

DAO2: OVERCOMING OVERALL STORAGE OVERFLOW IN

INTERMITTENTLY CONNECTED SENSOR NETWORK

A Project

Presented

to the Faculty of

California State University, Dominguez Hills

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Hung Ngo

Fall 2020

 PROJECT: OVERCOMING OVERALL STORAGE OVERFLOW IN

INTERMITTENTLY CONNECTED SENSOR NETWORK.

AUTHOR: HUNG NGO

APPROVED:

Project Committee Chair

Committee Member

Committee Member

Copyright by

HUNG NGO

2020

All Rights Reserved

ACKNOWLEDGEMENTS

I would like to thank all the professors that have helped and educated me in the duration

of the degree program. I would also like to thank my family and friends who give me support

and encourage me to pursue the master’s degree.

Special thanks to Dr. Tang who have helped me and been giving advices on my master

project. Thanks to Dr. Han who has given me valuable academic advices throughout my studies

at CSUDH. Thanks to Dr. Beheshti’s support for my academic pursuit. Thanks to all the nice

people I’ve worked with during these two and half years.

Special thanks to my wife and my parents, who gave me unconditional love and support.

TABLE OF CONTENTS

ABSTRACT ...1

I. INTRODUCTION ..2

II. PROBLEM FORMULATION OF DAO2 ..4

III. ALGORITHM SOLUTION FOR DAO2-U ...8

A. Problem Formulation of DAO2-U ...8
B. Multiple Traveling Salesmen Selection and Routing (MTSSR)9

C. Equivalency Between MTSSR and DAO2 -U ...14

IV. ALGORITHMIC SOLUTIONS FOR DAO2 ..16

A. Quota Multiple Traveling Salesmen Selection and Routing (Q-MTSSR)16

B. Approximation Algorithms for Q-MTSSR ...17
C. Heuristic Algorithm for Q-MTSSR ...19

V. DISTRIBUTED DATA AGGREGATION ALGORITHMS ...21

VI. PERFORMANCE EVALUATION ...25

A. Algorithms for DAO2-U ..26
B. Algorithms for DAO2 ..31

VII. RELATED WORK ...33

VIII. CONCLUSION AND FUTURE WORK ...36

REFERENCES ..36

APPENDICS ..39

ABSTRACT

Many emerging sensor network applications operate in challenging environments wherein sensor nodes

do not always have connected paths to the base station. Data generated from such intermittently connected

sensor networks therefore must be stored inside the network for some unpredictable period of time before

uploading opportunities become available. Consequently, sensory data could overflow limited storage

capacity available in the entire network, making discarding valuable data inevitable. To overcome such

overall storage overflow in intermittently connected sensor networks, we propose and study a new

algorithmic problem called data aggregation for overall storage overflow (DAO2). Utilizing spatial data

correlation that commonly exists among sensory data, DAO2 employs data aggregation techniques to reduce

the overflow data size while minimizing the total energy consumption.

We first study a uniform case of DAO, referred to as DAO-U, where data nodes have the same size of

overflow packets and storage nodes have the same storage capacity. We uncover a new graph theoretic

problem called multiple traveling salesmen selection and routing (MTSSR), and show that with proper graph

transformation, the DAO-U is equivalent to the MTSSR. We prove that MTSSR is NP-hard and design a (2

− 1 "#) algorithm, where q is the number of nodes to visit (i.e., the number of sensor nodes that aggregate

their overflow data). The approximation algorithm is based on a novel routing structure called minimum q-

edge forest that accurately captures information needed for energy-efficient data aggregation. We further

put forward a heuristic algorithm and empirically show that it constantly outperforms the approximation

algorithm by 15% − 30% in energy consumption.

Then we solve the general case of DAO2 where data nodes have varying overflow packet sizes and

storage nodes have different storage capacities. DAO2 gives rise to another new graph theoretic problem

called quota multiple traveling salesmen selection and routing (Q-MTSSR). We propose an approximation

algorithm for Q-MTSSR. We also propose an energy-efficient heuristic algorithms that constantly yields

less cost than the approximation algorithm while collecting the same amount of prizes. We show both

algorithms outperform the state-of-the-art data aggregation work that considers the availability of a base

station. Finally, we propose distributed data aggregation algorithm that can achieve the same approximation

ratio as the centralized algorithm under some condition, while incurring comparable energy consumption.

2

Keywords – Intermittently Connected Sensor Networks, Data Aggregation, Approximation Algorithms, Graph Theory

I. Introduction

In recent years sensor networks have been adopted to tackle some of the most fundamental problems

facing human beings, such as disaster warning, climate change, and renewable energy. These emerging

scientific applications include underwater or ocean sensor networks [33, 53], wind and solar harvesting

[38], and seismic sensor networks [51]. One common characteristic of these applications is that they are

all deployed in challenging environments such as in remote or inhospitable regions, or under extreme

weather, to continuously collect large volumes of data for a long period of time.

In those challenging environments, it is usually not possible to deploy high-power, high storage data-

collecting base stations in the field. Consequently, sensory data generated are stored inside the network

for some unpredictable period of time and then collected by periodic visits of data mules [43], or by

low rate satellite link [41]. We refer to such sensor networks wherein sensor nodes do not always have

connected paths to the base station as intermittently connected sensor networks. Due to inadequate human

intervention in the inhospitable environments, intermittently connected sensor networks must operate more

resiliently than traditional sensor networks (with base stations and in friendly environments).

In this paper we tackle data resilience in intermittently connected sensor networks. Data resilience

refers to the ability of long-term viability and availability of data despite insufficiencies of (or disruptions

to) the physical infrastructure that stores the data. In intermittently connected sensor networks, one such

disruption and major obstacle is data storage overflow. On one side, sensing a wide range of physical

properties in real world, above scientific applications generate massive amounts of data, such as videos

or high resolution images. On the other side, storage is still a serious resource constraint of sensor nodes

despite the advances in energy-efficient flash storage [33, 39]. As a consequence, the massive sensory data

could soon overflow data storage of sensor nodes and cause data loss. Such storage overflow problem is

further exacerbated in intermittently connected sensor networks, wherein most of the time the high-storage

base stations are not available to collect and store the data.

To avoid data loss, our previous work has designed a suite of techniques to offload overflow data from

storage-depleted sensor nodes to nearby sensor nodes with available storages [27, 28, 45, 52]. However, if

these offloaded data cannot be collected and uploaded timely by data mules or satellite links, they could

soon overflow the available storage in the entire network. This unfortunately can not be alleviated by

aforesaid data offloading techniques. We refer to this more severe obstacle in the intermittently connected

sensor networks as overall storage overflow. Below we give a more concrete example contributing to

overall storage overflow in intermittently connected sensor networks.

Motivation Example for Overall Storage Overflow. Consider a recent application of underwater

exploration and monitoring [11]. In this applications camera sensors take pictures of the underwater

3

scenes while an autonomous underwater vehicle (AUV) is dispatched periodically to collect the pictures

from the camera sensors. Suppose there are 100 underwater camera sensors, 10 of which are generating

one 640⇥480 JPEG color image per second. Even using the latest parallel NAND flash technology with

16GB for sensor storage [30], it takes less than one day to exhaust the storages of all the 100 camera

sensors, causing overall storage overflow. If the AUV cannot be dispatched timely due to inclement

and stormy weather, discarding valuable data becomes inevitable. In this paper, we attempt to answer

following question: How to preserve the data in intermittently connected sensor networks despite the

overall storage overflow?

Fortunately, we can take advantage of spatial correlation that commonly exists among sensory data

[50], and employ data aggregation techniques to reduce the overflow data size in order to overcome

overall storage overflow. The spatial correlation of sensory data is due to the close proximity of sensor

nodes detecting the same event of interest, thus producing data of similar values (we will provide

the detailed spatial correlation data model in Section II). We formulate a new algorithmic problem

called data aggregation for overall storage overflow (DAO2). At the core of DAO2 is a new graph-

theoretic problem called multiple traveling salesmen selection and routing (MTSSR), which has not

been studied in any existing literature. To solve DAO2, we design a suite of energy-efficient optimal,

approximation, heuristic, and distributed data aggregation algorithms with detailed analytical analysis of

their performances. One novelty of our aggregation techniques is a routing structure called minimum

q-edge forest, where q is the number of sensor nodes that aggregate their overflow data. The minimum

q-edge forest generalizes minimum spanning tree, one of the most fundamental graph structures, and

accurately captures information needed for energy-efficient data aggregation.

After being aggregated to the size accommodable by the network, the overflow data can then be stored

into sensor nodes with available storage using data offloading techniques proposed in [27, 28, 45, 52] (we

further illustrate this using Example 1 in Section II). Note that in this paper we do not consider how to

upload data from sensor nodes to base station, which has been studied extensively by using data mules

or mobile data collectors [22, 43]. In the conference version of this paper [44], we only considered a

simplified version of DAO2 referred to as DAO2-U. In DAO2-U, all the data nodes have the same size

of overflow data and the storage capacity is the same for all the storage nodes.

The rest of the paper is organized as follows. Section II presents our system model and formulates

DAO2 with an illustrative example. In Section III we first study DAO2-U. We show that DAO2-U is

equivalent to the a new graph theoretical problem called multiple traveling salesmen selection and

routing (MTSSR), for which we design a suite of optimal, approximation and heuristic algorithms.

In Section IV we study DAO2 while identifying another new graph theoretical problem called quota

multiple traveling salesmen selection and routing (Q-MTSSR). Again we design optimal, approximation,

an heuristic algorithms to solve Q-MTSSR and DAO2. In Section V, we design two distributed data

4

aggregation algorithms for the DAO2 with time and message analyses. Section VI compare all the

algorithms under different network dynamics and discuss the results. Section VII and VIII review related

work and conclude the paper with possible future research.

II. Problem Formulation of DAO2

In this section, we first introduce the DAO2 with a problem statement. We then present its network

model, data spatial correlation model, and energy model. We finally formally formulate the DAO2 and

end with an illustrative example.

Problem Statement of DAO2. Fig. II shows an intermittently connected sensor network. In our model,

some sensor nodes are close to the events of interest thus are constantly generating sensory data and have

depleted their own storages. We refer to sensor nodes with depleted storage spaces while still generating

data as data nodes. The newly generated data that can no longer be stored at data nodes is called

overflow data. To avoid data loss, overflow data is offloaded to sensor nodes with available storages

(referred to as storage nodes). Note that sensor nodes that have generated data but have not depleted

their storage spaces are considered as storage nodes, as they can store overflow data from data nodes.

Data nodes Storage nodes

Initiator

Aggregators

Fig. 1. An illustration of DAO2.

To start the aggregation process, one or more data nodes (called initiators) send their overflow data

to visit other data nodes in multi-hop manner. When a data node receives the data, it aggregates its

own overflow data and becomes an aggregator, and then forwards the initiator’s entire overflow data

to another data node. This data node also becomes an aggregator and aggregates its overflow data. This

continues until enough aggregators are visited such that total size of the overflow data after aggregation

equals to or is slightly less than total available storage in the network. Note that during the aggregation

process, it does not store overflow data to the storage nodes since other aggregators need the entire data

in order to aggregate their own data.

Network Model. The sensor network is represented as an undirected connected graph G(V,E), where

V = {1, 2, ..., |V |} is the set of |V | sensor nodes and E is the set of |E| edges. There are p data nodes,

denoted as Vd (the other |V | � p nodes are storage nodes), where data node i 2 Vd has Ri amount of

5

overflow data in bits. The rest |V | � p sensor nodes are storage nods, where storage node j 2 V � Vd

has mj amount of available storage space in bits. Due to the overall storage overflow focused on this

paper,
P

i2Vd
Ri >

P
j2V�Vd

mj . Let Q denote the amount of data size that needs to be reduced via data

aggregation; Q =
P

i2Vd
Ri �

P
j2V�Vd

mj .

Spatial Correlation Data Model. Let H(X) denote the entropy of a discrete random variable X , and

H(X|Y) denote the conditional entropy of a random variable X given that random variable Y is known.

If data node i receives no side information (i.e., overflow data) from other data nodes, its overflow data

is entropy coded with H(i|j1, ..., jp) = Ri bits, jk 2 Vd ^ jk 6= i, 1  k  p. If data node i receives side

information from at least one data node, the size of its overflow data is H(i|j1, ..., jp) = ri  Ri. This

correlation model has two advantages. First, it captures the uniform data spatial correlation scenario,

wherein data generated at different data nodes have similar correlation with each other (we leave the

more challenging and realistic model that different nodes have different data correlation as future work).

Second, it is an effective distributed coding strategy, which works well in large scale sensor network

applications. We are aware of other distributed coding techniques such as Slepian-Wolf coding [54].

However, they need global correlation structure, which is impractical in large networks.

Correlation Coefficient. Based on above spatial correlation model, we further define correlation coefficient

as the percentage of data size that can be reduced at each data node and denote it as ⇢. That is,

⇢ = 1� ri/Ri, i 2 Vd, indicating that Ri · ⇢ amount of overflow data at data node i can be reduced via

aggregation. ⇢ shows the similarities thus redundancies of data on different data nodes. ⇢ = 0 means

no spatial correlation at all thus data at data nodes are totally different from each other and cannot be

aggregated, while ⇢ = 1 means perfect correlation where data at aggregators are duplicate copies of

data at initiators thus can be completely removed. Given any instance of overall storage overflow where
P

i2Vd
Ri >

P
j2V�Vd

mj , a specific ⇢ value is called effective if ⇢⇥
P

i2Vd
Ri �

P
i2Vd

Ri�
P

j2V�Vd
mj ,

thus ⇢ �

P
i2Vd

Ri�
P

j2V �Vd
mjP

i2Vd
Ri

. Denote threshold correlation coefficient as ⇢th =
P

i2Vd
Ri�

P
j2V �Vd

mjP
i2Vd

Ri
; ⇢th

is the minimum effective ⇢ that solves an overall storage overflow instance.

Our model is based on a well-known entropy-based model proposed in [19], with one difference. The

model in [19] assumes that each sensor node generates some data packets and transmits them back to

the base station. In our model, we only consider overflow data packets generated only at data nodes and

the goal is to reduce their sizes instead of transmitting them back to the base stations. We have two

observations about the correlation model.

Observation 1: Each data node can be either an initiator, or an aggregator, or none of them, but

not both of them. An initiator cannot be an aggregator because its data serves as side information for

other nodes to aggregate. An aggregator cannot be an initiator since its aggregated data loses the side

information needed for others nodes’ aggregation. ⇤
Observation 2: Each aggregator can be visited multiple times by the same or different initiators (if

6

that is more energy-efficient). However, the data of an aggregator i can only be aggregated once, with

size reduced from Ri to ri. ⇤

Energy Model. We adopt first order radio model [25] for battery power consumption. When node u

sends Ru-bit data to its one-hop neighbor v over distance lu,v, transmission cost at u is Et(Ru), lu,v) =

Eelec⇥Ru+✏amp⇥Ru⇥l2
u,v

, receiving cost at v is Er(Ru) = Eelec⇥Ru. Here, Eelec = 100nJ/bit is energy

consumption per bit on transmitter and receiver circuits, and ✏amp = 100pJ/bit/m2 is energy consumption

per bit on transmit amplifier. Let W = {v1, v2, ..., vn} be a walk, a sequence of n nodes with (vi, vi+1) 2 E

and v1 6= vn (if all nodes in W are distinct, W is a path). Let w(Ru, u, v) = Et(Ru, lu,v) + Er(Ru),

and c(Ru,W) =
P

n�1
i=1 w(Ru, vi, vi+1) denote the aggregation cost on W , the energy consumption of

sending Ru-bit from v1 to vn along W . We assume that there exists a contention-free MAC protocol to

avoid overhearing and collision (e.g. [14]).

Problem Formulation of DAO2. DAO2 determines a set of a (1  a < p) initiators, denoted as I, and

corresponding set of a aggregation walks/paths: W = {W1,W2, ...,Wa}, where Wj (1  j  a) starts

from a distinct initiator Ij 2 I. Let Gj be the set of storage nodes in Wj thus Wj�{Ij}�Gj is the set of

aggregators in Wj . Let A denote all the aggregators that are visited in W; A =
S

a

j=1{Wj � {Ij}�Gj}.

The goal of DAO2 is to find W and I such that the total amount of reduced data
P

i2A(Ri · ⇢) >= Q

while minimizing the total aggregation cost
P

1ja
c(RIj ,Wj), the total energy consumption incurred in

the aggregation process. Note that A =
S

a

j=1{Wj�{Ij}�Gj} guarantees that even though an aggregator

can be visited multiple times (by the same or different initiators), its data reduction is only counted once.

Table I lists all the notations for above and later sections.

A(2)

D(1)
E(2)

C(1)B(2)

F(1)

G(1) H(1) I(1)

Fig. 2. An example for DAO2. Numbers are Ri (for data nodes •) and mj (for storage nodes �). Blue arrowed line shows the aggregation

path.

EXAMPLE 1: Fig. II gives an example of DAO2 in a grid sensor network of 9 nodes (we use grid

only for illustration purpose). Nodes B, D, E, G, and I are data nodes, with RB = RE = 2 while

RD = RG = RI = 1. Nodes A, C, F and H are storage nodes, with mj = 1 for all of them except that

mA = 2. The energy consumption along any edge is 1 for one unit of data and correlation coefficient

7

TABLE I

NOTATIONS USED IN DIFFERENT PROBLEMS

DAO2

G(V,E) Sensor network where DAO2 and DAO2-U run

Vd and p Set and number of data nodes

mi Storage capacity of a storage node i 2 V � Vd

Ri Overflow data size at data node i before aggregation

ri Overflow data size at data node i after aggregation

⇢ Correlation coefficient, ⇢ = 1� ri/Ri, i 2 Vd

Q E =
P

i2Vd
Ri �

P
i2V �Vd

mi

I, a Set and number of initiators, 1  a  (p� q)

Ij jth initiator, 1  j  a

Wj Aggregation walk or path starting with Ij

w(Ru, u, v) Aggr. cost of sending Ru bits from u to neighbor v

c(Ru,Wj) Aggr. cost of sending Ru bits along Wj

DAO2-U

q Number of aggregators needed

m Storage capacity of a storage node in V � Vd

R Overflow data size at each data node before aggregation

r, r < R Overflow data size at each data node after aggregation

MTSSR and Q-MTSSR

G(V 0, E0) Aggregation network where MTSSR and Q-MTSSR run

w(u, v) Weight of an edge (u, v) 2 E0

pri Prize at node i 2 V 0

costi Weight of node i 2 V 0

Q Total amount of prizes to be collected

pcr(Ci, Cj) Prize-cost ratio of two components Ci and Cj

B(u, v) Benefit of an edge (u, .v) 2 E0, B(u, v) = pru+prv
w(u,v)

T Total traveling cost in MTSSR and Q-MTSSR

⇢ = 1/2. Overall storage overflow exists as there are 7 units of overflow data but only 5 units of storage

spaces, giving Q = 2. The optimal solution, shown in blue arrowed line, is selecting D as the initiator

and setting its aggregation path as: D, E, and B, with the total aggregation cost of 2. After aggregation,

the sizes of overflow data at B, E, D, G, and I are 2, 1, 0, 1, 1 respectively, totaling five units. Note

that 2 units of data at B now include 1 unit of B’s own aggregated data and 1 unit of initiator D’s intact

data. Now the five units of overflow data can fit and be stored into the five units of available storage

spaces, solving the overall overflow problem. ⇤

Data Offloading After Data Aggregation. After aggregation, the next question is how to offload data

from data nodes to storage nodes with minimum energy consumption. Our previous work [28, 45] have

shown this can be modeled as a minimum cost flow problem [1], which can be solved optimally and

8

efficiently. One optimal solution in Fig. II is offloading the 2 units of data at B to A, E’s 1 unit of

aggregated data to C, G’s 1 unit of intact data to H , and I’s own 1 unit of intact data to F , totaling 6

offloading cost.

As data offloading can be achieved optimally, we only focus on data aggregation. In Section III we

consider a uniform scenario where all the data nodes have the same overflow data size (i.e., Ri = R)

and all the storage nodes have the same storage capacity (i.e., mj = m). We refer to it as DAO2-U. In

Section IV we study the general DAO2 with heterogenous Ri and mj . In this paper data aggregation and

data offloading are treated as separated stages; an integrated, more energy-efficient solution was proposed

in [3].

III. Algorithmic Solutions for DAO2-U

A. Problem Formulation of DAO2-U.

When Ri = R, i 2 Vd and mj = m, j 2 V � Vd, the overall storage overflow condition becomes

p⇥R > (|V |�p)⇥m, giving that p > |V |m
m+R

. We are able to calculate the number of aggregators, denoted

as q, that need to be visited for the data reduction. Since each aggregator reduces its overflow data size

by (R�r), and the total anticipated data size reduction is p⇥R�(|V |�p)⇥m = p⇥(R+m)� |V |⇥m,

we have

q = d
p⇥ (R +m)� |V |⇥m

R� r
e. (1)

To guarantee that the overflow data after aggregation can fit in the available storage in the network,

next we compute the upper bound of number of data nodes p. As at least one data node needs to be the

initiator to start the aggregation process, there can only be maximum of p�1 aggregators (Observation 1).

We therefore have q = d
p⇥(R+m)�|V |⇥m

R�r
e  p � 1, which gives p  b

|V |m�R+r

m+r
c. As we have calculated

the lower bound of p in network model above, the valid range of p for overall storage overflow to occur

is therefore
|V |m

m+R
< p  b

|V |m�R + r

m+ r
c. (2)

Given a valid p value and its corresponding q value, meaning q out of the p data nodes need to be

aggregators and the rest p� q data nodes can serve as initiators (Observation 1), DAO2-U determines:

• set of a (1  a  (p� q)) initiators, denoted as I, and

• corresponding set of a aggregation walks: W1, W2, ..., Wa, where Wj (1  j  a) starts from a

distinct initiator Ij 2 I, such that |
S

a

j=1{Wj � {Ij}�Gj}| = q. Here, Gj is the set of storage nodes

along Wj thus Wj �{Ij}�Gj is the set of aggregators in Wj . Since an aggregator can appear multiple

times in the same or different aggregation walks (Observation 2),
S

a

j=1{Wj � {Ij} � Gj} signifies a

set of q distinct aggregators in the network.

The goal DAO2-U is to minimize the total aggregation cost
P

1ja
c(R,Wj), the total energy con-

sumption incurred in the aggregation process.

9

A(1)

D(1)
E(1)

C(1)B(1)

F(1)

G(1) H(1) I(1)

Fig. 3. An example for DAO2-U. Numbers are Ri (for data nodes •) and mj (for storage nodes �). Blue arrowed line shows the aggregation

path.

EXAMPLE 2: Fig. III-A shows the same sensor network in Fig. II with the same sets of data and

storage nodes. Now assume that R = m = 1 for the uniform case and ⇢ = 3/4. Again overall storage

overflow exists as there are 4 units of storage space while there are 5 units of overflow data. Using

Equation 1, the number of aggregators q is 4, leaving one data node to be initiator. One of the optimal

solutions is selecting B as initiator and setting its aggregation path as: B, E, D, G, H , I , as shown in

the blue arrowed line, with total aggregation cost of 5. After aggregation, the sizes of overflow data at

B, E, D, G, and I are 0, 3/4, 3/4, 3/4, and 7/4, respectively, which is total 4 units thus can be offloaded

to storage nodes using techniques in [28, 45]. Note that 7/4 units of data at I now include 3/4 unit of

I’s own aggregated overflow data and one unit of initiator B’s overflow data. ⇤
We find that DAO2-U gives rise to a new graph-theoretic problem, which we refer to as multiple

traveling salesmen selection and routing (MTSSR). In Section III-B we formulate MTSSR, prove its NP-

hardness, and solve it by an efficient (2� 1
q
)-approximation algorithm. Section III-C then proves that the

DAO2-U in a sensor network is equivalent to the MTSSR in a so-called aggregation network transformed

from the sensor network, therefore the algorithms for MTSSR can be applied to solve DAO2-U.

B. Multiple Traveling Salesmen Selection and Routing (MTSSR)

1) Problem Formulation and NP-Hardness.: Given an undirected weighted graph G0 = (V 0, E 0) with

|V 0
| nodes and |E 0

| edges, a cost metric that represents the distance or traveling time between two

adjacent nodes, and that the number of nodes that must be visited is q. The objective of the MTSSR is

to determine a set of at most |V 0
| � q starting nodes, from each of which a salesman is dispatched to

visit some nodes following a walk, such that a) all together q nodes are visited, and b) total cost of the

walks is minimized.

Let w(u, v) denote weight of edge (u, v) 2 E 0. We assume that triangle inequality holds: for edges

(x, y), (y, z), (z, x) 2 E, w(x, y) + w(y, z) � w(z, x). Given a walk W = {v1, v2, ..., vn}, let c(W) =
P

n�1
i=1 w(vi, vi+1) denote its cost. The objective of MTSSR is to decide:

10

• the set of a (1  a  |V 0
|� q) starting nodes I ⇢ V 0, and

• the set of a walks W1,W2, ...,Wa: Wj (1  j  a) starts from a distinct node Ij 2 I, and |
S

a

j=1{Wj�

{Ij}}| = q,

such that total cost
P

1j2a c(Wj) is minimized.

Theorem 1: The MTSSR is NP-hard.

Proof: Given an undirected graph G0(V 0, E 0), its metric completion, denoted as Gmc(V,Emc), is a

complete graph with the same set of nodes V 0, while for any pair of nodes u, v 2 V 0, the cost of

(u, v) 2 Emc is the cost of the shortest path connecting u and v in G0(V 0, E 0). Recall that traveling

salesman path problem (TSPP) [26] is to find a minimum-cost hamiltonian path that visits each node

exactly once in a complete graph. MTSSR in G0(V 0, E 0) is thus a multiple traveling salesman path

(MTSPP) problem in Gmc(V 0, Emc). MTSPP selects at most b starting nodes, from each of which a

salesman is dispatched to visit a distinct subset of nodes following one of its hamiltonian paths, such that

exactly q other nodes are visited with minimum total cost. We therefore prove MTSPP in Gmc(V 0, Emc)

is NP-hard. In particular, we prove TSPP, a special case of MTSPP, is NP-hard. Below we reduce the

well-known traveling salesman problem (TSP) [18] to TSPP. Recall that TSP is to find a minimum-cost

hamiltonian cycle in a complete graph that visits each node exactly once.

G*G’
C

B
C

B

D

A’ AA

D

st

Fig. 4. Proving TSPP is NP-hard.

As shown in Fig. III-B1, let complete graph G0 be an instance of TSP, we construct an instance of

TSPP, G⇤, as follows. We choose an arbitrary node A in G0 and add a copy of it, A0 . We connect A0 to

all other nodes except A, and assign the same cost on each edge as the corresponding edge in G0 (that is,

(A
0
, B) has the same cost as (A,B), (A0

, C) has the same cost as (A,C), etc.). Then we introduce nodes

s and t and add edges (s, A) and (t, A
0
) with any finite edge costs. Finally, as G⇤ must be a complete

graph, we add the rest edges (not shown in Fig. III-B1) and assign their costs to be infinite. We show

that G contains a minimum-cost Hamiltonian cycle, say, A, C, B, D, A, if and only if G⇤ contains a

minimum-cost Hamiltonian path s, A, C, B, D, A0 , t.

11

(a) B-Walk. (b) LP-Walk.

Fig. 5. (a) A binary walk (B-walk): u, 6, 7, 6, 8, 6, u, v, 1, 2, 1, 3, 1, v, 4, 5, with cost of 16. (b) A longest-path walk

(LP-Walk): 2, 1, 3, 1, v, 4, 5, 4, v, u, 6, 7, 6, 8, with cost of 14. ⌅ and J– indicate the first and last node in a walk, respectively.

Here, w(u, v) = 2 and weights of other edges are 1.

Suppose that G0 contains a minimum-cost Hamiltonian cycle A, C, B, D, A. Then we get a minimum-

cost Hamiltonian path in G⇤ when we start from s, follow the cycle back to A
0 instead of A, and finally

end in t. Conversely, suppose G⇤ contains a minimum-cost Hamiltonian path. This path (with finite cost)

must end in s and t. We transform it to a cycle in G0 by a) deleting s and t, which results in a path that

end in A and A
0 , and b) removing A

0 . The resulted path, instead of going back to A
0 , goes back to A,

forming a minimum-cost Hamiltonian cycle in G0.

2) Approximation Algorithm for MTSSR: We first introduce some definitions.

Definition 1: (Binary Walk (B-Walk).) Given a tree T ⇢ G0 with a maximum-weight edge (u, v)

(ties are broken randomly), T is divided into (u, v) and subtrees Tu and Tv. The B-walk on T , denoted

as WB(T), starts from u and visits all the nodes in Tu following depth-first-search (DFS), and then visits

v, from where it visits all the nodes in Tv following DFS and stops when all the nodes are visited. ⇤
Fig. 5(a) shows a tree T with w(u, v) = 2 and weights of other edges being 1, and a B-walk of cost

16. In B-walk, each edge in Tu is traversed twice, and each edge in Tv is traversed once or twice. B-walk

saves cost traversing a tree since the maximum-weight (u, v) is traversed only once.

Lemma 1: c(WB(T))  (2 � 1
|T |) ⇥ c(T). Here c(T) =

P
e2T w(e) and |T | is the number of edges

in T .

Proof: Since (u, v) is the edge in T with maximum weight, w(u, v) � 1
|T |⇥c(T). In WB(T), since (u, v)

is traversed exactly once and other edges are traversed at most twice, c(WB(T)) 
�
2⇥ c(T)�w(u, v)

�
.

Therefore c(WB(T)) 
�
2⇥ c(T)� 1

|T | ⇥ c(T)
�
= (2� 1

|T |)⇥ c(T).

Definition 2: (Forest and q-Edge Forest) A forest F of G0 is a subgraph of G0 that is acyclic (and

possibly disconnected). A q-edge forest Fq is a forest with q edges. ⇤

Approximation Algorithm. Algo. 1 works as follows. Line 1 and 2 sort all the edges in E 0 in non-

descending order of their weights, and initialize an edge set Eq to be empty. The while loop in lines

12

3-9 finds the first q edges in E 0 that do not cause a cycle and store them in Eq. It then obtains a q-edge

forest G0[Eq] (line 10). Each connected component of G0[Eq] is either linear or a tree as no cycles are

introduced. If it is linear, it starts from one end and visits the rest nodes exactly once; if it is a tree, it

does a B-walk to visit all the nodes (lines 11-15).

Algorithm 1:Approximation Algorithm for MTSSR.

Input: G0(V 0, E 0) and number of nodes to visit q;

Output: a walks: W1,W2, ...,Wa, and
P

1j2a c(Wj);

0. Notations:

Eq: set of q cycleless edges;

G0[Eq]: a q-edge forest;

C(G0[Eq]): set of connected components in G0[Eq];

Cj: the jth connected component in C(G0[Eq]);

1. Let w(e1)  w(e2)  ...  w(e|E|);

2. Eq = � (empty set), i = j = k = 1;

3. while (k  q)

4. if (ei is a cycleless edge w.r.t. Eq)

5 Eq = Eq [{ei};

6. k ++;

7. end if;

8. i++;

9. end while;

10. Let |C(G0[Eq])| = a; /*a connected components*/

11. for (1  j  a)

12. if (Cj is linear) Start from one end node of Cj and

visit the rest nodes in Cj once;

13. if (Cj is a tree) Do a B-walk on Cj;

14. Let the resulted walk (or path) be Wj;

15. end for;

16. RETURN W1,W2, ...,Wa, and
P

1j2a c(Wj).

Discussions. Algo. 1 takes O(|E 0
|log|E 0

|) and works alike the well-known Kruskal’s minimum spanning

tree (MST) algorithm [17], except that instead of finding |V 0
|� 1 edges to connect all the nodes in V 0,

it finds q  |V 0
|� 1 edges to “connect” some nodes in V 0. Algo. 1 therefore generalizes Kruskal’s MST

algorithm, as MST is a special case of G0[Eq], which is the minimum q-edge forest formally defined

below.

13

Definition 3: (Minimum q-Edge Forest) Let c(Fq) =
P

e2Fq
we denote the cost of a q-edge forest

Fq in G0. Let F q be the set of all q-edge forests in G0. A q-edge forest Fm

q
is minimum iff c(Fm

q
) 

c(Fq), 8Fq 2 F q. ⇤
Lemma 2: G0[Eq] is a minimum q-edge forest.

Proof: Let E 0 = {e1, e2, ..., e|E|}, with w(e1)  w(e2)  ...  w(e|E|). Let Eq = {eg1, e
g

2, ..., e
g

q
}, with

w(eg1)  w(eg2)  ...  w(eg
q
). By way of contradiction, assume that another q-edge forest, Oq, is a

minimum q-edge forest with cost smaller than that of G0[Eq]. Let Oq = {eo1, e
o

2, ..., e
o

q
} with w(eo1) 

w(eo2)  ...  w(eo
q
). Assume that eg

l
2 Eq and eo

l
2 Oq, 1  l  q, are the first pair of edges that differ

in Eq and Oq: egl 6= eo
l

and eg
i
= eo

i
, 8 1  i  l�1. According to Algo. 1, w(eg

l
)  w(eo

l
). Now consider

subgraph Oq [{eg
l
}.

Case 1: Oq [{eg
l
} is a forest. Then c(Oq [{eg

l
}� {eo

l
})  c(Oq), contradicting that Oq is a minimum

q-edge forest.

Case 2: Oq [{eg
l
} is not a forest, i.e., there is a cycle in it. eg

l
must be in this cycle since there is no

cycle in Oq. Besides, among all the edges in this cycle that is not eg
l
, at least one of them is not in Eq;

otherwise there will not be any cycle (as they all belong to Eq, which is cycleless). Denote this edge as

e0. Let eg
l

be the nth edge in E 0 = {e1, e2, ..., e|E0|}, that is, eg
l
= en, 1  n  |E 0

|.

Case 2.1: e0 2 {e1, e2, ..., en�1}. Thus w(e0)  w(en�1)  w(en) = w(eg
l
)  w(eo

l
), contradicting that

eg
l

and eo
l

are the first pair of edges that differ in Eq and Oq.

Case 2.2: e0 2 {en+1, en+2, ..., e|E|}. Thus w(e0) � w(en+1) � w(en) = w(eg
l
). c(Oq [{eg

l
}� {e0}) 

c(Oq), contradicting that Oq is a minimum q-edge forest.

Reaching contradiction in all the cases, it concludes that c(G[Eq])  c(Fq), 8Fq 2 F q.

Let O be an optimal algorithm of MTSSR with minimum cost of O. Next we show c(G0[Eq]) is a

lower bound of O.

Lemma 3: c(G0[Eq])  O.

Proof: Assume that all the edges selected in O induce � connected components, denoted as Oj (1 

j  �). Assume that there are lj nodes in Oj , and sj (lj > sj � 1) of them are starting nodes (therefore

there are sj walks in Oj visiting altogether lj � sj nodes). Denote the sj walks in Oj as W o

j
and let

c(W o

j
) be its cost. We have

P
�

j=1 c(W
o

j
) = O.

Let c(Oj) =
P

e2Oj
w(e). Denote any spanning tree of Oj as T o

j
, and let c(T o

j
) =

P
e2T o

j
w(e). We

have c(T o

j
)  c(Oj)  c(W o

j
). The first inequality is because all the edges in T o

j
are in Oj (but not

vice versa); the second inequality is because each edge in Oj is traversed at least once in O. Therefore
P

�

j=1 c(T
o

j
) 

P
�

j=1 c(W
o

j
) = O.

Let q0 =
P

�

j=1 |T
o

j
|, where |T o

j
| is the number of edges in T o

j
. We have q0 =

P
�

j=1(lj � 1). The

subgraph induced by all T o

j
(1  j  �) is therefore a q0-edge forest. Since all together q nodes are

visited,
P

�

j=1(lj � sj) = q. Since sj � 1, we have q 
P

�

j=1(lj � 1) = q0. Therefore, c(G[Eq]) 

14

c(G[Eq0])
Lemma 2


P
�

j=1 c(T
o

j
)  O.

Theorem 2: Algo. 1 is a (2� 1
q
)-approximation algorithm.

Proof: In Algo. 1, each of the a connected components Cj (1  j  a) is either linear or a tree. Let qj

and c(Cj) denote the number of edges in Cj and the sum of weights of edges in Cj , respectively. We

have q =
P

a

j=1 qj and c(G[Eq]) =
P

a

j=1 c(Cj). Let Wj be a B-DFS walk of Cj .
aX

j=1

c(Wj)
Lemma 1


aX

j=1

✓
(2�

1

qj
)⇥ c(Cj)

◆

<
aX

j=1

✓
(2�

1

q
)⇥ c(Cj)

◆

= (2�
1

q
)⇥ c(G[Eq])

Lemma 3
 (2�

1

q
)⇥O.

Corollary 1: If Cj (1  j  a) resulted from Algo. 1 are all linear, Algo. 1 is optimal.

Proof: In this case,
P

1j2a c(Wj) =
P

1j2a c(Cj) = c(G[Eq])
Lemma 3
 O. Since

P
1j2a c(Wj) � O,

we have
P

1j2a c(Wj) = O.

Smaller-Tree-First-Walk (STF-Walk). When a B-Walk traverses Tu first and then Tv, each edge in Tu is

traversed twice while each edge in Tv is traversed once or twice. A simple improvement is to traverse,

between Tu and Tv, the one with smaller cost first. We refer to this as smaller-tree-first-walk (STF-walk).

The walk in Fig. 5(a) is indeed an STF-walk.

A Heuristic Algorithm. Next we present another heuristic algorithm. It differs with Algo. 1 only in line

13: Instead of a B-walk along each tree, it does a longest-path walk.

Definition 4: (Longest-Path Walk (LP-Walk).) Let P = {v1, v2, ..., vn} be a longest path in tree T .

A LP-walk starts from v1, visiting all the nodes in T following DFS, and ends at vn, such that every

edge in P is traversed once. ⇤
In LP-walk, since more edges are traversed only once, the cost of a walk can be further reduced.

Finding longest path in a tree is to find the shortest path among all pair of leaf nodes and choose the

longest one, which takes O(|V |
3). Fig 5(b) shows a LP-walk with cost of 14. Because the maximum-

weight edge (u, v) is not necessarily on the longest path P , we are not able to obtain performance

guarantee for LP-walk. However, we show empirically in Section VI that it outperforms Algo. 1 by

15%� 30% in terms of energy consumption under different network parameters.

C. Equivalency Between MTSSR and DAO2-U

Now we transform the original sensor network G(V,E) into an aggregation network G0(V 0, E 0), which

is defined below, and prove that solving DAO2-U in G is equivalent to solving MTSSR in G0.

15

(a)

1

1 2

2

E

B

G I

D
1

(b)

1

2

E

B

G I

D
1

1

(d)

1

1

E

B

G I

D
1

1

F
1

1

2

E

B

G I

D
1

1

(c)

Fig. 6. (a) Aggregation network G0 of sensor network G in Fig. III-A. (b) 4-edge forest Fq resulted from Algo. 1. (c) B-walk on Fq . (d)

Aggregation walk in G with aggregation cost of 6. The numbers on edges are their weights.

Definition 5: (Aggregation Network G0(V 0, E 0)) V 0 is the set of p data nodes in V , V 0 = Vd. For any

two data nodes u, v 2 V 0, there exists an edge (u, v) 2 E 0 if and only if all the shortest paths between

u and v in G do not contain any other data nodes. For edge (u, v) 2 E 0, its weight w(u, v) is the cost

of the shortest path between u and v in G. ⇤
EXAMPLE 3: Fig. 6(a) shows the aggregation network G0 of sensor network G in Fig. II. Fig. 6(b)

shows a 4-edge forest Fq of G0 from Algo. 1. Fig. 6(c) shows the B-walk on Fq. Fig. 6(d) shows the

aggregation walk in G by replacing each edge (u, v) in Fq with a shortest path between u and v in G.

The total aggregation cost following this walk is 6, one more than the optimal cost shown in Example

2. The B-walk in this example happens to be a LP-walk. ⇤

Implementation. One challenge of generating aggregation network G0 from sensor network G is to find

all the shortest paths between two data nodes u and v in G.

Theorem 3: DAO2-U in G is equivalent to MTSSR in G0.

Proof: To prove their equivalence, it suffices to show that the data, energy consumption, and topology

information that are used for computing energy-efficient aggregation in G(V,E) are all preserved in

G0(V 0, E 0). Below we show that this is achieved during the construction of G0 from G.

First, as all the data nodes in G are now nodes in G0, data information is preserved. Second, if all

the shortest paths between a pair of data nodes X and Y do not contain any other data nodes, then in

G0 all those shortest paths are replaced by one single edge (X, Y), whose weight is the cost of any of

such shortest paths. Therefore the energy consumption information is preserved. Third, if there exists

at least one shortest path between data nodes X and Y in G that includes at least another data node,

there is no edge (X, Y) in G0. This mandates that if X and Y participate in the same aggregation

walk, they should take a shortest path between them with data nodes as intermediate nodes as part of

the aggregation walk. Therefore the topological requirement of DAO2-U to ”visit as many data nodes

(aggregators) as possible while using as least amount of energy as possible” is preserved (Otherwise,

16

less number of aggregators are visited with the same amount of energy consumption, which is against

the goal of DAO2-U). Therefore, solving MTSSR in G0 is equivalent to solving DAO2-U in G.

IV. Algorithmic Solutions for DAO2

In this section, we solves the general problem of DAO2. We show that it gives rises to another

new graph theoretical problem, which we refer to as Quota Multiple Traveling Salesmen Selection and

Routing (Q-MTSSR). Q-MTSSR generalizes MTSSR studied in Section III-B thus is NP-hard. Below

we formulate Q-MTSSR, briefly show its equivalency to DAO2, and propose approximation and heuristic

algorithms.

A. Quota Multiple Traveling Salesmen Selection and Routing (Q-MTSSR)

Problem Formulation. In an undirected weighted graph G0 = (V 0, E 0) with |V 0
| nodes (or cities) and |E 0

|

edges, wu,v is the weight on edge (u, v) 2 E 0 (indicating the distance from u to v), node i 2 V 0 has a prize

pri to be collected, and Q is the targeted quota to collect.1 Besides, node i has a weight costi indicating a

salesman’s traveling cost per unit distance if he is dispatched from i.2 Given a walk W = {v1, v2, ..., vn},

the traveling cost on W by salesman dispatched from node i is c(i,W) = costi ·
P

n�1
j=1 w(vj, vj+1). The

objective of the Q-MTSSR is to determine a) a set of starting nodes I ⇢ V 0, from Ij 2 I a salesman is

dispatched, and b) a walk Wj along which a sequence of nodes he visits, s.t. total traveling cost T =
P

1j2|I | c(Ij,Wj) is minimized and total collected prizes
P

k2A prk � Q. Here A =
S|I |

j=1{Wj �{Ij}},

which guarantees that each node’s prize is collected at most once. Given any two nodes u, v 2 V , let

d(u, v) be the length of the shortest path between them.

The MTSSR studied in Section III-B is a special case of the Q-MTSSR wherein pri = costi = 1 and

Q = q. Therefore Q-MTSSR is at least NP-hard. Below we first show that DAO2 in sensor network G is

equivalent to Q-MTSSR in the aggregation network G0 defined in Section III-C. We design approximation

and heuristic algorithms on G0 for Q-MTSSR and illustrate them using the DAO2 example in Fig. II.

Theorem 4: DAO2 in G is equivalent to Q-MTSSR in G0.

Proof: In addition to the proof for Theorem 3, which shows that all related information for energy-efficient

data aggregation in sensor network G(V,E) (i.e., data, energy cost, and topology) are all preserved in

aggregation network G0(V 0, E 0), we need to show that any instance of aggregating overflow data in DAO2

is equivalent to an instance of collecting prizes in Q-MTSSR.

First, in DAO2, when data node i is visited by an initiator, the amount of data it can reduce at i is Ri ·⇢.

This is the amount of prize pri in Q-MTSSR that a traveling salesman can collect when he visits i. Second,

1P
k2V 0 prk > Q; otherwise the problem is not feasible.

2This models the general scenario wherein salesmen have different traveling means (i.e., cars or planes) thus incurring different costs

per unit distance.

17

in DAO2, the total amount of data sizes in G that needs to be reduced is Q =
P

i2Vd
Ri �

P
j2V�Vd

mj .

In Q-MTSSR, this is indeed the total amount of collected prizes Q when selected traveling salesmen visit

other cities. Third, the aggregation costs in DAO2 depend on the sizes of the data packets transmitted from

initiators, which corresponds in Q-MTSSR that salesmen dispatched from different cities have different

traveling costs per unit distance. As any Q-MTSSR instance corresponds to a DAO2 instance, solving

Q-MTSSR in G0 is equivalent to solving DAO2 in G.

B. Approximation Algorithms for Q-MTSSR

Definition 6: (Prize of a Component, Distance between Two Components, Prize-Cost Ratio of

Two Components) The prize of a connected component Ci in G0, denoted as pr(Ci), is the sum of

prizes on all nodes in Ci; i.e., pr(Ci) =
P

u2Ci
pru. Given any two connected components Ci and Cj

in G, their distance, denoted as d(Ci, Cj), is the smallest length of all the shortest paths between two

nodes, one is in Ci and the other in Cj; i.e., d(Ci, Cj) = min{d(u, v)|u 2 Ci, v 2 Cj}. The prize-cost

ratio, denoted as pcr(Ci, Cj), is the ratio of the smaller prize of Ci and Cj to the distance between them;

i.e., pcr(Ci, Cj) =
min(pr(Ci),pr(Cj))

d(Ci,Cj)
. ⇤

The rationale of Algo. 2 below is to utilize pcr to collect as much prizes as possible while using as least

costs as possible. It starts with n components, each of which is one node and each is its own traveling

salesman (line 1-2). In each round, it joins two components with the largest pcr using the shortest path

between them (ties are broken randomly), takes the smaller ID of these two components as the ID of

the new component, and collects their prizes as well as the prizes on the nodes along the connecting

shortest path (line 3-11). In this newly combined component, the node with smallest prize is updated

as the starting node (i.e., the node to dispatch the traveling salesman) (line 12-15). This continues until

the total prize of all the connected components (i.e., which are trees) reaches Q. Finally, a traveling

salesman is dispatched from the starting node in each component to visit all other nodes to collect prizes

by traversing each edge at most twice, with total collected prizes and total cost returned (line 17-22).

The time complexity of Algo. 2 is O(Q · |V 0
|).

There are two reasons we select the node with smallest prize in each component to dispatch the

traveling salesman. First, by doing so, other nodes’ larger prizes can thus be collected, which expedites

collecting the target quota. Second, in DAO2, as data packets from initiators are used to perform data

aggregation on other nodes, data nodes with smallest packet sizes thus should be selected in order to save

energy. This corresponds to that in Q-MTSSR node with smallest prize in each component dispatches

the traveling salesman.

Algorithm 2:Approximation Algorithm for Q-MTSSR.

Input: G(V 0, E 0), pru at node u, targeted quota Q;

Output: total collected prizes quota, total traveling cost T ;

18

0. Notations:

quota: prizes collected so far, initially zero;

C: the set of all the connected components,

C = {C1, C2, ..., C|V |}, initially Ci = {i}, 8i 2 V 0;

A: IDs of all the resultant components, initially

A = {1, 2, ..., |V 0
|};

tsi: the starting node in Ci, initially node i;

1. quota = 0;

2. tsi = i, 8i 2 V 0;

3. while (quota  Q)

4. Let (Ci⇤ , Cj⇤) = argmax(i,j),where i,j2A,i 6=j
pcr(Ci, Cj);

5. Let d(u, v) = d(Ci⇤ , Cj⇤), where u 2 Ci⇤ ^ v 2 Cj⇤ ;

6. Let E(u, v) be all edges on the shortest path btw u, v;

7. Let N(u, v) be all the nodes on the shortest path

between and excluding u, v;

8. a = min{i⇤, j⇤} and b = max{i⇤, j⇤};

9. x = argmin
u2Ca

pru; // starting node before merge

// Next merge Cb and E(u, v) into Ca, take Ca’s ID;

10. Ca = Ca [Cb [E(u, v); A = A� {b}�N(u, v);

11. quota+ =
�
pr(Ci⇤) + pr(Cj⇤) +

P
i2N(u,v) pri

�
;

12. y = argmin
u2Ca

pru; // starting node after merge

13. if (pry < prx) // update starting node in Ca

14. tsa = y; quota = quota� pry + prx;

15. end if;

16. end while;

18. for (each element z in A)

19. if (|Cz| � 2) // has at least two nodes

Dispatch a salesman from tsz, who visits each node

in Cz by traversing each edge at most twice, let

the resultant walk be Wz;

T + = c(tsz,Wz);

20. end if;

21. end for;

22. RETURN quota and T .

EXAMPLE 4: Fig. 7(a) shows the aggregation network for the DAO2 example in Fig. II, with Q = 2

19

(a)

1

1 2
2

E(1)

B(1)

G(0.5) I(0.5)

D(0.5)
1

(b)

E

B

G I

D E

B

G I

D

(c)

Fig. 7. (a) Aggregation network G0 of sensor network G in Fig. II. The numbers in the parentheses are the prizes available at each data

node. (b) and (c) are two of many possible solutions, with (c) being the optimal. Algo. 2 outputs both (b) and (c) whereas Algo. 3 outputs

only (c).

and the prizes (i.e., data reduction) at each data node is prB = prE = 1 while prD = prG = prI = 0.5.

Fig. 7(b) and (c) show two solutions by Algo. 2. In Fig. 7(b), G dispatches a salesman to visit D, E and

B, collecting total prizes of 2.5 with total traveling cost of 3. Fig. 7(c) indeed gives the optimal solution

wherein D dispatches a salesman to visit E and B, collecting total prizes of 2 with total traveling cost

of 2. ⇤
Algo. 2 is inspired by Awerbuch et al. [8], which solves a special case of Q-MTSSR. In particular,

they considered a quota-driven salesman probelm in which a single traveling salesman collects prizes at

different cities in order to reach a target quota while minimizing the traveling cost to reach the quota. It

proposed an O(log2R) approximation algorithm where R is the quota. It is based on an approximation

for the k-minimum-spanning-tree problem (k-MST), which is finding a tree of least weight that spans

exactly k vertices on a graph. We thus give below theorem without proof.

Theorem 5: When only one traveling salesman is allowed, Algo. 2 achieves O(log2R) approximation

for Q-MTSSR.

C. Heuristic Algorithm for Q-MTSSR

Algo. 2 iteratively combines two components that yield the maximum prize-cost ratio in each round

until prize quota Q is reached. One drawback of this method is that if two components are distant from

each other, connecting them could yield prizes that are much larger than Q (line 10 and 11, Algo. 2)

thus cost more energy than necessary. For example, Fig. 7(b) shows a solution with collected prizes of

2.5, 25% more than target quota Q = 2, and cost of 3, 50% more than the optimal cost of 2 obtained

in Fig. 7(c). We thus design a cost efficient prize-collecting scheme that takes place on a local and

more granular level than Algo. 2, and show that it constantly outperforms Algo. 2. We first give below

definition.

20

Definition 7: (Benefit of An Edge) The benefit of edge e = (u, v), denoted as B(e), is the ratio of

the sum of the prizes of its two end nodes to its weight; B(e) = pru+prv

w(e) . ⇤
Algo. 3 below iteratively adds cycleless edges with maximum benefit until Q or slightly higher amount

of prizes is collected. There are three possible cases when adding a cycleless edge ei: a) it initiates a new

connected component (line 6-9), or b) it connects two existing components (line 10-14), or c) it merges

into one existing component (line 15-24). In each case, the starting node and the collected prizes are

updated accordingly. Finally, the traveling salesman is dispatched in each component to visit all other

nodes to collect prizes by traversing each edge at most twice, with total collected prizes and total cost

returned (line 28-30). The time complexity of Algo. 3 is O(|E 0
|log|E 0

|+Q).

Algorithm 3:Heuristic Algorithms for Q-MTSSR.

Input: G0(V 0, E 0), prize pru at node u, targeted quota Q;

Output: total collected prizes quota, total traveling cost T ;

0. Notations:

Epc: set of cycleless edges selected for quota-collecting;

quota: prizes collected so far, initially zero;

sel(u): if node u 2 V is selected, initially false;

i: indices for edges; j: indices for components;

a: number of connected components created;

C: the set of all the connected components,

C = {C1, C2, ..., Ca}, initially Ci = �;

A: IDs of the final connected components;

tsj: the traveling salesman in component Cj , 1  j  a;

1. B(e1) � B(e2) � ... � B(e|E|); // Sort edges in B

2. i = 1, quota = 0, a = 0, A = Epc = � (empty set);

3. while (quota  Q)

4. if (ei causes a cycle w.r.t. Epc) continue;

5. Let ei’s two end nodes be n1 and n2;

// ei initiates a new component

6. if (sel(n1) == sel(n2) == false)

7. a++, A = A [{a};

8. if (prn1  prn2) tsa = n1, prize+ = prn2;

9. else tsa = n2; prize+ = prn1 ;

// ei connects two existing components

10. elseif (sel(n1) == sel(n2) == true)

21

11. Let the two components are Cb and Cc and b  c;

12. yb = argmin
u2Cb

pru, yc = argmin
u2Cc

pru;

13. tsb = min{yb, yc}, tsc = max{yb, yc};

// Merge Cc into Cb

14. Cb = Cb [Cc, A = A� {c}, quota+ = prtsc ;

15. else // ei merges into one existing component

16. Let the component ei merges into is Cb;

17. y = argmin
u2Cb

pru;

18. if (sel(n1) == false) x = n1;

19. else x = n2; // (sel(n2) == false)

20. sel(x) = true;

21. if (prx < pry) // update starting node in Cb

22. tsb = x; quota+ = pry;

23. else quota+ = prx;

24. end else

25. Epc = Epc [{ei};

26. i++;

27. end while;

28. for (each element z in A)

Dispatch a salesman from tsz, who visits each node

in Cz by traversing each edge at most twice, let

the resultant walk be Wz;

T + = c(tsz,Wz);

29. end for;

30. RETURN quota and T .

EXAMPLE 5: In Fig. 7(a), as B(B,E) � B(D,E) � B(D,G) � B(E, I) � B(G, I), Algo. 3 selects

edges (B,E) and (D,E) and dispatches salesman from D to visit E and B, which is the optimal solution

shown in Fig. 7(c). ⇤

V. Distributed Data Aggregation Algorithms

We design a distributed algorithm, referred to as Distributed DAO2, to solve aforesaid data aggregation

problem. It consists of three stages. First, it constructs the aggregation network of the data nodes

G0(V 0, E 0) from the sensor network G(V,E) by modifying the distributed Bellman-Ford algorithm [37].

Second, the data nodes in the aggregation network cooperatively find the q-edge forest based on a classic

distributed MST algorithm [23, 40]. Third, of each tree in the q-edge forest, an initiator is selected and

22

starts the data aggregation process to reduce the overflow data size. Below we illustrate each stage in

details.

As the energy consumption is a critical factor for measuring the efficiency of distributed algorithms

in wireless ad hoc networks, there are also work that strives to achieve energy-efficient distributed

MST construction. For example, Choi [16] designed energy-optimal distributed MST algorithm with

O(|V |log|V |)-approximation instead of optimal. We takes into account energy consumption in our design

but still strives to the minimum q-edge forest as in our centralized algorithms.

Constructing Aggregation Network. The distributed Bellman-Ford (DBF) algorithm, also called dis-

tance vector protocol in network community, is a well-established asynchronous technique to compute

shortest paths between nodes in a network distributedly. Following DBF, each node (data node or storage

node) initially only has direct knowledge of its local links but sends message about its perceived shortest

path lengths to all other nodes (i.e., the routing table) to its neighbors. When a neighbor receives the

message, if it finds that its current cost to a node is greater than the sum of its cost to the sender and

the sender’s cost to that node, it update its routing table and send it to its neighbors. This takes place

iteratively and asynchronously until all the nodes have the accurate shortest paths information to other

nodes in the network. The message size in DBF is O(|V |), where |V | is number of nodes.

However, there are two challenges to apply DBF directly to construct aggregation network. First, it is

well known that message complexity of asynchronous DBF could be exponential [9]. Second, and on top

of DBF, the aggregation network is constructed by checking if the shortest path between two data nodes

contain another data node. To overcome these challenges, we have made two improvement upon existing

DBF. First, unlike classic DBF wherein the messages are unicast, the wireless communication is generally

broadcast where all nodes within the transmission range of the sender receives the message. Using a

combination of unicast and broadcast, the message complexity of DBF is reduced to |V | · |V |. Second,

in order for data nodes to find out if it has a “direct” link with another data node in the aggregation

network, the message sent by each node (both data node and storage node) includes its perceived shortest

path length to other nodes as well as the shortest path itself. The message size becomes O(|V |
2). With

this information, any data node checks its shortest path to all other data nodes; if there is no other data

node on the shortest path, it has an edge to the other data node in the aggregation network and the cost

of the edge is the cost of the corresponding shortest path in the sensor network. At the end of this stage,

the aggregation network is constructed as any data node knows not only which data node it has an edge

with but also the cost of this edge in the aggregation network.

Constructing q-edge Forest. Next, the p data nodes in the constructed aggregation network G0(V 0, E 0)

cooperate to find a q-edge forest among them in a distributed manner. We propose two implementations.

Naive Distributed Algorithm. The naive approach serves as the baseline algorithm to be compared with

the other distributed algorithm discussed below. As at the end of aggregation network construction, each

23

data node not only knows the IDs of other data nodes but also the shortest paths to them, the node with

smallest ID is thus selected as the leader. Then every node just sends the weights of all its incident

edges to the leader following the shortest path between it and the leader. Once the leader receives such

information from all the nodes, it executes Algo. 1 to find the minimum q-edge forest of the aggregation

network. Finally, it broadcasts this result to all the data nodes of the aggregation network. When each

data node receives it, it checks if it is an end node of any of computed edges; if so, it marks these edges

as tree edges.

GHS-based Distributed Algorithm. Our second approach is based on the classic GHS algorithm, a dis-

tributed and asynchronous MST algorithm [23, 40]. The main idea is to maintain a forest of spanning

trees, each is called a fragment, until q edges are included. Initially each node is a fragment with level

0 and the node ID being the fragment’s ID. It then repeatedly merges fragments until q edges are found.

However, as an MWOE found does not necessarily belong to the minimum q-edge forest, the resulted

q-edge forest could be sub-optimal (we compare it with the above naive approach in terms of solution

quality and energy consumptions in Section VI). Each fragment continuously and independently executes

below two stages viz. finding the MWOE and combining with other fragments via the MWOE.

1. Finding minimum weight outgoing edge (MWOE). MWOE is an edge of minimum weight with its

two endpoints on two different fragments. Each fragment finds its MOWE independently and uses it to

combine with other fragments. In the process each edge must be one of the three below: tree edges that

have been determined as edges in the q-edge forest, rejected edges that have been determined not, and

basic edges that have not been decided. The MOWEs are indeed tree edges. Initially each node (level-0

fragment) marks its minimum-weight edge as a tree edge and sends a message to the node on the other

side. The edge chosen by both nodes then combines these two nodes, which becomes a new fragment

with level 1.

For each non-level-0 fragment to find its MWOE, its leader, which is one of the end nodes with

smaller ID of the MWOE added previously, sends an initiate message to the members of the fragment

along the tree edges. Upon receipt of the message, each node n sends its fragment ID and level along

its basic edges to node n0 on the other side. Then n0 compares them with its own fragment ID and

level, and make the following decisions. (a) If FragmentID(n) = FragmentID(n0), then n and n0 belong

to same fragment thus they mark the edge as a rejected edge; (b) if FragmentID(n) != FragmentID(n0)

^ Level(n)  Level(n0), then n and n0 belong to different fragments thus n0 sends a message to n about

this outgoing edge; (c) if FragmentID(n) != FragmentID(n0) ^ Level(n) > Level(n0), n0 postpone the

response until Level(n0) � Level(n).

Next, all the leaves in the fragment sends its observed MWOE (if there is any) along the tree edge

back to its parent in the fragment. For each non-leaf node, after receiving all the MWOE messages,

it finds the MWOE with minimum weight and sends it to its parent. This takes place until the leader

24

receives the MWOE messages from all its neighbors and identifies the MWOE for the entire fragment.

Finally the leader sends a broadcast message about this new MWOE to the entire fragment via the tree

edges, and starts the fragment combining process as described below.

2. Combining fragments via their MWOEs. Upon receipt of such message, the end node of this MWOE

that is within the fragment, say n, becomes the new leader. It marks this edge as a tree edge and sends

a “request to combine” message to the other end of the MWOE, say n0. Under below two scenarios

these two fragments will be combined. First, if n0 selects the same edge as its MWOE and Level(n) =

Level(n0), then the level of the combined fragment increases by one, and the end node of the MWOE

with larger ID becomes the leader of this new fragment (and this ID becomes the ID of this newly formed

fragment). This is called a “merge” operation. Second, if Level(n) < Level(n0), then FragmentID(n0) and

Level(n0) become the ID and level of the new fragment respectively. This is called “absorb” operation.

For all other scenarios, n0 ignores the “request to combine” message from n.

Finally, the leader in the combined fragment broadcasts a “new-fragment” message to the entire

fragment edges and the MOE edges chosen by all the fragments. Upon receipt of it, all the nodes

update their parent, children, and fragment identifier (which is the ID of the new leader). The distributed

algorithm terminates when there are at least q found and included in the existing components.

In distributed MST algorithm, a MWOE must belong to the MST according to cut property of a

graph, which says the minimum weight edge crossing any cut (i.e., fragment) in a graph must be in the

MST. However, in our case of finding minimum q-edge forest, a MWOE found at a particular stage does

not necessarily belong to the minimum q-edge forest. This is because in the distributed environment, a

particular MWOE found in any stage could be an edge that is not one of the q smallest cycle-less edges.

As such, we compare it with above Naive approach, which always finds the minimum q-edge forest.

Data aggregations. In this final stage, an initiator in each connected component (i.e., tree) is selected,

which then transmits its packet to visit all the nodes in the tree following the longest-path walk defined in

III-B2. Thus the initiator is one of the two end leaf nodes of the longest path with the smaller ID. To find

the initiator of a tree, we need to run the DBF algorithm again used in aggregation network construction

stage in the tree to find the cost of the shortest (and only) path between any two leaf nodes. Then each

leaf node broadcasts to the entire tree a message including its ID and the maximum path cost it has.

After receiving all such messages, the leaf node with the maximum cost among all the maximum-cost

paths (i.e., the longest path) and smaller ID knows it is the initiator. It transmits its data to visit all the

nodes in the tree while traversing the edges on this longest-path once.

Time and Message Complexity. For the first stage of Distributed DAO2, both its time and message

complexities are O(p|E|). For the second stage, its time complexity is O(p · logp) while its message

complexity is O((p + |E|) · logp). Therefore, both the time and message complexities of Distributed

DAO2 are O(p|E|).

25

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 26 28 30 32 34 36 38 40 42 44 46 48

N
u
m

b
e
r

o
f
a
g
g
re

g
a
to

rs
 q

Number of data nodes p

ρ=1
ρ=0.7
ρ=0.5
ρ=0.3
ρ=0.1

(a) Number of aggregators q.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

 26 28 30 32 34 36 38 40 42 44 46 48

M
a
x

n
u
m

 o
f
in

iti
a
to

rs
 p

-q

Number of Data Nodes p

ρ=1
ρ=0.7
ρ=0.5
ρ=0.3
ρ=0.1

(b) Max number of initiators p� q.

Fig. 8. Valid range of number of data nodes p by varying ⇢ (R = m).

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

26 27 28 29 30 31 32 33T
o

ta
l A

g
g

re
g

a
tio

n
 C

o
st

 (
J)

p

STF-Walk
B-Walk

(a) Total aggregation cost.

-5 %

0 %

5 %

10 %

15 %

 26 27 28 29 30 31 32 33P
e

rf
o

rm
a

n
ce

 I
m

p
ro

ve
m

e
n

t
 P

e
rc

e
n

ta
g

e

p

(b) Performance improvement.

Fig. 9. Performance improvement of STF-Walk over B-Walk.

Theorem 6: When there is one initiator allowed, Distributed DAO2 finds an optimal aggregation cost.

Proof: When there is only one initiator, finding minimum q-edge forest in data aggregation is equivalent

to finding a MST in the aggregation network. Consequently, Distributed DAO2 is equivalent to GHS

algorithm. Due to the optimality of finding MST by the GHS algorithm, the optimality of Distributed

DAO2 also sustains.

VI. Performance Evaluation

We implemented a Java-based simulator in which 50 and 100 sensors are uniformly distributed in a

region of 1000m ⇥ 1000m or 2000m ⇥ 2000m. Transmission ranges of sensor nodes are set as 250m.

Each data point is an average over 10 runs and the error bars indicate 95% confidence interval, wherever

applicable. Below we evaluate the algorithms for DAO2-U and DAO2, respectively.

26

(a) Sensor network of 50

nodes.

(b) Aggregation network. (c) 32-edge forest. (d) B-Walk (381.2KJ). (e) LP-Walk (290.6KJ).

Fig. 10. Visually comparing B-Walk with LP-Walk with one initiator. Black nodes are data nodes and white nodes are storage

nodes, with node ID shown inside. Here, ⇢ = 0.5, p = 33, and q = 32. ⌅ and J– indicate the first and last node in a walk,

respectively.

(a) Sensor network of 50

nodes.

(b) Aggregation network. (c) 28-edge forest. (d) B-Walk (cost 255.9J). (e) LP-Walk (cost 203.0J).

Fig. 11. Visually comparing B-Walk with LP-Walk with 4 initiators. Black nodes are data nodes and white nodes are storage

nodes, with node ID shown inside. Here, ⇢ = 0.5, p = 32, and q = 28. ⌅ and J– indicate the first and last node in a walk,

respectively.

A. Algorithms for DAO2-U.

1) Centralized Algorithms: We consider 50 nodes in a 1000m⇥ 1000m region, as they can be clearly

visualized. Unless otherwise mentioned, R = m = 512MB.

Valid Range of p. Fig. 8 shows the valid range of number of data nodes p for different correlation

coefficient ⇢. Fig. 8(a) shows for each valid p value its corresponding value of number of aggregators

q. When ⇢ = 0.1, the valid range of p is a single value of 26, with its corresponding q as 20. When

increasing ⇢, the valid range of p expands, from 26� 29 for ⇢ = 0.3, to 26� 33 for ⇢ = 0.5, to 26� 37

for ⇢ = 0.7, to 26 � 49 for ⇢ = 1. This is because strong data correlation leads to more data being

aggregated, thus allowing more data nodes under overall storage overflow. It also shows that for each

⇢, q increases when increasing p. This is because more data nodes means more overflow data and less

available storage, therefore more aggregators are needed to achieve enough data size reduction. Finally

it shows that for the same p, q decreases when increasing ⇢. This is implied by Equation 1, which can

be rewritten as: q = d
p⇥(1+m/R)�|V |⇥m/R

⇢
e. Fig. 8(b) shows the maximum number of allowable initiators

27

p� q for each valid p value. There are two cases in which one initiator is allowed: ⇢ = 0.5 and p = 33,

and ⇢ = 1 and p = 49, while multiple initiators are allowed for other cases.

Performance Improvement of STF-Walk Over B-Walk. We first study the performance improvement

of STF-Walk over B-Walk. We choose ⇢ = 0.5, which is a representative correlation coefficient, and

vary p from 26 to 33. Fig. 9(a) shows that when p is 26, 27, or 28, both STF-Walk and B-Walk yield the

same total aggregation costs. This is because when the number of data nodes p is small, the number of

aggregators q is small, causing that the connected components of the resulted q-edge forests are all linear.

In linear topologies, aggregation takes place by simply traversing from one end of the linear topology to

the other end, resulting the same performances for both STF- and B-Walk. However, when p gets larger,

STF-Walk yields less cost and performs better than B-Walk does, because STF-Walk always traverses

the smaller subtree twice while B-Walk could possibly traverse the bigger subtree twice. Fig. 9(b) shows

that the performance improvement of STF-Walk over B-Walk is around 5% � 10%. Therefore, for the

rest of the simulations we choose STF-Walk instead of B-Walk, but still refer to it as B-Walk.

 0

 100

 200

 300

 400

 500

 600

 700

 25 30 35 40 45 50

Number of Data Nodes p

ρ=1, B-Walk
ρ=1, LP-Walk

ρ=0.7, B-Walk
ρ=0.7, LP-Walk

ρ=0.3, B-Walk
ρ=0.3, LP-Walk

(a) Total aggregation cost (KJ).

0 %

5 %

10 %

15 %

20 %

 25 30 35 40 45 50

Number of Data Nodes p

ρ=1
ρ=0.7
ρ=0.3

(b) Performance improvement.

Fig. 12. Comparing B-Walk with LP-Walk by varying p and ⇢.

Comparing B-Walk with LP-Walk Visually. Before we perform a comprehensive comparison between

B-Walk and LP-Walk, we first compare them visually to gain some insights.

Single Initiator Case. We consider ⇢ = 0.5 and p = 33, which has 32 aggregators and one initiator.

Fig. 10(a) and (b) show such a sensor network and its corresponding aggregation network, respectively.

Fig. 10(c) shows the corresponding 32-edge forest. Fig. 10(d) and (e) show the aggregation walks from

B-Walk and LP-Walk, respectively. B-Walk visits 32 edges twice, resulting in a total aggregation cost of

381.2 kilojoules (KJ); while LP-Walk only visits 12 edges twice, with a total cost of 290.6KJ, a 23.8%

of improvement upon B-Walk. Here, each edge in the 32-edge forest is replaced by a shortest path of

storage nodes, if there are any. Therefore there are more than 32 edges in this forest.

Multiple Initiators Case. We consider ⇢ = 0.5 and p = 32, which has 28 aggregators and allows at most

4 initiators. Fig. 11(a) and (b) show such a sensor network and its corresponding aggregation network.

28

Fig. 11(c) shows the 28-edge forest of the aggregation network. It consists of four “clusters”, each of

which is visited by one initiator. However, Fig. 11(d) and (e) show that how B-Walk and LP-Walk visit

each cluster differently. It shows that B-Walk traverses 19 edges twice, resulting in a total aggregation

cost of 255.9J, while LP-Walk traverses 9 edges twice, with a total aggregation cost of 203.0J, a 20.7% of

improvement. Compared to Fig. 10, this shows that when increasing number of initiators, the performance

difference between B-Walk and LP-Walk gets smaller. In particular, Fig. 11(d) and (e) show that they

find exactly the same aggregation walks for two smaller trees on the right. With more initiators allowed,

the resulted q-edge forest consists of more trees with small sizes, each with a “short” longest path. By

traversing edges on such short longest paths once, LP-Walk does not save as much at it does compared

to traversing a big tree with much longer longest path. Finally, compared to single initiator case, both B-

Walk and LP-Walk incur less energy cost, as more initiators are utilized to find cost-effective aggregation

walks.

Comparing B-Walk with LP-Walk. Next we compare the aggregation costs in B-Walk and LP-Walk

in the whole range of p 2 [26, 49] with varied ⇢. Fig. 12(a) shows that for each ⇢, with the increase

of p, the total aggregation costs of both B-Walk and LP-Walk increase. However, LP-Walk constantly

performs better than B-Walk. It also shows that for the same p, with the increase of ⇢, the aggregation

costs for both B-Walk and LP-Walk decrease. This is because more correlation means that less number

of aggregators are visited, thus incurring less aggregation costs.

 0

 100

 200

 300

 400

 500

1 2 3 4 5

R/m

p=26,B-Walk
p=26,LP-Walk
p=30,B-Walk

p=30,LP-Walk

(a) Total aggregation cost (KJ).

0 %

5 %

10 %

15 %

20 %

25 %

 1 1.5 2 2.5 3 3.5 4 4.5 5

R/m

p=26
p=30

(b) Performance improvement.

Fig. 13. Comparing B-Walk with LP-Walk by varying R/m.

Fig. 12(b) shows the performance improvement percentage of LP-Walk over B-Walk is generally 10%�

20%. Combining the 5%� 10% performance improvement of STF-Walk over B-Walk, the performance

improvement of LP-Walk over B-Walk is therefore around 15% � 30%. Furthermore, we observe the

smaller the ⇢, the larger the performance improvement percentage is. For example, when p = 26 (the

only valid value for ⇢ = 0.1), the performance improvement percentage for ⇢ = 0.1 is 14% while zero

for ⇢ = 0.3, 0.5, 0.7, 1.0. When ⇢ = 0.5, in its valid p range (26 � 33), it almost always has a larger

29

performance improvement percentage compared to ⇢ = 0.7, 1. When less data correlation exists, more

aggregators are visited, making the sizes of the resulted q-edge forest as well as its constituent trees

larger. By traversing the longest paths of larger trees once, LP-Walk can thus save more aggregation cost

compared to traversing smaller trees.

Comparing B-Walk with LP-Walk by Varying R/m. We compare B-Walk with LP-Walk on different

R/m. When increasing R/m, the overall storage overflow situation gets more challenging since there

are relatively more overflow data compared to available storage spaces. We choose ⇢ = 0.5 and vary

R/m from 1 to 5, under which the common valid range of p is [26, 30]. Therefore we pick p = 26 and

p = 30 for comparison. Fig. 13(a) shows again that LP-Walk yields less total aggregation cost under

different R/m. Fig. 13(b) further shows that the performance improvement percentage of LP-Walk upon

B-Walk generally increases when increasing R/m. This shows LP-Walk performs even better in more

challenging overall storage overflow scenarios. When increasing R/m, the resulted q-edge forests get

larger. This favors LP-Walk, which travels large amount of edges only once.

2) Distributed Algorithm: Next we evaluate the performances of our designed distributed algorithms.

We write our own simulators in Java on MacBook Pro with 2 GHz Dual-Core Intel Core i5 processor and

8 GB RAM. 100 nodes are randomly placed in a 2000m⇥2000m region. The transmission range is 250m

and m = R = 512MB. Fig. 14 shows different kinds of messages (overhead and data) in our distributed

algorithms with their sizes. The overhead messages are used in aggregation network construction using

distributed Bellman-Ford algorithm, constructing the q-edge forest, as well as the data aggregation stage

to choose an initiator for each tree. The data messages are used in data aggregation stage by that initiators

send their overflow data packets to visit other aggregators for aggregations. As the overflow data packet

size of 512 MB is very large, it can be fragmented in many smaller data packets.

Fig. 14. Sizes of different messages.

To compare different algorithms, we adopt a typical correlation coefficient value ⇢ = 0.6 and vary p

from 51 to 71, at which point it allows for one initiator. We vary number of data nodes p in its valid

range [55,71]. Fig. 15 compares the total energy costs of the two distributed algorithms viz. Naive and

GHS-Based. We observe that both distributed algorithm perform close in terms of total energy cost while

Naive performs slightly better.

Fig. 16 further shows the number of initiators and breakup of the energy cost in both distributed

30

 0

 500

 1000

 1500

 2000

 2500

 55 60 65 70

To
ta

l E
ne

rg
y

co
st

 (K
J)

Number of Data Nodes p

GHS Approach
Naive Approach

Fig. 15. Total energy costs in Naive and and GHS-Based distributed algorithms.

algorithms. It is interesting to observe that with the increase of p, the number of data nodes, the number

of initiators needed for energy efficient data aggregation in both algorithms increases first and then

decreases. During the initial stage of increasing p with increased amount of overflow data, the more

number of aggregators need to be visited in order to achieve the required amount of data reduction. With

the increasing number of aggregators, more connected components (i.e., trees with at least two nodes)

are formed. As each tree needs one initiator, this results in increased number of initiators in the initial

stage of increasing p. However, with the further increase of p, the number of aggregators increases to an

extent that the different trees they belong to begin to merge, resulting in less number of trees thus less

number of initiators. As the maximum allowable number of initiators decreases with the increase of p

fig:feasible1, the number of initiators finally gets to 1.

Finally, we observe that among the three stages in the distributed algorithms, finding q-edge forest

costs minimum portion of energy, ranging from 1.8% in the smaller number of p to 0.3% at the larger

number of p. Then it is constructing aggregation networks, with energy cost ranging from 38.5% in

the smaller number of p to 3.2% at the larger number of p. This shows that in a really data-intensive

intermittently connected sensor networks., the majority of the sensor energy consumption is spent on

data aggregation payload, instead of on the overhead cost spent in aggregation network construction and

finding q-edge forest. This demonstrates the energy-efficiency of our data preservation system.

31

Fig. 16. Comparing Naive and GHS distributed algorithms.

B. Algorithms for DAO2.

1) Centralized Algorithms: We randomly generate 100 sensor nodes (50 data nodes and 50 storage

nodes) in a 2000m ⇥ 2000m field with transmission range being 250m. In this network. Ri is a random

number in [512MB, 1024MB] and mj is a random number in [256MB, 512MB]. We first calculate the

⇢th defined in Section II, the smallest effective correlation coefficient that can be used to aggregate data.

We then vary ⇢ by incrementing from ⇢th to 1 in 0.1 stepwise.

State-of-the-art Data Aggregation Techniques. Tree-based routing structures connecting base station and

sensor nodes are often used in existing data aggregation techniques in sensor networks [4, 15, 29, 31, 34,

47]. Following such aggregation tree, data at sensor nodes are transmitted back to the base station while

being aggregated along the way. As existing data aggregation works only consider a single aggregation

tree due to including of the base station, we thus construct one aggregation tree in DAO2 to compare

with existing work. To make a fair comparison, though, as there is no base station in DAO2 and its goal

is to aggregate data locally on data nodes, we construct the corresponding single data aggregation tree by

modifying Algo. 2. In particular, it merges two components with largest prize-cost ratio until its largest

component collects enough quota of Q. This largest component serves as the data aggregation tree for

existing work. Then, the node with smallest prize in this tree is selected as the base station (i.e.. the

initiator), from which its overflow data is transmitted to visit all the data nodes in the tree to aggregate

32

their overflow data by traversing each edge at most twice.

We refer to the approximation algorithm Algo. 2 as Approximation, the heuristic algorithm Algo. 3

as Benefit, and the existing aggregation technique with available base station as S-Tree, as it requires a

single tree connecting the sensors and base station. Fig. 17 compare the three algorithms by varying the

correlation coefficient ⇢. Fig. 17(a) shows that in terms of the total aggregation cost, Benefit outperforms

Approximation, which outperforms S-Tree. When ⇢ is small, as large number of aggregators are needed

to reach the required data size reduction, it is likely that those aggregators are connected to form one or

multiple large components. Visiting all the aggregators in these large components from a few initiators

is more costly than visiting the aggregators from different initiators, which is more energy-efficiently.

Therefore when ⇢ is small, the total costs of both Approximation and Benefit are close while both

are larger than the cost of Benefit. When ⇢ gets larger, as less number of aggregators are needed,

each components in Approximation gets smaller, resembling those in Benefit, thus the performance of

Approximation gets close to Benefit. However, as S-Tree always requires one single connected component

for aggregation, its cost stays much higher.

Fig. 17(b) shows the total size reduction achieved in all three algorithms(while the average required

overflow data size Q is 15904 MB). It shows that both Approximation and Benefit reduces around 16

MB data size for the entire range of ⇢, around 3% of more reduction than required. A close looks shows

that Approximation aggregates more data than Benefit at ⇢ = 0.6 and 0.7, sustaining our initial conjecture

that Approximation could yields more prizes (i.e., aggregates more data) than Benefit if the components

to be connected are distant from each other. In contrast, S-Tree always look for a single aggregation

tree to include all the targeted aggregators. With the increase of ⇢, as the less number of aggregators are

needed, S-Tree thus needs more “connecting nodes” to connect the targeted aggregators, thus increasing

the total size of data reduction.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0.5 0.6 0.7 0.8 0.9 1

To
ta

l a
gg

re
ga

tio
n

co
st

 (K
J)

Correlation coefficient �

Approximation
Benefit
S-Tree

(a) Total aggregation cost (KJ).

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 0.5 0.6 0.7 0.8 0.9 1To
ta

l d
at

a
si

ze
 re

du
ct

io
n

(M
B)

Correlation coefficient �

Approximation
Benefit
S-Tree

(b) Total data size reduction.

Fig. 17. Performance comparison of the three algorithms.

33

Table II shows the number of initiators p number of aggregators q for the three algorithms. With the

increase of ⇢, q decreases for all three algorithms – as each data node can aggregate more data, it needs

less number of data nodes to be aggregators. However, S-Tree has more aggregators than Approximation

and Benefit at each fixed ⇢ value, showing that it is less cost efficient than the other two. We also observe

that with the increase of ⇢, number of initiators a increases for both Approximation and Benefit. This

is because the less number of aggregators in the sensor field, the more distance among them thus the

smaller chance that they are merged into components, resulting in more components. As each component

has one initiator, thus the number of initiators increases with the increase of ⇢. Note that as S-Tree always

finds one aggregation tree, it has only one initiator.

⇢ Approximation Benefit S-Tree

0.5
a 1.5 6.7 1

q 41.4 40.1 41.5

0.6
a 2.8 10.5 1

q 34.3 32.3 35.7

0.7
a 4.5 11.2 1

q 29.1 27.4 32.5

0.8
a 5.9 11.3 1

q 24.5 23.8 30.5

0.9
a 6.6 10.2 1

q 21.7 21.2 30

1
a 7.1 9.6 1

q 19.6 19.2 30

TABLE II

INVESTIGATING NUMBER OF INITIATORS a AND NUMBER OF AGGREGATORS q W.R.T. CORRELATION COEFFICIENT ⇢.

Fig. 18 visually shows the resultant components from a typical run of the three algorithms. Benefit has

13 components whereas Approximation has 4 and S-Tree has 1. This demonstrates the more granular

effort of energy-efficient data aggregation in Benefit wherein each initiator only visits its local data

nodes for aggregation. In contrast, in Approximation and S-Tree, initiators could travel long distance for

aggregation thus costing more energy.

VII. Related Work

MSTW is different from well-known multiple traveling salesman problem (mTSP) [12] and vehicle

routing problem (VRP) [48] studied in theory community. In mTSP, a group of traveling salesmen are

given, and it needs to decide a tour for each salesman such that the total tour cost is minimized and

that each city is visited exactly once. MSTW, however, needs to first decide how many salesmen can be

dispatched (and from which cities), then to find the tour for each. Besides, not necessarily all the nodes

34

(a) (b) (c)

Fig. 18. (a) Approximation. (b) Benefit. (c) S-Tree.

will be visited in MSTW. In VRP, the set of vehicle nodes and the set of customer nodes are usually

disjoint. There is no such distinction in MTSSR – each node can either dispatch a salesman or be visited.

The theoretical underpinning of DAO2 is closely related to the prize-collecting TSP (or TSP/vehicle

routing with profit) that has been studied extensively by theory community [6, 10, 21]. In prize-collecting

TSP, each vertex has a prize (or profit) to be collected and a penalty if not visited; the goal of the

traveling salesman is to minimize his travel costs and penalties while visiting enough cities to collect a

prescribed amount of prize money. Note the complementary problem of maximizing the collected profit

with the traveling cost not exceeding a budget is called orienteering problem or budgeted prize-collecting

TSP [49]. As our problem is to aggregate and reduce the size of sensory data by at least some specified

amount while minimizing the energy cost incurred, it is closer to the prize-collecting TSP and we review

its related literature below.

Bienstock [13] studies a variation that finding a subset of vertices such that the length of the tour

plus the sum of penalties associated with vertices not in the tour is as small as possible, and proposed a

2.5 approximation algorithm based on linear programming relaxation. Archer et al. [5] further improved

the approximation ratio to 2 � ✏ using Lagrangian relaxation. Tang and Wang [46] proposed a local

search-based heuristic for a related capacitated prize-collecting TSP. Dell’Amico et al. [20] developed a

lagrangian heuristic and obtained an upper bound in the form of a feasible solution. However, none of

them considered multiple traveling salesmen.

A 2-approximation scheme for both the k-MST and the k-TSP given by Garg [24] is the best known

approximation ratio.

If no penalty is considered, prize-collecting TSP is also referred to as quota-TSP problem [7, 8].

Awerbush [8] proposed an O(log2R) approximation algorithm where R is the quota (i.e., the amount

of prizes to be collected). It is based on an approximation for the k-minimum-spanning-tree problem

(k-MST), which is finding a tree of least weight that spans exactly k vertices on a graph. Ausiello et al.

[7] studied the online version of the problem where requests are given over time.

35

However, all of above prize-collecting or quota TSP assumes there is only one traveling salesman. If

multiple traveling salesmen are allowed, the prize-collecting multi-TSP has been studied under the name

of multi-vehicle routing with profit, to which Chapter 9 in [21] gave a comprehensive survey. All the

existing work, however, either fixed the number of vehicles or fixed the starting and ending depots of

the vehicles. In contrast, in DAO2, not only do we need to decide the number of initiators, but also to

determine the starting and ending node of each initiator, thus differs dramatically from existing research.

Our work is the first one to study multi-TSP prize collecting problem wherein both number of vehicles

and their starting and ending nodes are not given.

In sensor network community, there are extensive research that focused on disconnection-tolerant

operations in the absence of the base station. Some system research were conducted to design cooperative

distributed storage systems and to improve the utilization of the network’s data storage capacity [35, 36].

Other research instead took an algorithmic approach by focusing on the optimality of the solutions [27,

45, 52]. However, all above works assumed that there is enough storage space available to store the

overflow data, thus not addressing the overall storage overflow problem.

Intermittently connected sensor networks are different from delay tolerant sensor networks (DTSN)

[32]. In DTSNs, mobile nodes are intermittently connected with each other due to their mobility and low

density, and data is opportunistically forwarded to destination nodes. In intermittently connected sensor

networks, however, all the static sensors are connected with each other while being disconnected from

the base station, and data is uploaded to the base station only when uploading opportunities such as data

mules become available.

There is vast amount of literature of data aggregation in sensor networks [4, 15, 29, 31, 34, 47]. Tree-

based routing structures were often proposed to either maximize network lifetime (the time until the

first node depletes its energy) [34], or minimize total energy consumption or communication cost [29,

31], or reduce delay of data gathering [4]. Recently, Chen et al. [15] considered the duty-cycle sensor

networks and designed two distributed data aggregation algorithms where aggregation tree and a conflict-

free schedule are generated simultaneously to achieve low aggregation latency. Some other works were

based on non-tree routing structures, using mobile base stations to collect aggregated data in order to

maximize the network lifetime [42, 47]. Data aggregation in DAO2, however, significantly differs from

existing data aggregation techniques in both goals and techniques. First, existing data aggregation is to

reduce number of transmissions by combining data from different sensors en route to base station, thus

saving energy. The goal of data aggregation in DAO2, however, is to aggregate the overflow data so that

they can fit into storage available in the network, thus preventing data loss caused by overall storage

overflow. Second, the underlying routing structures in most of the existing data aggregation techniques

are trees rooted at the base station covering all sensor nodes. In DAO2, however, since the base station is

not available, those routing structures are no longer suitable. Instead, DAO2 introduces minimum q-edge

36

forest, a routing structure that serves as the building block of our techniques.

VIII. Conclusion and Future Work

This paper introduced DAO2, an architectural and algorithmic framework that tackles the overall

storage overflow problem in intermittently connected sensor networks. We modeled the DAO2 as a new

graph-theoretic problem called multiple traveling salesmen selection and routing, and designed a suite of

energy-efficient optimal, approximation, heuristic, and distributed data aggregation algorithms to solve

it. The building block of our algorithmic techniques is minimum q-edge forest, a routing structure that

generalizes minimum spanning tree and achieves energy-efficient data aggregation with performance

guarantees. Because of this general and theoretical root, the techniques proposed in this paper could

possibly be applicable to any applications wherein data correlation and resource constraints coexist.

As it is an architectural framework, there are a few future extensions. We will consider that overflow

data generated from different data nodes could have different sizes, and that different storage nodes could

have different storage capacities. We will also consider that different data nodes could have different

correlation coefficients. Currently data aggregation and data offloading are treated as two separate stages

– as ongoing [2] and future work, we will integrate these two stages and explore a more unified energy-

efficient solution for the overall storage overflow problem.

ACKNOWLEDGMENT

This work was supported in part by NSF Grant CNS-1419952. We thank Yan Ma and Basil Alhakami

for many discussions and simulations.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, 1993.

[2] B. Alhakami, B. Tang, J. Han, and M. Beheshti. Dao-r: Integrating data aggregation and offloading in sensor networks via data

replication. In Proc. of GLOBECOM, 2015.

[3] B. Alhakami, B. Tang, J. Han, and M. Beheshti. Dao-r: Integrating data aggregation and offloading in sensor networks via data

replication. International Journal of Sensor Networks, 29(2):134 – 146, 2019.

[4] B. Alinia, M. Hajiesmaili, and A. Khonsari. On the construction of maximum-quality aggregation trees in deadline-constrained wsns.

In Proc. of INFOCOM, 2015.

[5] A. Archer, M. H. Bateni, M. T. Hajiaghayi, and H. Karloff. Improved approximation algorithms for prize-collecting steiner tree and

tsp. In IEEE FOCS, 2009.

[6] C. Archetti, M. G. Speranza, and D. Vigo. Vehicle routing problems with profits. Vehicle Routing: Problems, Methods, and Applications,

Second Edition, page 273–297, 2014.

[7] G. Ausiello, M. Demange, L. Laura, and V. Paschos. Algorithms for the on-line quota traveling salesman problem. Information

Processing Letters, 92:89–94, 2004.

[8] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. New approximation guarantees for minimum-weight k-trees and prize-collecting

salesmen. SIAM J. Comput., 28(1):254–262, February 1999.

[9] B. Awerbuch, A. Bar-Noy, and M. Gopal. Approximate distributed bellman-ford algorithms. IEEE Transactions on Communications,

42:2515–2517, 1994.

37

[10] E. Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–636, 1989.

[11] S. Basagni, L. Boloni, P. Gjanci, C. Petrioli, C. A. Phillips, and D. Turgut. Maximizing the value of sensed information in underwater

wireless sensor networks via an autonomous underwater vehicle. In Proc. of INFOCOM, 2014.

[12] T. Bektas. The multiple traveling salesman problem: an overview of formulations and solution procedures. Elsevier Omega, 34:209–

219, 2006.

[13] D. Bienstock, M. X. Goemans, and D. Simchi-Levi D. Williamson. A note on the prize collecting traveling salesman problem.

Mathematical Programming, 59:413–420, 1993.

[14] C. Busch, M. Magdon-Ismail, F. Sivrikaya, and B. Yener. Contention-free mac protocols for wireless sensor networks. In Proc. of

DISC, 2004.

[15] Q. Chen, H. Gao, Z. Cai, L. Cheng, and J. Li. Distributed low-latency data aggregation for duty-cycle wireless sensor networks.

IEEE/ACM Transactions on Networking, 26(5):2347–2360, 2018.

[16] Y. Choi, M. Khan, V. A. Kumar, and G. Pandurangan. Energy-optimal distributed algorithms for minimum spanning trees. IEEE

Journal on Selected Areas in Communications, 27(7):1297–1304, 2009.

[17] T. Corman, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 2009.

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press, 2009.

[19] R. Cristescu, B. Beferull-Lozano, M. Vetterli, and R. Wattenhofer. Network correlated data gathering with explicit communication:

Np-completeness and algorithms. IEEE/ACM Transactions on Networking, 14:41–54, 2006.

[20] M. Dell’Amico, F. Maffioli, and A Sciomachen. A lagrangian heuristic for the prize collecting travelling salesman problem. Annals

of Operations Research, 81:289–306, 1998.

[21] D. Feillet, P. Dejax, and M. Gendreau. Traveling salesman problems with profits. Transportation Science, 39(2):188 – 205, 2005.

[22] M. Di Francesco, S. K. Das, and G. Anastasi. Data collection in wireless sensor networks with mobile elements: A survey. ACM

Trans. Sen. Netw., 8(1):7:1–7:31, 2011.

[23] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm for minimum-weight spanning trees. ACM Trans. Program.

Lang. Syst., 5(1):66–77, 1983.

[24] N. Garg. Saving an epsilon: A 2-approximation for the k-mst problem in graphs. In Proc. STOC ’05, 2005.

[25] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communication protocol for wireless microsensor

networks. In Proc. of HICSS, 2000.

[26] J.A. Hoogeveen. Analysis of christofides’ heuristic: Some paths are more difficult than cycles. Operations Research Letters, 10:291

– 295, 1991.

[27] X. Hou, Z. Sumpter, L. Burson, X. Xue, and B. Tang. Maximizing data preservation in intermittently connected sensor networks. In

Proc. of MASS, 2012.

[28] S. Hsu, Y. Yu, and B. Tang. dre2: Achieving data resilience in wireless sensor networks: A quadratic programming approach. In

Proc. of MASS 2020.

[29] T. Kuo and M. Tsai. On the construction of data aggregation tree with minimum energy cost in wireless sensor networks: Np-

completeness and approximation algorithms. In Proc. of INFOCOM, 2012.

[30] H. Li, D. Liang, L. Xie, G. Zhang, and K. Ramamritham. Flash-optimized temporal indexing for time-series data storage on sensor

platforms. ACM Trans. Sen. Netw., 10(4):1565–1572, 2012.

[31] J. Li, A. Deshpande, and S. Khuller. On computing compression trees for data collection in wireless sensor networks. In Proc. of

INFOCOM, 2010.

[32] Y. Li and R. Bartos. A survey of protocols for intermittently connected delay-tolerant wireless sensor networks. Journal of Network

and Computer Applications, 41:411–423, 2014.

[33] L. Liu, R. Wang, D. Guo, and X. Fan. Message dissemination for throughput optimization in storage-limited opportunistic underwater

sensor networks. In Proc. of SECON, 2016.

[34] D. Luo, X. Zhu, X. Wu, and G. Chen. Maximizing lifetime for the shortest path aggregation tree in wireless sensor networks. In

Proc. of INFOCOM, 2011.

38

[35] L. Luo, Q. Cao, C. Huang, L. Wang, T. Abdelzaher, and J. Stankovic. Design, implementation, and evaluation of enviromic: A

storage-centric audio sensor network. ACM Transactions on Sensor Networks, 5(3):1–35, 2009.

[36] L. Luo, C. Huang, T. Abdelzaher, and J. Stankovic. Envirostore: A cooperative storage system for disconnected operation in sensor

networks. In Proc. of INFOCOM, 2007.

[37] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[38] D. Mosse and G. Gadola. Controlling wind harvesting with wireless sensor networks. In Proc. of IGCC, 2012.

[39] L. Mottola. Programming storage-centric sensor networks with squirrel. In Proc. of IPSN, 2010.

[40] D. Peleg and V. Rubinovich. A near-tight lower bound on the time complexity of distributed minimum-weight spanning tree

construction. SIAM J. Comput., 30(5):1427–1442, 2000.

[41] F. Shahzad. Satellite monitoring of wireless sensor networks. Procedia Computer Science, 21:479 – 484, 2013.

[42] Y. Shi and Y.T. Hou. Theoretical results on base station movement problem for sensor network. In Proc. of INFOCOM, 2008.

[43] R. Sugihara and R. K. Gupta. Path planning of data mules in sensor networks. ACM Trans. Sen. Netw., 8(1):1:1–1:27, 2011.

[44] B. Tang. dao2: Overcoming overall storage overflow in intermittently connected sensor networks. In Proc. of IEEE INFOCOM 2018.

[45] B. Tang, N. Jaggi, H. Wu, and R. Kurkal. Energy efficient data redistribution in sensor networks. ACM Transactions on Sensor

Networks, 9(2):11:1–11:28, May 2013.

[46] L. Tang and X. Wang. An iterated local search heuristic for the capacitated prize-collecting travelling salesman problem. Journal of

the Operational Research Society, 59:590–599, 2008.

[47] S. Tang, J. Yuan, X. Li, Y. Liu, G. Chen, M. Gu, J. Zhao, and G. Dai. Dawn: Energy efficient data aggregation in wsn with mobile

sinks. In Proc. of IWQoS, 2010.

[48] P. Toth and D. Vigo, editors. The Vehicle Routing Problem. Society for Industrial and Applied Mathematics, 2001.

[49] P. Vansteenwegen, W. Souffriau, and D. V. Oudheusden. Orienteering problem: A survey of recent variants, solution approaches and

applications. European Journal of Operational Research, 255(2):315 – 332, 2016.

[50] L. A. Villas, A. Boukerche, H. de Oliveira, R. B. de Araujo, and A. A.F. Loureiro. A spatial correlation aware algorithm to perform

efficient data collection in wireless sensor networks. Ad Hoc Networks, 12:69–85, 2014.

[51] B. Weiss, , H.L. Truong, W. Schott, A. Munari, C. Lombriser, U. Hunkeler, and P. Chevillat. A power-efficient wireless sensor

network for continuously monitoring seismic vibrations. In Proc. of SECON, 2011.

[52] X. Xue, X. Hou, B. Tang, and R. Bagai. Data preservation in intermittently connected sensor networks with data priorities. In Proc.

of SECON, 2013.

[53] H. Zheng and J. Wu. Data collection and event detection in the deep sea with delay minimization. In Proc. of SECON, 2015.

[54] J. Zheng and P. Wang C. Li. Distributed data aggregation using slepianwolf coding in cluster-based wireless sensor networks. IEEE

Transactions on Vehicular Technology, 59:2564 – 2574, 2010.

39

APPENDICS

Java Implementation
https://github.com/hungngo0309/SensorNetwork

