides a heuristic 

algorithm. In contrast, by focusing on the sum of VM migration and communication cost, 

we are able to design optimal and approximation algorithms therefore providing 

performance guarantees for VM placement and migration. (Cui et al., 2017) assumed that 

data center topologies are adaptive, with reconfigurable wireless links or optical circuit 

switches, and proposed a VM migration algorithm with a constant approximation ratio. 

Although this a promising approach, its practicality is yet to be demonstrated due to the 

performance hindrance caused by wireless links and the physical properties of data 

centers (Ghobadi et al., 2016). We thus focus on traditional data center networks with 

electrical packet switches arranged in a multi-tier topology. Furthermore, none of the 

above VM placement and migration research considered data center policies and thus 

falls short of maximizing the performance and security guarantees gained via the 

deployment of MBs inside PDDCs. 
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PACE (E. Li et al., 2013) was one of the first to study the policy-aware VM 

placement problem. It places a sequence of application requests into the cloud, each 

associated with a prize, a number of compute resources, and MB instances needed. The 

goal is to maximize the total prize amount of the allocated application requests. However, 

it only considers one type of MB and thus does not consider the type of policy chains 

addressed in this paper. The work most related to this thesis is from Cui et al. (Cui et al., 

2017) which is one of the first papers that studied policy-aware VM migration. It 

considered multiple ordered policies wherein different VM pairs could take different 

policies. They showed the problem to be NP-hard and presented utility-based heuristic 

algorithms as possible solutions. They assumed that migration costs are measured and 

provided by the hypervisor hosting the VM and therefore the costs can be treated as 

constants for the optimization. In contrast, by considering the number of hops each VM 

migrates as the migration cost, this paper’s model is network-topology aware and more 

accurately represents the delay or energy consumption of network traffic induced by VM 

migration. Unlike their work, which just provided heuristic algorithms for 

ordered-policies, this thesis considers both ordered and unordered policies and provides 

optimal, approximate, and heuristic algorithms.  

There is another line of orthogonal research that studied the so called MB/VNF 

placement or migration problem (Cui, Cziva, Tso, & Pezaros, 2016; Zhang et al., 2013; 

Liu, Li, Zhang, Su, & Jin, 2017; Bhamare et al., 2017 ). Given VM placements and policy 

specifications in the cloud data center, it determines the optimal locations to place the 
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MBs or VNFs such that the performance is optimized. While this is a promising approach 

to improve service chaining performance, we note that many MBs in cloud data centers 

and enterprise networks are still purpose-built hardware installed and configured 

manually by network operators~\cite{unharmful}.  As such, once physically deployed, 

these MBs are not easy to move around to adjust to the dynamic network traffic. In 

contrast, being mature technologies, VM placement and migration studied in this paper 

are more flexible. 
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CHAPTER 3 
 
 

VM2P: VM MIGRATION IN A PDDC 
 
 

VM2P assumes that all VM pairs have already been placed inside a PDDC via 

some algorithm dependant on taking the value of  at some particular moment. Such anλ
→

 

initial placement is done by a VM placement function , i.e. VM p : V m → V p v ∈ V m  

is placed in PM . We will solve the VM placement problem and obtain an(v)p ∈ V p  

optimal or approximate  in the next chapter. Generally speaking however,  VM2P willp  

work for any initial placement of VMs.  

Due to dynamic traffic changes in PDDCs,  will constantly change. This meansλ
→

 

that any placement computed by a VM placement algorithm that takes into consideration 

the communication frequencies of the VM pairs may not be optimal if any value in the 

communications vector changes. It could be the case that a previously frequently 

communicating VM pair now communicates rarely and thus occupies resource slots that 

would be better suited for highly communicative VM pairs. As VM migration consumes 

energy in PDDC, the objective of VM2P is to migrate VMs in order to minimize the total 

energy consumption of VM migration and VM communication. Below we formulate and 

solve VM2P for both ordered and unordered policies respectively. 
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Ordered Policies 

Problem Formulation 
Under an ordered policy, for any VM pair communication the ingress switch is 

always  and the egress switch is always . Given any initial VM placementw(1)s w(m)s  

function , we denote the total communication cost of all  VM pairs as .  Thus:p l (p)Cc   

(p) (sw(j), w(j )) c(p(v ), w(1)) (sw(m), (v )))Cc = ∑
l

i=1
λi * ∑

m−1

j=1
c s + 1  + ∑

l

i=1
λi * ( i s + c p ′i   

Next we define a VM migration function as , meaning that VMm : V m → V p  

 will be migrated from  to . Here it need not be the casev ∈ V m (v)p ∈ V p (v)m ∈ V p  

that  is always migrated,  can be true. Let  denote the totalv (v) (v)m = p (m)Cm  

migration cost of all the VM pairs. Thus:  

(m) (c(p(v ), (v )) (p(v ), (v )))Cm = μ * ∑
l

i=1
i m i + c ′i m ′i  

Let  denote the total migration and communication cost of all the VM pairs after(m)C t  

VM migration . Thus  which means:m (m) (m) (m)C t = Cm + Cc  

(m) (sw(j), w(j )) (μ (p(v ), (v )) (m(v ), w(1)))C t = ∑
l

i=1
λi * ∑

m−1

j=1
c s + 1  + ∑

l

i=1
* c i m i + λi * c i s   

(μ (p(v ), (v )) (sw(m), (v )))+ ∑
l

i=1
* c ′i m ′i + λi * c m ′i    

The objective of VM2P is to find a VM migration  that minimizes  whilem (m)C t  

satisfying resource constraint of PMs: . One thing{v | m(v) }| , ∀i| ∈ V m = i ≤ mi  ∈ V p  

to note from the equations above is when using an ordered policy, we only need to 

minimize the sum of the cost from the source VM to the ingress switch and the 
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destination VM to the egress switch as the MB traversal cost is constant for all VMs. We 

will now show that VM2P in a PDDC is equivalent to the minimum cost flow (MFC) 

problem (Ahuja, Magnanti, & Orlin, 1993) in a properly transformed flow network. We 

do this as the minimum cost flow problem has many solutions which are efficient and 

optimal.  

Minimum Cost Flow Algorithm 

Let  be a directed graph. Denote the capacity of edge  asV , )G = ( E u, )( v ∈ E  

. Denote the cost of edge  as . There exists a source node(u, )c v u, )( v ∈ E (u, )d v  

that has a supply of amount . There is also a sink node  with amount s ∈ V b t ∈ V b  

as demand. Denote a flow on edge  as , . Any flow  isu, )( v (u, )f v f : E → ℝ+ (u, )f v  

subject to the following constraints:  

1. Capacity constraint:  

.(u, ) (u, ), ∀(u, )f v ≤ c v  v ∈ E   

2. Flow conservation constraint:  

 for each .f (u, ) f (v, )Σu∈V v = Σu∈V u v ∈ V   

The goal of the MCF problem is to find a flow function  such that the total cost of thef  

flow  is minimized. The MCF problem can be solved efficiently(d(u, ) (u, ))Σ(u,v)∈E v * f v  

by many combinatorial algorithms (Ahuja et al., 1993). In this paper, we adopt the 

scaling push-relabel algorithm proposed by Goldberg (Goldberg, 1997), which works 

well over a wide range of problem classes. For any flow network, the algorithm has the 
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time complexity of , where , , and  are the number of nodes,(a og(a ))O 2 * b * l * c a b c  

number of edges, and maximum edge capacity in the flow network respectively.  

As shown in Figure 3, we first transform the PDDC  into a flow network(V , )G E  

 following the steps below:(V , )G ′ E′  

1. , where  is the source node and is the sinks} t}V ′ = { ⋃ { ⋃ V m ⋃ V p s t  

node in the flow network 

2. (s, ) } (v, m )  , pm } E′ = { v : v ∈ V m ⋃ { p j : v ∈ V m  j ∈ V p ⋃

. Note that this is a complete bipartite graph(pm , ) m }{ j t : p j ∈ V p  

between  and .V m V p  

3. For each edge , set its capacity as one and its cost to zero. For eachs, )( v  

edge , set its capacity as (the resource capacity of ) and itspm , )( j t mj mp j  

cost to zero. 

4. For each edge , , set its capacity to onev , m )( i p j   , pmvi ∈ V m  j ∈ V p  

and its cost as . For each edge(p(v ), m ) (pm , w(1))μ * c i p j + λi * c j s  

, set its capacity to one and its cost asv , m )( ′i p j  

.(p(v ), m ) (pm , w(m))μ * c ′i p j + λi * c j s   

5. Set the supply of the source and the demand of the sink node to .2 * l   

Figure 4(a) shows a small fat tree PDDC with . There are two PMs k = 2 mp 1  

and , two edge switches, two aggregation switches, and one core switch. Each PMmp 2  

has two resource slots; the four resource slots are . There is anrs , rs , rs , rs }{ 1  2  3  4  
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ordered policy , with  installed on edge switch  and  onmb , mb )( 1  2 bm 1 w(1)s bm 2  

aggregation switch . There are two VM pairs  and  withw(2)s v , )( 1 v′1 v , )( 2 v′2  

communication frequency of one-hundred and one respectively.  and  are initiallyv1 v2  

placed on while  and  are initially on . For this example, we will assumemp 1 v′1 v′2 mp 2  

.μ = 1  

 
Figure 3. Summary of the PDDC to MFC transformation. 

 

 
Figure 4. A working example for VM2P. 
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Creating an MCF representation of this problem, see Figure 6, and solving it 

results in  and  migrating to and  and  migrate to . This migrationv1 v′1 mp 1 v2 v′2 mp 2  

results in a total communication cost of (note here that00 1 06 01 221 + 1 + 2 + 4 + 1 = 4  

101 is the communication cost between ingress switch  and egress switch ).w(1)s w(2)s  

This cost can also be double checked against Figure 4(b). Because  is initially locatedv1  

in  and  in , only  and  actually migrate. Without migration, the totalmp 1 v′2 mp 2 v′1 v2  

communication cost is  . Therefore even though VM migration costs100 ) 066 * ( + 1 = 6  

energy, selective migration of VM pairs can save energy via communication cost 

reductions. 

 
Figure 5. Example MCF transformation.  

 
 
Theorem I 
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VM2P under an ordered policy in  is equivalent to the minimum cost(V , )G E  

flow problem in .(V , )G′ ′ E′   

Proof. First we show that with the above transformation that sending  amount2 · l  

of flow from  to  ensures that each of the  VMs can be migrated to a PM. Ins t 2 · l  

particular since the amount of supply at  is  (Step 5), since the capacity of eachs 2 · l  

edge  is one (Step 3),  and since there are  VMs in , a valid flow of s, )( v 2 · l V m 2 · l  

amount from  to  must consist of one amount on edge , one amount on ,s t s, )( v1 s, )( v2  

..., one amount on edge , one amount on , ...., and finally one amount ons, )( vl s, )( v′1  

edge . Now, since the capacity on each edge  is one (Step 4), according tos, )( v′l v, m )( p j  

flow conservation one amount of flow must come out of any edge  and go into exactlyv  

one of the PM . Thus each VM is migrated to exactly one PM.mp j   

Next, we show the above VM migration assignment does not violate the capacity 

constraint of any PMs. Since the edge capacity of edge  is  (Step 3), no morepm , )( j t mj  

than  amount of flow comes out of each node . This guarantees that eachmj bm j ∈ V p  

PM  will not store more than  VMs which satisfies the capacity constraint of eachmp j mj  

PM. 

Finally for the cost note that the edge cost of  isv , m )( i p j  

, which is equal to the migration and communication(p(v , m ) λ (pm , w(1))μ · c i p j +  ′i · c j s  

energy cost for .  The cost of edge is ,vi v , m )( ′j p j (p(v ), m ) (pm , w(m))μ · c ′i p j + λi′ · c j s  

which is equal to the migration and communication energy cost for . All other edges inv′i  
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the flow network have zero cost. This indicates that only the VM migration and 

communication costs are considered in the minimum cost flow. The minimum cost flow 

algorithm gives the minimum cost of sending  amount of flow from  to ,2 · l s0 to  

showing that the corresponding VM migration and communication cost obtained is 

indeed minimum. 

State of the Art VM Migration 

Cui et al. (Cui et al., 2017) proposed a policy-aware VM management scheme 

called PLAN. The core idea behind their techniques is the utility of a VM migration. 

Utility is defined as the VM's communication cost reduction due to migration minus the 

cost of the migration (Cui et al., 2017, Definition 1). The goal of PLAN is to find a 

migration scheme that maximizes the total utility of all VMs. PLAN is a greedy 

algorithm (Cui et al., 2017, Algorithm One) that works in rounds. In each round PLAN 

determines which VM can be migrated to a PM with capacity such that the migration has 

the highest utility possible any VM yet to be migrated. This continues until all the VMs 

are either migrated or no migration exists that increases utility.  

PLAN, however, is also a heuristic algorithm that does not offer any performance 

guarantee. Thus it is not clear how well it can perform at all times. We state in Lemma I 

that its goal is equivalent to our goal of minimizing the total communication and 

migration cost in VM2P. Thus these two algorithms can be adequately compared later in 

this thesis in order to measure the effectiveness of our algorithms.  

Lemma I 
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Minimizing total communication and migration cost  is equivalent to maximizing(m)C t  

total utility in PLAN.  

Proof. Under migration function , the utility of migrating a source VM  fromm vi  

its current PM  to another PM  is defined as the reduction of its(v )p i (v )m i  

communication cost to the ingress switch minus the cost of migrating the VM. Similarly, 

we can define the utility of migrating a destination VM as the reduction of its 

communication cost to the egress switch minus the cost of migration. Denote the utility 

of VM  as . Thus:v (v)u   

(v ) c(p(v ), w(1)) (m(v , w(1))) (p(v , (v ))u i = λi · ( i s − c i s − μ · c i m i  

(v ) c(p(v ), w(m)) (m(v , w(m))) (p(v , (v ))u ′i = λi · ( ′i s − c ′i s − μ · c ′i m ′i  

We can also defined the total utility of migrating all VMs under migration m as:  

(u(v ) (v ))U m = ∑
l

i=1
i + u ′i  

As stated before the total migration and communication cost after migration is 

equal to: . This means that minimizing  is equivalent to(m) (m) (m)C t = Cm + Cc (m)C t  

maximizing which means:(p) (m)Cc − C t   

(p) (m) c(p(v ), w(1)) (sw(m), (v )) (m(v ), w(1))Cc − C t = ∑
l

i=1
λi · ( i s + c p ′i − c i s −

 
 

 (sw(m), (v ))) (p(v), (v))c m ′i − μ ∑
 

v∈V m

c m = U m  

Unordered Policies 

Problem Formulation 
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Under an unordered policy we must define a VM migration function 

 as well as an MB traversal function  form : V m → V p 1, , .., ] 1, , .., ]πi : [ 2 . m → [ 2 . m  

each VM pair . The traversal function is a permutation function indicating thatv , )( i v′i  

after VM migration the  MB that  visits is . Let and letjth v , )( i v′i bm π (j)i π , π , ..π ⟩  π→ = ⟨ 1  2 . l  

 denote the total migration and communication cost of all the VM pairs with(m, )C t π→  

VM migration  and MB traversal . Thus:m π→   

(m, ) c (p(v ), (v ))  (p(v ), (v )))C t π→ = ∑
l

i=1
μ · ( i m i + c ′i m ′i +

 (sw(π (j)), w(π (j )))  (m(v ), w(π (1)))  (sw(π (m)), m(v )))∑
l

i=1
λ · ( ∑

m−1

j=1
c i s i + 1 + c i s i + c i  ′i  

The first and second terms in the equation above are the total migration cost and 

total communication cost of all the VM pairs, respectively. The objective of VM2P under 

an unordered policy is to find an  and a  to minimize  while satisfying them π→ (m, )C t π→  

resource constraints of all PMs.  We will show that VM2P is NP-hard even for one pair of 

VMs and propose an approximation algorithm that achieves a total energy cost at most 

twice that of the optimal configuration. 

Theorem II 

Even when there is only one pair of VMs  to migrate (i.e., ), VM2Pv , )( 1 v′1 l = 1  

is NP-hard.  

Proof. We reduce a variation of the s-t traveling salesman path problem (TSPP) 

(Hoogeveen, 1991), which is an NP-hard problem, down to the special case of an 
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unordered policy in VM2P. Given a complete undirected graph  with  a pairV , )K = ( K EK  

of prespecified vertices  and edge cost  satisfying the triangle,s t ∈ V K c : EK → ℝ+  

inequality  for all , the TSPP finds the cheapest(u, ) (u, ) (v, )c v ≤ c v + c w , ,u v w ∈ V K  

Hamiltonian path that starts at , visits each vertex exactly once, and ends at . Whens t  

, the TSPP becomes the well-known traveling salesman problem (TSP) (Cormen,s = t  

Leiserson, Rivest, & Stein, 2009), which finds the cheapest Hamiltonian cycle that starts 

at , visits each vertex exactly once, and then returns to . For clarification, by variations s  

of the TSPP we mean that nodes  and  each have a cost and thus the cost of thes t  

Hamiltonian path or cycle also includes the costs of nodes  and .s t  

Given an instance PDDC graph  where  has a cost(V , )G p ⋃ V s E mp i ∈ V p  

, we create  instances of complete graphs ,(pm )c i V | |V | )/2| p · ( P + 1 V , )K i,j = ( k
i,j

 Ei,j
k

. Here  with ., , V |1 ≤ i j ≤ | p pm , m , w(1), w(2), .., w(m)}V i,j
K = { i p j s s . s m , mp i p j ∈ V p  

For edge , its cost  is the cost of the shortest path connecting  andu, )( v ∈ Ei,j
k (u, )c v u  

 in .  is the migration cost of  from its current PM  to  andv G (pm )c i v1 (v )p 1 mp i  

 is the migration cost of  from its current PM  to . If  gives the(pm )c j v′1 (v )p ′1 mp j Ka,b  

minimum cost Hamiltonian path then migrating  to  and  to  must be thev1 mp a v′1 mp b  

minimum-cost migration for VM pair  in , and vice versa.v , )( 1 v′1 G  

Figure 6 shows the three complete graphs , , and  that areK1,1 K1,2 K2,2  

transformed from the linear PDDC graph  in Figure 4(a) while only consideringG  

.  gives the minimum cost Hamiltonian path among the three completev , )( 1 v′1 K1,2  
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graphs. It starts from  and visits , , and ends at  with cost of six.mp 1 w(1)s w(2)s mp 2  

Therefore, migrating  to  and  to  gives the minimum total migration andv1 mp 1 v′1 mp 2  

communication cost of six for . As  is initially located at  and  at ,v , )( 1 v′1 v1 mp 1 v2 mp 2  

both VMs do not need to migrate. 

 
Figure 6. Complete graphs generated from PDDC example figure. 

Algorithms 

The VM migration algorithm under an unordered policy (Algorithm One) works 

as follows. For each VM pair  (assuming ), the algorithm tries tov , )( i v′i ..λ1 ≥ λ2 ≥ . ≥ λl  

find a target PM such that the total migration cost and communication cost of this pair is 

minimized. To do that, it constructs  complete graphs . For eachV | |V |)/2| p · ( P + 1 K i,j  

complete graph the algorithm:  

1. Computes its minimum spanning tree. 

2. Computes a walk that starts with , visits all the vertices using eachmp i  

edge at most twice, and stops at .mp j  

3. Calculates and stores the cost of the walk including  and .(pm )c i (pm )c j   

4. Finds the , which we call , that results in the minimum cost.K i,j Ka,b  
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5. Migrates  to  and  to .vi mp a v′i mp b  

This continues until all the  VM pairs have been migrated. Constructing any of thel  

  takes , computing its MST takes , finding a walkV | |V |)/2| p · ( P + 1 K i,j (m )O 3 (m )O 2  

takes , and (at least in fat tree topology) the number of switches is bounded by(m)O  

. Therefore if , the time complexity of Algorithm One is(|V |)O p
2/3 (|V |)m = O p

2/3  

. A description of Algorithm One can be found below.(l V | ) (l V | )O · | p
2/3 · m = O · | P

4   

Example Two 

Using the same PDDC as in Figure 4, Algorithm One will migrate  and  tov1 v2  

 and  and  to , which means all the VMs stay in their initial placement.mp 1 v′1 v′2 mp 2  

The total migration and communication cost is .01 061 · 6 = 6   

Theorem III 

Algorithm One achieves a two-approximation when .l = 1   

Proof. Let the pair of PMs that store  be  and let be thev , )( 1 v′1 pm , m )( a p b W  

walk from  to  in the MST in the complete graph . Let  denote themp a mp b Ka,b W *  

optimal walk from  to  in . The cost of the MST computed in line 10 ofmp a mp b Ka,b  

Algorithm One is a lower bound on the cost of the optimal walk, .(MST ) (W )c ≤ c *  

Since the walk visits all vertices using each edge of the MST at most twice,W  

. Therefore we have .(W ) (MST )c ≤ 2 · c (W ) (W )c ≤ 2 · C *   
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Figure 7. Pseudocode for Algorithm One.  
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CHAPTER 4 
 
 

VMP2: VM PLACEMENT IN A PDDC 
 
 

When new cloud applications are initially submitted and created as VMs, cloud 

providers must optimize the usage of cloud resources by carefully allocating VMs to 

PMs. We study this VM placement problem and call it VMP2 (Virtual Machine 

Placement in PDDCs). We show that VMP2 is a special case of VM2P under both 

ordered and unordered policies. Therefore the algorithms outlined in the previous 

sections can be used here as well. However, we will also design specialized algorithms 

for the VM placement problem in this section that are more time-efficient than the 

migration algorithms while still being optimal (for ordered policies) or two-approximate 

(for unordered policies).  

Ordered Policies 

Problem Formulation 

The total communication cost of all the l VM pairs under VM placement p is 

denoted as  (Equation 1). The objective of VMP2 is to find a placement p that(p)Cc  

minimizes  while satisfying the resource constraints of all PMs.(p)Cc   

Theorem IV 

Under an ordered policy, VMP2 is a special case of VM2P when .μ = 0   

Proof. When we plug in into Equation 2 we get the following:μ = 0  
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(m) (sw(j), w(j )) (c(m(v ), w(1)) (sw(m), (v )))C t = ∑
l

i=1
λi · ∑

m−1

j=1
c s + 1 + ∑

l

i=1
λi i s  + c m ′i

 
 

Replacing  in the equation above with , which essentially means we’re finding am p  

placement rather than a migration, yields .(m) (p) (p)C t = C t = Cc   

As the VM placement problem is a special case of the migration problem, the 

MCF algorithm proposed earlier solves VM placement optimally. However by taking 

advantage of the unique characteristics of the problem in a PDDC, we are able to design a 

more time efficient algorithm below.  

Algorithms 

The key to minimizing the communication cost of a VM pair is to find a resource 

slot as close as possible to the ingress switch for the source VM  and a resource slot asvi  

close as possible to the egress switch for the destination VM . Recall that there arev′i  

 resource slots in the PDDC. For the purposes of our algorithm, eachmΣi∈V p i ≥ 2 · l  

resource slot will now have an ID, an ingress cost, and an egress cost. A resource slot’s 

ingress and egress cost is the number of hops a message would have to make to travel 

from the slot to the ingress and egress switch respectively.  

Definitions. We refer to the l resource slots that will contain all l of the VM pairs 

in the PDDC as the ingress and egress resource sets (IRS and ERS). Therefore any slot in 

the IRS cannot appear in the ERS and vice versa. The cost of the IRS or ERS is the sum 

of the ingress and egress costs of each slot respectively. A pair of IRS and ERS are 

optimal if the sum of their costs in minimized. The following algorithm, Algorithm Two, 
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attempts to find an IRS and ERS, denoted as , such that their costs is minimized.I , )( E  

The complexity of this algorithm is  where is(|V | og(|V | ) )O p · mavg · l p · mavg + l2 mavg  

the average resource capacity of the PMs.  

Figure 8. Pseudocode for Algorithm Two.  
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Example Three. Consider the same scenario outlined in Example One, but instead of VM 

migration we now try to place two sets of VM pairs into a PDDC:  and .v , )( 1 v′1 v , )( 2 v′2  

Figure 9(a) shows a placement calculated with Algorithm Two. As is closer to bothmp 1  

 and  than , it could be that . Howeverbm 1 bm 2 mp 2 rs , s , s , s }A = B = { 1 r 2 r 3 r 4  

Algorithm Two should create  and meaning that VMs.id rs , s }I = { 1 r 3 .id rs , s }E = { 2 r 4  

 are placed in  while  are placed in . The total communicationv , )( 1 v′1 mp 1 v , )( 2 v′2 mp 2  

cost for this configuration is .00 0 101 · 4 + 1 · 1 = 4   

 

 
Figure 9. Example for VMP2. 

 

Theorem V.  Algorithm Two finds the VM placement that minimizes the total 

communication cost for the l VM pairs.  
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Proof. Assume that Algorithm Two is not optimal and there exists an 

optimal algorithm called O. Therefore there must exist a problem instance such that the 

VM placements resulting from both algorithms are different. Let's assume that ,r  

, is the smallest index at which the pair of resource slots store a different pair of1 ≤ t ≤ l  

VMs for Algorithm Two and O for such an instance. There are two possible cases in this 

situation.  

 
Figure 10. Proof aid for (a) is the order for Algorithm One, (b) is the ordering  for 
Case 1, and (c) is the ordering for Case 2. 

 
  

Case 1: only one of the two resource slots at r differ, i.e. either  or [r].idI [r].idE  

stores a different VM but not both as in Figure 10(b). We denote the VMs placed by O at 

slot r as  and those placed by Algorithm Two as . We denote the indexv , )( r vs v , v )( r  ′r  

where  was placed by O as u where r < u. Because VMs are placed by Algorithm Twov′r  

in decreasing order with respect to communication frequency, . This means that ifλs ≤ λr  
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we were to switch the positions of  and  in the ordering from O, we would reducevs v′r  

the communication cost as the slot at u is farther from ingress/egress switch than the slot 

at r. By placing the VM with the higher frequency closer, we reduce the communication 

cost of the PDDC and thus contradict the notion that O is optimal.  

Case 2: both resource slots  and E[r].id store different VMs for both[r].idI  

algorithms as in Figure 10(c). Like before the VMs placed by Algorithm Two  atv , v )( r  ′r  

r must have a higher communication frequency than those placed by O in the same index. 

This means that O placed  in slots farther away from either the ingress or egressv , v )( r  ′r  

switches. If we were to swap  back to index r in O’s ordering we would thus bev , v )( r  ′r  

reducing the communication cost as we are placing VMs with higher communication 

frequencies in better slots. This is a contradiction as O is suppose to be optimal.  

In both cases we are able to swap resources in Optimal to further reduce the 

energy cost. This contradicts the notion that Optimal is optimal and Algorithm Two is not 

optimal, therefore Algorithm Two is optimal.  

 

Unordered Policies 

Problem Formulation 

For unordered policies, VMP2 needs to find both a placement function p and the 

optimal MB traversal path for each VM pair. With the help of an MB traversal function 

 for a VM pair , we denote the  MB that a VM1, , .., ] 1, , .., ]πi : [ 2 . m → [ 2 . m v , )( i v′i jth  
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pair must visit as . Given both a placement p and a traversal function , webm π (j)i πi  

denote the energy cost for a VM pair as . Thus:cp,πi

i  

(p(v , w(π (1))) (sw(π (j)), w(π (j ))) (sw(π (m)), (v ))cp,πi

i = λi · c i s i + λi ∑
m−1

j=1
c i s i + 1 + λi · c i p i′  

Let . The objective of VMP2 for an unordered policy is to minimize π , , .., ⟩  π→ = ⟨ 1 π2 . π 
l  

the total communication cost  such that the resource constraints of the(p, )Cc π→ = ∑
l

i=1
ci

p,πi  

PDDC PMs are not violated. Below we show that for unordered policies VMP2 is a 

special case of VM2P when . We then design a VM placement algorithm,μ = 0  

Algorithm Three, that is more efficient than Algorithm One while still being 

two-approximate.  

Theorem VI 

For an unordered policy,  VMP2 is a special case of VM2P when .μ = 0  

Proof. Plug in  into Equation Three:μ = 0   

(m, )  (sw(π (j)), w(π (j )))  (m(v ), w(π (1)))  (sw(π (m)), m(v )))C t π→ = ∑
l

i=1
λ · ( ∑

m−1

j=1
c i s i + 1 + c i s i + c i  ′i  

When  this equation becomes the total communication cost of a VM placementμ = 0  

algorithm.  

Algorithms 

The difference between Algorithm One and Algorithm Three is that in Algorithm 

Three we only need to create  complete graphs one time and we onlyV | |V | )/2| p · ( p + 1  
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need to sort them with respect to the cost of their Hamiltonian path one time. The running 

time of Algorithm Three is thus .O(|V | m og|V |) ) (|V | ) p
2 · ( 3 + l p + l = O p

4 + l   

 Example Four 

Using the same PDDC as in Figure 9, Algorithm Three works as follows. We first 

sort the PM pairs by the walk cost: . Next  are(1, , ), 1, , ), 2, , 0)}X = { 1 4 ( 2 6 ( 2 1 v , )( 1 v′1  

placed into  while  are placed into  because  has a highermp 1 v , )( 2 v′2 mp 2 v , )( 1 v′1  

communication frequency than  and has the most efficient walk. Thus thev , )( 2 v′2 mp 1  

total communication cost is .00 0 101 · 4 + 1 · 1 = 4   

Theorem VII 

Algorithm Three achieves a two approximation when .l = 1   

Proof. The first VM pair in X is  (see line 11 of Algorithm Three). Lets , )( 1 t1  

, let , and let denote the optimal walk from  to  in themp a = s1 mp b = t1 W * mp a mp b  

complete graph . The cost of the MST computed is a lower bound on the cost of theKa,b  

optimal walk, . Since the walk  found in Algorithm Three visits all(MST ) (W )c ≤ C * W  

vertices using each edge in the MST at most twice, . Therefore we(W ) (MST )c ≤ 2 · c  

have .(W ) (W )c ≤ 2 · c *   
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Figure 11. Pseudocode for Algorithm Three.  
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CHAPTER 5 
 
 

PERFORMANCE EVALUATION 
 
 

Simulation Setup 

We investigate the performance of our policy-aware VM placement and migration 

algorithms in this chapter. We will refer to ordered policy Algorithm Two as Optimal and 

to the unordered policy Algorithm Three as Approximation. Our simulation will consider 

a PDDC with a  Fat Tree topology and 128 PMs. In the VMP2 simulations we varyk = 8  

two parameters: 

1. The number of MBs: , 3, 5m = 1    

2. The number of VM Pairs: 00, 1000, 1500, 2000l = 5     

The communication frequency of each VM pair will always be in the range .1, 000][ 1  

For all simulation plots, each bar represents the average of 20 independent runs with error 

bars indicating the  confidence interval.5%9   

Traffic Aware VM Placement 

Meng et al. (Meng et al., 2010) proposed a traffic-aware VM placement algorithm 

that optimizes the placement of VMs into PMs. The authors observed that VMs with a 

large amount of communication traffic should be assigned to PMs as close as possible, 

ideally even the same PM. We refer to the algorithm outlined in this paper as 

TrafficAware. We use this algorithm in the upcoming section as a benchmark for own 

algorithms.  
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TrafficAware is policy-oblivious though, not taking into account the policies 

present in the PDDC. In an ordered policy TrafficAware considers all the VM pairs in 

their descending order of communication frequencies, and places each VM pair to the PM 

that is closest to the ingress switch until all the VM pairs are placed. In unordered-policy, 

it works as Algorithm Three while only considering the case of , asm mp 1 = p 2  

TrafficAware always places each VM pair in the same PM if possible. We compare our 

algorithms with TrafficAware for both ordered- and unordered-policies, and show that 

our algorithms consistently outperform TrafficAware. 

VMP2 Results 

Ordered Policies 

For our first simulation, we vary the number of VM pairs from 500 to 2,000, inl  

increments of 500, while maintaining the number of MBs constant at . Here wem = 3  

also keep the resource capacity of each PM at . The results of this scenario arec 0r = 4  

outlined in Figure 12(a). From these results it is obvious that as the number of VM pairs 

increases the total energy cost for both algorithms increases but the cost of the Optimal 

algorithm is always at least  below that of the TrafficAware algorithm. In5 0%1 − 2  

Figure 12(b) we see the results of varying the number of MBs while keeping 000l = 1  

and . Again we see here how important it is to keep policies in mind whenc 0r = 4  

placing VMs as the Optimal algorithm outperforms the TrafficAware algorithm by an 

average of . Lastly in Figure 12(c) we see how well Optimal performs when the5%1  

number of resource slots vary per physical machine. Unlike the other scenarios where the 
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gap between Optimal and TrafficAware stays relatively the same, in this scenario the 

performance of Optimal relative to Trafficware increases as more resource slots become 

available.  

 

Figure 12. Simulation results for VMP2 for ordered policies. 
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Unordered Policies 

In an unordered policy, the ingress and egress switches are not constant for every 

VM pair as the traversal of the MB set can vary from pair to pair. Therefore for the case 

of unordered policies, we devise another benchmark algorithm to compare the 

performance of the Approximation algorithm. The Greedy algorithm is a new algorithm 

that places the first VM in a pair into the resource slot that is closest to an MB in the 

policy chain. Next, the algorithm calculates the shortest path through the remaining MBs 

in the policy chain and places the other VM in the pair into the resource slot closest to the 

last MB visited. One can see how this algorithm performs against the TrafficAware and 

Approximation algorithms in Figure 13(a) and Figure 13(b). It is obvious that 

Approximation outperforms TrafficAware and Greedy for all cases.  

Comparison 

We compare the energy consumptions for all VM pairs for both ordered and 

unordered policies. We observe that unordered policies yield less energy costs than 

ordered policies for all VM pairs. We define the performance difference (PD) as the 

energy cost difference between ordered and unordered policies divided by energy cost of 

the ordered policy. In general, unordered policies cost around 20-30% less energy than 

ordered policies as shown in Figure 14. This is because unlike ordered policies, wherein 

each VM must traverse the MBs in a specific order, unordered policies allow VM pairs to  
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Figure 13. Simulation results for VMP2 for unordered policies 
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choose the order of the MBs traversal in order to reduce their energy cost. Note that as 

TrafficAware is totally oblivious to policies, its performance stays relatively constant.  

 

 
Figure 14. Performance difference plot between ordered and unordered VMP2. 

 
 

VM2P Results 

  
Figure 15. Simulation results for VM2P. 
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Finally we compare our VM migration algorithms with PLAN for both ordered 

and unordered policies. We consider 1000 VM pairs and 3 MBs in a  data centerk = 8  

where each PM has resource capacity of 70. We vary the migration coefficient  from 1,μ  

500, to 1000, which is comparable to the range of VM communication frequencies. 

Figure 15(a) shows that under an ordered policy, our MCF-based optimal migration 

algorithm performs much better for  equal to 1 and only marginally better for all otherμ  

values.  Figure 15(b)  shows the under an unordered policy, our approximation algorithm 

outperforms PLAN by at least 40%. This indirectly validates the optimality and 

approximately of our designed VM migration algorithms. 
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CHAPTER 6 
 
 

CONCLUSION AND FUTURE WORK 
 
 

In this thesis we proposed an algorithmic framework called VM2P, that jointly 

optimizes VM placement and VM migration in PDDCs. PDDCs have become important 

infrastructure for cloud computing as the MB-based policies provide the cloud user 

applications with security and performance guarantees. In particular, we uncover a suite 

of new algorithmic problems that migrate and place VMs inside PDDCs while respecting 

the existing policies and also minimize the total energy consumption of the VM 

applications. We solved VM2P by designing both optimal and approximation algorithms 

under ordered and unordered policies, respectively, and show that VM placement is a 

special case of VM2P. For future work, we are working on real data traces from 

production data centers to further validate our algorithms. We will also study if the 

optimality and approximability of our algorithms still hold when different VMs require 

different amount of resources. Finally we will focus on network function virtualization, 

when both MBs and VMs  can be placed easily inside PDDCs, to design a holistic and 

synergistic MB and VM placement approach to achieve ultimate energy-efficiency in 

PDDCs. 
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