
JOINT VIRTUAL NETWORK FUNCTION PLACEMENT AND

MIGRATION IN DYNAMIC CLOUD DATACENTERS

A Project

Presented

to the Faculty of

California State University Dominguez Hills

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Jingsong Sun

Summer 2020

i

PROJECT: JOINT VIRTUAL NETWORK FUNCTION PLACEMENT

AND MIGRATION IN DYNAMIC CLOUD DATACENTERS

AUTHOR: JINGSONG SUN

APPROVED:

Bin Tang, Ph.D

Project Committee Chair

Liudong Zuo, Ph.D

Committee Member

Brad Hollister, Ph.D

Committee Member

ii

ACKNOWLEDGEMENTS

Project was conceived by Dr. Tang in 2019 fall semester. After 2 semesters’ discussing

and modifying, the implementation of the project finally shows beautiful algorithm and

simulation results. I offer many thanks:

to Dr. Bin Tang of my project adviser, who offers excellent ideas about the further

progress of my project and helpful feedback. Thanks for the encouragement and help

when I feel discouraged by the stuck in implementation of my project. I learned a lot of

research methods and project practical knowledge from him.

to Dr. Liudong Zuo and Dr. Brad Hollister, who attends my master defense and gives

very helpful feedback about my project report.

to my wife who supports me to change my major, it is hard for me and her.

to my friends who studied with me during my master studies, who help me broaden my

knowledge. Without their help, it is hard for me to finish my master studies.

Jingsong Sun

Summer 2020

iii

TABLE OF CONTENTS

APPROVAL PAGE.. i

ACKNOWLEDGEMENTS...ii

LIST OF TABLES...v

LIST OF FIGURES.. vi

ABSTRACT.. vii

1. INTRODUCTION.. 1
Background and motivation...1
An illustrating example..4
Our contributions... 4

2. RELATED WORK... 5

3. PRELIMINARIES.. 10
System Model.. 10
Topology-Aware Cost Model.. 12
Service Function Chainings (SFCs)...13

4.PPP: POLICY-AWARE VNF PLACEMENT... 14
1) Problem Formulation...14
2) VNF Placement Algorithms.. 17
3) State-of-the-Art VNF Placement... 26

5.PPM: POLICY-PRESERVING VNF MIGRATION... 27
1) Problem Formulation...27
2) VNF VM Migration Algorithm for PPM.. 28
3) State-of-the-Art Tackling Dynamic Traffic...31

6. PERFORMANCE EVALUATION...32
Simulation Setup..32
k-stroll Algorithms...34
VNF Placement Algorithms...35
Effects of VNF Migrations.. 36

7.CONCLUSIONS AND FUTURE WORK... 38

iv

8.REFERENCES... 39

9.APPENDIX...44
9.1. Data Center for FatTree Topology..44
9.2. DP algorithm for placement..58
9.3. Exhaustive algorithm for placement and migration..64
9.4. Greedy algorithm for placement... 67
9.5. Calculate FatTree cost...70
9.6. Calculate FatTree hops between switches.. 73
9.7. Benefit Algorithm For Migration..77
9.8. StepWise Algorithm For Migration..79

v

LIST OF TABLES
Table 1 Notation Summary..12
Table 2 Summary Of Compared Algorithms...33

vi

LIST OF FIGURES
Fig.1. An illustrating example for VNF placement and migration in PPDC.......................2
Fig.2. A PPDC with 16 PMS... 11
Fig.3. VNF migration in a k = 2 linear PPDC... 14
Fig.4. k-stroll problem... 15
Fig.5. Proving PPP-1 is NP-hard... 17
Fig.6. Sub-optimality of Algo.1...23
Fig.7. Illustrating StepWise Algorithm..30
Fig.8. Comparing k-stroll alogrithms, l = 1... 34
Fig.9. Comparing VNF placement, k = 8.. 35
Fig.10.Comparing VNF placement with time delays, k = 8.. 36
Fig.11. Comparison between Benefit, MCF, and PLAN algorithms.................................37
Fig.12. Comparing with MCF and PLAN... 38

vii

ABSTRACT

We propose a new virtualization network function (VNF) optimization framework for

policy-preserving data centers (PPDCs). In PPDCs, virtual machine (VM) traffic must

traverse a sequence of VNFs for security and performance purposes, generating more

network traffic and consuming more network resources compared to traditional cloud

data centers. Our framework tackles this problem and achieves optimal or near optimal

resource utilization for a PPDC’s lifetime, while tackling diverse and dynamic VM traffic

commonly existing in cloud data centers. It first places VNFs into PPDCs according to

the diverse traffic rates of communicating VM pairs (i.e., VNF placement) and then

adaptively migrate VNFs inside PPDCs in response of changing traffic rates of the VM

pairs (i.e., VNF migration), with the goal of minimizing the VM communication cost and

VNF migration cost. We formulate both problems and design optimal, approximation,

and heuristic policy-preserving VNF placement and migration algorithms. Underlying

VNF placement and migration problems are two new graph theoretical problems that

have not been studied before. We show that VNF migration is an effective technique to

tackle dynamic traffic in PPDCs by outperforming the existing VM migration

traffic-mitigation techniques by three times, and our VNF placement algorithms

outperform existing techniques by more than two times.

1

1. INTRODUCTION

Background and motivation. Network Function Virtualization (NFV) is an effective

technique to reduce capital and operating expenses and to achieve flexible management

in cloud computing environment [37]. With NFV, proprietary hardware

middle-boxes(MBs) such as firewalls, intrusion detection and prevention systems

(IDPSs), and load balancers can now be implemented as virtual network functions (VNFs)

running as lightweight container on commodity hardware [17]. Being instantiated and

deployed dynamically in cloud data centers, VNFs provide performance and security

guarantees to cloud user applications in a flexible and cost-effective manner. In particular,

service function chains (SFCs) (or data center policies) are established that require

virtual machine (VM) application traffic to traverse a sequence of VNFs to achieve

aforesaid guarantees [23], [24]. We refer to the cloud data centers that implement and

enforce such data center policies as policy-preserving data centers (PPDCs). We use

SFCs and data center policies interchangeably.

Fig. 1(a) shows a linear PPDC with two physical machines (PMs): pm1 and pm2 and

five switches: sw1, sw2, ..., sw5. There are two communicating VM pairs: (1v , 1v) and (2v ,

2v), with 1v and 1v stored at pm1 and 2v and 2v at pm2. It also shows an SFC

consisting of an IDPS, denoted as 1vnf , and a cache proxy, denoted as 2vnf . As the VM

traffic between 1v and 1v (and 2v and 2v) must traverse 1vnf and 2vnf in that

order, this policy first filters out malicious traffic and then caches the content to share

2

with other cloud users, improving both security and performance of the cloud user

applications.

Fig. 1. An illustrating example for VNF placement and migration in PPDC.

VNF placement [29], [30], which allocates VNFs into PPDCs, and VNF migration [46],

which moves VNFs around inside PPDCs, are two effective techniques achieving a

variety of objectives in PPDCs including resource optimization, load balancing, and fault

tolerance. Although they have attracted much attention, there are two limitations of the

current research. First, VNF placement and migration are mostly studied in parallel

without considering the effect of one upon the other [29], [30], [46]. This may attribute to

different metrics and objectives that each targets. While VNF placement mainly aims to

minimize the setup cost of VNFs [15], [41], [13], [7], or to minimize the communication

cost of VMs such as energy, delays, or distances [48], [6], [10], [33], VNF migration is

mainly to minimize its negative influences such as service down time [45], overall

3

migration time [26] and QoS degradation [18]. As achieving one goal often compromises

the other, there is a need for joint optimization of VNF placement and migration to

achieve overall optimal resource utilization in cloud data centers. Achieving optimal

resource utilization is especially critical for PPDCs wherein VM traffic must traverse a

sequence of VNFs, causing additional communication delays, generating more network

traffic and consuming more network resource (e.g., energy and bandwidth) compared to

traditional cloud data centers.

Second, recent findings and measurements from Facebook and other production data

centers show that traffic loads (i.e., transmission rates) of VM applications are highly

diverse and dynamic [9], [40]. One recent example is Zoom cloud video conferencing [3],

where the Zoom Meeting Connector VMs [4] could support a few participants at one

instance and hundreds of them (up to 350) at another, while time of each communication

could vary greatly and traffic could vary from video, voice to data. Dynamic network

traffic, if not dealt with well, could further exacerbate the network traffic in PPDCs.

In this report we propose a new framework that integrates VNF placement and

migration in PPDCs to target diverse and dynamic traffic in cloud data centers. By

modeling topology-aware costs, we are able to unify them into the same problem space

for the first time and solve them in an integrated manner. Our approach is to first place

VNFs into PPDCs according to the diverse traffic rates of communicating VM pairs and

then adaptively migrate VNFs in response of changing traffic rates of the VM pairs. Our

goal is to optimize the network resource usage of a PPDC for its lifetime.

4

An illustrating example. Take Fig. 1 for example, assume that the initial traffic rate

among (1vm , 1mv) is much heavier than that of (2vm , 2mv). To save the network traffic

and their communication delay, we will place 1vnf and 2vnf on sw1 and sw2

respectively, as shown in Fig. 1(a). This way, the heavier traffic of (1vm , 1mv) along

1vnf and 2vnf (dark dashed line) is “shorter” than that of (2vm , 2mv) (light dashed

line). Due to dynamic traffic in PPDCs, however, if next the traffic load of (2vm , 2mv)

emerges as much heavier than that of (1vm , 1mv), above VNF placement is no longer

optimal. As 2vm communicates with 2mv via a route much longer than that of (1vm ,

1mv), shown in dark dashed line in Fig. 1(b), it generates heavy network traffic and

consumes much of the network bandwidths. To tackle this problem, our key observation

is that VNF migration can alleviate the network traffic. By migrating 1vnf from sw1 to

sw4 and 2vnf from sw2 to sw5, as shown in Fig. 1(c), the heavy traffic is now confined in

a small route while the light traffic taking a longer path, as shown in Fig. 1(d).

Our contributions. More formally, we identify and formulate two new VNF placement

and migration problems in PPDCs. We refer to the VNF placement problem as PPP:

policy-preserving VNF placement in PPDCs. Given a PPDC with communicating

VMs of diverse traffific rates, and a data center policy that each pair must satisfy, PPP

studies how to place the VNFs inside PPDC to minimize the total communication cost of

the VM pairs. With the dynamic VM traffic in PPDC, however, this initial VNF

placement may become suboptimal after some time, thus there is a need for VNF

migration. We refer to it as PPM: policy-preserving VNF migration in PPDCs. Given

5

existing placements of VNFs and VM pairs with dynamic traffic rates, and a data center

policy that VM traffic must satisfy, the goal of PPM is to migrate VNFs to minimize

the total cost of VNF migration and VM communication.

Consider that VNF migration itself incurs traffic overhead, and that a large scale PPDC

typically has hundreds of thousands of communicating VMs with wide range of changing

traffic rates, both PPP and PPM are challenging problems. We design optimal,

approximation, and heuristic policy-preserving algorithms to solve both problems. One

salient feature of our algorithms is that they potentially achieve ideal resource utilization

for a PPDC’s lifetime - after the PPP creates the VNF placement to optimize a PPDC’s

initial network resource utilization, the PPM then executes periodically to optimize a

PPDC’s network resource utilization in the events of dynamic VM traffic. Underlying

PPP and PPM are two new graph-theoretical problems that have not been studied before.

Using traffic patterns and flow characteristics found in production data centers, we

show that VNF migration is an effective technique to tackle dynamic traffic in PPDCs by

outperforming the existing VM migration traffic-mitigation techniques by three times,

and our VNF placement algorithms outperform existing techniques by more than two

times.

2. RELATEDWORK

There is a vast amount of literature of VNF placement in cloud data centers. Cohen et

al. [15] was one of the first to tackle the NFV location problem considering VNF setup

costs, connectivity costs of the clients, and capacity constraints of the network nodes.

6

They provided bi-criteria algorithms with constant approximation factors. Although it

considered multiple types of VNFs, it did not consider the sequence of VNFs required in

SFCs. Sang et al. [41] focused on minimizing the total number of VNF instances to

provide a specific service to flows in a network. Chen et al. [13] improved it by

considering limited capacity of each node and provided stronger algorithmic results in

linear- and tree-structured networks. However, both work only considered multiple

instances of the same VNF type and did not study the multiple VNF types addressed in

SFCs.

Steering [48] was one of the first that considered a sequence of MBs and proposed a

SFC placement problem. Built on SDN architecture and OpenFlow protocol, it proposed

a heuristic SFC placement algorithm that minimizes the delay or distance traversed by all

subscribers’ traffic.Liu et al. [31] formally formulated the MB placement problem (that

minimizes delay or bandwidth consumption) as a 0-1 programming problem. As it is

NP-hard and no effective approximation, they proposed two heuristic algorithms called

CalCostScore ORG and CalCostStore ED and show the latter performs better than the

former. As their network models (including pairwise traffic and delay and bandwidth

metrics) are the same as ours and it is one of the latest work, we compare our PPP

algorithms with CalCostStore ED.

Bari et al [7], [6] studied VNF orchestration problem that determines the required

number and placement of VNFs to optimize network operational costs. It provided an

Integer Linear Programming (ILP) solution and an efficient greedy algorithm. Bhamare

7

et al. [10] studied the VNF placement problem that minimizes inter-cloud traffic and

response time while satisfying deployment cost constraint and placement constraint. Ma

et al. [33] considered the traffic changing effect of VNFs and studied the SFC

deployment problems with the goal to load-balance the network. Gu et al. [21] designed a

dynamic market auction mechanism for the transaction of VNF service chains that

achieves near-optimal social welfare in the NFV ecosystem.

Different from all the existing work, the VNF placement identified in our report (i.e.,

PPP) is a new fundamental graph theoretic problem. PPP resembles but is significantly

different from the classic p-median problem [38]. In p-median problem, it places p

facilities in a network to minimize the sum of the demand-weighted distance between

each demand node and its closest facility. In PPP, however, it not only identifies p

locations to install the VNFs, but instead of accessing the closest facility, each VM pair

needs to traverse all the p facilities (i.e., VNFs) in some order. We design optimal,

approximation, and heuristic algorithms that outperform the existing work in different

network scenarios.

VNF migration [45], [26], [32], [18], [25], [27], on the other hand, is not studied as

extensively as VNF placement. As VNF migration disrupts service and incurs overhead

traffic, one of its main goals was to minimize its influences including service down time

[45], the overall migration time [26], and QoS degradation [18]. Eramo [18] proposed a

comprehensive three-stage framework that instantiates, migrates VNFs and routes SFC

requests to the appropriate VNFs. There is a different objective for each stage. In

8

particular, its VNF migration minimized the total energy consumption and the revenue

loss of QoS degradation in VNF migration. As in our model the VM communication cost

can be treated as total energy consumption of VM communication and the VNF

migration cost can be treated as the revenue loss of QoS degradation, we compare our

VNF migration (i.e., PPM) algorithms with theirs. Liu et al. [32] considered that existing

cloud users can move around and new users can join in and maximized the service

provider’s profit. Huang et al. [25] proposed two VNF instance scaling techniques viz.

horizontal scaling (that migrates existing VNF instances) and vertical scaling (that

instantiates new VNF instances). The goal was to maximize the number of NFV-enabled

requests while meeting their end-to-end delay requirements. Jia [27] studied policy-aware

unicast request admissions with and without end-to-end delay constraints and minimized

operational cost of admitting requests.

VNF migration studied in this report, however, differs from aforesaid work in both its

goal and model. While existing VNF migration work achieved various objectives such as

server consolidation and energy efficiency, QoS degradation minimization and

throughput maximization, our work focuses on the dynamic communication traffic rates

existing among VMs with the goal of minimizing total migration and communication cost.

Theoretically, our VNF migration model (i.e., PPM) resembles but significantly differs

from the dynamic facility location problem (DFLP) [35], [39]. The DFLP locates and

possibly relocates facilities over time to minimize transportation costs in response to

changing demands or distribution costs. The difference is that while in DFLP each

9

demand node only accesses its closest facility, in PPM each VM pair must traverse the

entire facilities (i.e., VNFs) in some sequence.

In contrast to most of the existing work, one pronounced feature of our research is the

integration of VNF placement and VNF migration, two fundamental VNF mechanisms,

into one framework. By characterizing topology-aware costs for both VM

communication and VNF migration, we are able to capture network traffic incurred in

both cases accurately to seamlessly optimize the overall resource utilization in PPDCs.

Two lines of work specifically addressed dynamic network traffic in cloud data centers.

The first line includes [44], [47], [42], which employed online learning methods to

estimate upcoming traffic rates and to adjust VNF deployment. Our work instead adopted

the dynamic traffic flow characteristics found in Facebook data centers [40] to emulate

how VM traffic rates fluctuate. In the future if we consider the proactive prediction of

dynamic traffic, this line of work could help. The other line of work is by Cui et al. [16]

and Flores et al. [43], which proposed migrating communicating VMs instead of VNFs to

ameliorate dynamic traffic. We observe that as migrating one VM pair does not affect

communication cost of other pairs while migrating one VNF affects all VM pairs

traversing it, VNF migration has a more decisive and effective impact on reducing

dynamic network traffic than VM migration. We show in the experiments that VNF

migration outperforms the existing VM migration traffic-mitigation techniques by 3

times.

10

3. PRELIMINARIES

System Model. We use fat trees [5] to illustrate the problems and solutions. However, as

they are applicable to any data center topology, we model a PPDC as an undirected graph

G(V, E). V = Vp ∪ Vs is a set of PMs Vp = {pm1, pm2, ..., pm|Vp|} and a set of switches Vs

= {sw1, sw2, ..., sw|Vs|}. E is a set of edges, each connecting either one switch to another or

a switch to a PM. Fig. 2 shows a k = 4 PPDC where k is the number of ports per switch.

There are n VNFs M = {vnf1, vnf2, ..., vnfn} serving as a SFC that need to be placed and

then migrated inside the PPDC. We adopt the bump-off-the-wire design [28], which uses

a policy-aware switching layer to explicitly redirect traffic along VNFs. Fig. 2 shows

three VNFs vnf1, vnf2 and vnf3 installed on different switches in the PPDC.1 As a switch

and its attached VNF are connected by high-speed optical fibers, the delay between them

is negligible compared to that among switches and PMs [22].

11

Fig. 2. A PPDC with 16 PMs: pm1, pm2, ..., and pm16, 3 VNFs: vnf1, vnf2, and vnf3, and

two VM pairs: (1v , 1v) and (2v , 2v). ● and ► indicate source and destination VM

respectively.

As the east-west traffic is the predominant traffic in a data center and accounts more

than 70 percent of its traffic [1], [2], and most east-west cloud traffic is pairwise [36], we

focus on pairwise VM communication. We assume that there are l pairs of

communicating VMs Ƥ = {(1v , 1v), (2v , 2v), ..., (lv , lv)} already placed into the PMs,

where v∈V = { 1v , 1v , 2v , 2v , ..., lv , lv } is placed at PM s(v). For any VM pair

(iv , iv), iv and iv are referred to as its source and destination VM and s(iv) and s(iv) as

its source and destination PM respectively. Denote the traffic rate or transmission rate of

(iv , iv) as i and the traffic rate vector as l ,...,, 21

. As the VM traffic rates

change over time in a dynamic PPDC,

 is not a constant vector. In Fig. 2, there are

two VM pairs: (1v , 1v) and (2v , 2v), with 100,1

 . Table 1 shows all the notations.

12

Table 1 Notation Summary

Topology-Aware Cost Model. In our model, each edge (u, v)∈ E has a cost cu,v

indicating either the delay or energy cost or bandwidth consumption on this edge caused

by VM communication or VNF migration. Given any two PMs (and switches) u and v, let

c(u, v) denote the sum of the costs of all the edges traversed by VM communication (or

VNF migration) from u to v. Thus the communication cost of any VM pair (iv , iv) is

))(),((iii vsvsc .The migration cost of migrating any VNF in Μ from switch u to

switch v is),(jic , where, μ is a VNF migration coefficient that depends on the

relative size and bandwidth consumption of VMs and VNFs. Note that our

topology-aware model is different from the well-known pre-copy model [14], [34]. It

modeled the cost of migrating a VM or a VNF v as
)/(1
)/(1 1

ar

n
ar

s BP
BPM

13

, where Ms is the image size of v, Pr is its page dirty rate, Ba is the available bandwidth,

and n is number of pre-copy phases. As this topology-aware cost model strives to

accurately capture the incurred network traffic costs during VM communication and VNF

migration, it is more suitable than the existing model for a large-scale dynamic cloud data

center studied in this report.

Service Function Chainings (SFCs). As one SFC is generally sufficient to serve both

security and performance purposes [2], we assume there is one SFC in a PPDC at a time.

An SFC, denoted as (vnf1, vnf2, ..., vnfn), requires that the VM traffic to go through the

VNFs in that specific order. We refer to vnf1 (and vnfn) as ingress (and egress) VNF, and

the switch where the ingress (and egress) VNF is installed as ingress (and egress) switch.

In Fig. 2, (1v , 1v) traverses VNFs under SFC (vnf1, vnf2, vnf3), resulting in communication

cost of 1 × 10 = 1000 (black dashed line). Note that we use such unweighted costs (i.e.,

number of edges) only for purpose of illustration. We assume that Flow Tags [19], a

well-known SDN architecture enforcing network-wide middlebox policy, is available for

consistent policy implementation during VNF migration. Next we quantitatively illustrate

the benefit of using VNF migration to reduce network cost.

14

Fig. 3. VNF migration achieves 58.6% of total cost reduction in a k = 2 linear PPDC. The light and
heavy black dashed lines refer to light and heavy VM traffic, respectively. The red solid lines refer to
the VNF migration.

EXAMPLE 1: Fig. 3(a) shows a k = 2 fat tree PPDC with two PMs pm1 and pm2.

There are two VM pairs (1v , 1v) and (2v , 2v), with 1v and 1v at pm1 while 2v and 2v

at pm2. 1,100

 and μ = 1. There are two VNFs vnf1 and vnf2. An initial optimal

VNF placement is installing vnf1 on switch sw1 and vnf2 on switch sw2, resulting in total

communication cost of 100 × 4 + 1 × 10 = 410 (shown in black dashed lines). However,

due to dynamic traffic,

 next changes to 1,100 , as shown in Fig. 3(b). This results

in a dramatic increase of total communication cost to 1 × 4 + 100 × 10 = 1004. By

migrating vnf1 to sw5 and vnf2 to sw4, shown in solid red line in Fig. 3(c), although it

incurs migration cost of 6, the total VM communication cost (shown in Fig. 3(d)) reduces

to 1 × 10 + 100 × 4 = 410, a 58.6% of total cost reduction. This fat tree PPDC is indeed

the same linear PPDC in Fig. 1.

4. PPP: POLICY-AWARE VNF PLACEMENT

1) Problem Formulation: We define a VNF placement function p: M→ Vs that installs

VNF v∈M at switch p(v)∈Vs. For any VM pair communication, the ingress switch is

15

always p(1) and the egress switch is always p(n). Given any VNF placement p, denote the

total communication cost of all the l VM pairs under p as Cc(p). We have

(1)

The objective of PPP is to find a VNF placement p to minimize Cc(p). Below we show

that PPP is NP-hard by proving that its special case of l = 1 is NP-hard. We refer to this

special case as PPP-1, and show below that it is equivalent to k-stroll problem [20], [11],

which is NP-hard. k-stroll problem is defined as follows. Given a complete graph G =

(V, E) with non-negative length we on edge e∈E, two special nodes s and t, and an

integer k, the goal of k-stroll is to find an s-t walk of minimum length that visits at least k

distinct nodes excluding s and t. When s = t, it is called k-tour problem. Here it assumes

that triangle inequality holds for the edges: for (x, y), (y, z), (z, x)∈E, w(x, y) + w(y, z) ≧

w(z, x). Fig. 4 shows an optimal 2-stroll between s and t is a walk: s, D, t, C, and t, with a

cost of 6.

16

Theorem 1: PPP-1 is equivalent to k-stroll problem.

Proof: Although k-stroll problem is mostly studied on non-complete graph [20], [11],

[12], we follow [8] and assume it is a complete graphs. We show that this assumption

enables us to design a dynamic programming (DP) based heuristic algorithm that

performs very close to the optimal.

Recall a data center is represented as a graph G(V = {Vp∪Vs}, E), where Vp is the set

of PMs and Vs is the set of switches. Given an instance of PPP-1 where the only pair of

VMs 1v and 1v are located at PMs s(1v) and s(1v) respectively, we construct a new

graph G (V , E). Here)}(),({ 11 vsvsVV s U and E include all the edges in E that

connect any two nodes in V . That is, G is a subgraph of G induced by V . Next we

construct the metric completion of G (V , E) and denote it asG (V , E) . G is a

complete graph with the same set of nodes V (i.e., V = V), while for any pair of

nodes u, v ∈ V , the cost of (u, v) ∈ E is the cost of the shortest path connecting u

and v in G . Fig. 5 shows the conversions for the linear data center G in Fig.3.

considering only one VM pair (1v , 1v)

We claim that an optimal n-stroll inG that starts at s(1v) and ends at s(1v) gives the

optimal placement of n VNFs and minimum cost policy-preserving routing for (1v , 1v)

in G, and vice versa. First, as this walk visits at least n distinct other nodes when

traversing from s(1v) to s(1v), let the first n nodes traversed be n1, n2, and ...nn in that

order. Then we place vnf1 at n1, vnf2 at n2, ..., and vnfn at nn, and let v1 communicate with

v2 by following the same walk thus traversing vnf1, vnf2, ..., and vnfn in that order. Second,

17

as this s(1v)-s(1v) walk is the minimum n-stroll in G , traversing the corresponding

switches in G thus gives (1v , 1v) minimum communication cost in G. On the other hand,

if a VNF placement gives minimum communication cost for (1v , 1v) in G, as each VNF is

placed on a different node, the resulted s(1v)-s(1v) walk in G must be an optimal

s(1v)-s(1v) stroll.

In Fig. 5, s(1v) = s(1v) = pm1. As the optimal VNF placement for (1v , 1v) in G is

placing vnf1 on sw1 and vnf2 on sw2, a minimum 2-tour for pm1 in G is thus pm1, sw1,

sw2, and pm1, and vice versa.

2) VNF Placement Algorithms: Below we present the VNF placement algorithms for

PPP-1 and PPP respectively.

Algorithms for PPP-1. As PPP-1 is equivalent to k-stroll problem on a properly

transformed graph of the PPDC, algorithms solving k-stroll thus can be used to solve

PPP-1. There are extensive works solving k-stroll on both directed and undirected graphs

[20], [11], [12], [8]. For undirected graphs, Chaudhuri et al. [11] designed a primal-dual

based approximation algorithm with approximation ratio of 2 + ϵ. Chekuri [12] proposed

18

a bi-criteria approximation that finds an s-t walk of length at most max{1.5D, 2LD} that

contains at least (1 - ϵ) ∙ k nodes. Here, L is the length of an optimal path and D the

shortest path from s to t. For directed graph, k-stroll is APX-hard [12], meaning that a

polynomial time approximation algorithm is unlikely. Chekuri et al. [12] and Bateni [8]

et al. designed O(log2OPT) and polylogarithmic (i.e., O(logkn)) approximation algorithms

respectively. As our data center network is modeled as an undirected graph, we adopt the

primal-dual based approximation algorithm proposed by Chaudhuri et al. [11] to solve

PPP-1 and places n VNFs for one VM pair (1v , 1v).

Approximation algorithm for PPP-1. It consists of three steps.

Step 1. GivenG (V , E) in Fig. 5, where sVvsvsV UU)}({)}({ 11 , let xv indicate if v

∈Vs is selected to place a VNF, and ye denote whether an edge e∈ E is on the path.

And let δ(S) denote the set of edges with exactly one endpoint in set S. The primal ILP of

PPP-1 is formulated as below.

19

Constraints 5 and 6 construct a path between PMs s(1v) and s(1v) by selecting an edge

in every cut separating them, and Constraint 7 guarantees this path has least n switches.

Step 2. It considers the dual of the linear programming relaxation of above ILP (A),

that is, 0 ≤ x ≤ 1 and 0 ≤ ye ≤ 1, and relaxes the complementary slackness condition

related to its dual variables.

Step 3. It iteratively adds edges, paying for them with increases to variables in the dual,

and then deletes edges to obtain the final path that spans n switches. The running time of

this algorithm is)log(5 VVO [11]. Theorem 2 below shows it yields a solution to the

primal integer problem that costs no more than 2 + ϵ times the value of the feasible dual

solution constructed, which implies that the primal solution is with a factor of 2 + ϵ of

optimal.

Theorem 2: Above primal-dual based algorithm for PPP-1 yields cost that is at most

2 + ϵ of optimal.

Proof. Please refer to Section 4 of [11] for detailed proof.

Above approximation algorithm is inspired by a theoretical work that strives to achieve

performance bound of algorithms, and involves complicated procedures (e.g., Step 3) that

cannot be easily implemented. Besides, the objective function in ILP(A) counts the

weight of each edge on the k-stroll only once, implying that the k-stroll must be a path

that does not visit the same node twice. As a k-stroll can well be a walk wherein a node

and an edge are visited multiple times, as shown in Fig. 4, this assumption is a strong

one.

20

Dynamic programming (DP) for PPP-1. We thus propose a more practical VNF

placement heuristic for PPP-1. Our key observation is that although finding a shortest s-t

walk with k distinct nodes is NP-hard, finding a shortest s-t walk of k edges can be solved

optimally and efficiently using DP. Algo. 1 below finds such a shortest s-t walk with k + 1

edges (lines 4-10) and checks if these k + 1 edges traverses k distinct nodes (lines 11-19).

If not, it finds a shortest walk with k + 2 edges, so on and so forth, until k distinct nodes

are found (lines 21).

To improve the search efficiency of finding more distinct nodes along the s-t walk,

Algo. 1 adds two important improvement on top of its DP backbone. First, it applies on a

complete graph G (V , E) shown in Fig. 5(c). As there does not always exist an s-t

walk of exactly k + 1 edges in data center graph G while there always exists such a one in

G (as long there are more than k + 1 edges in G), using G overcomes an obstacle

otherwise faced by using G. For example, if we directly feed the non-complete graph

input shown in Fig. 4, it will find a 3-edge path of is s, A, B, t of cost 7, which is not

optimal.

Second, even there exists k + 1 edges on the walk, it does not guarantee finding k

distinct nodes on the walk as an edge can be traversed multiple times. To overcome this

obstacle, Algo. 1 avoids the loop that traverses the same edge twice consecutively (line 6).

The time complexity of Algo. 1 is 2VEk , which is)(4VkO , more efficient than

that of above primal-dual. Note that Algo. 1 also works for k-tour problem where s = t

21

and the special case that at least k distinct nodes are already on the shortest path between

s and t.

22

EXAMPLE 2: Fig. 2 shows a VM pair (2v , 2v) with 2v and 2v placed at pm4 and pm5

respectively. To find 7 VNFs between 2v and 2v is to find a 7-stroll between pm4 and

pm5. Algo. 1 finds such an 8-edge path traversing 7 distinct switches (shown in blue solid

line): pm4, sw1, sw2, sw3, sw4, sw5, sw6, sw7, and pm5. Note there are other 8-edge walk

between pm4 and pm5 that traverses only 5 distinct switches: pm4, sw1, sw2, sw1, sw2, sw3,

sw4, sw7, and pm5. This walk is not selected by Algo. 1 due to loop between sw1 and sw2.

By avoiding the loops between adjacent nodes and using a complete graph as input,

Algo. 1 dramatically improves the efficiency of searching for distinct switches in k-stroll

problem. We show in simulations that Algo. 1 constantly outperforms the performance

guarantee of 2 + ϵ provided the primal-dual algorithm and performs close to the optimal

most of the time. However, despite its good heuristic performance, Algo. 1 is not optimal,

as shown in Example 3. We attribute the sub-optimality of Algo. 1 to its finding a k-stroll

between s and t by finding a walk of k + 1 edges, while an optimal k-stroll could have

more than k +1 edges. Nonetheless, Theorem 3 below shows the sufficient condition for

the optimality of Algo. 1.

23

Fig. 6. Sub-optimality of Algo. 1. Numbers on edges are their weights

EXAMPLE 3: To find a 3-stroll between s and t, Algo. 1 gives s, B, A, B, t, C, and t,

with total cost of 15. However, the optimal solution is s, B, A, C, and t, with total cost of

13. The reason for such optimality is because the 2-stroll from B to t is B, A, B, and t

while the 1-stroll from A to t is A, B, and t. Thus edge (B, A) are visited multiple times in

Algo. 1 while in optimal solution, it is only visited once.

Theorem 3: Let successori, 1 ≦ i ≦ k, be the ith switch along the s(1v)－s(1v) stroll

found by Algo. 1. If all the i-stroll between successori and t, 1 ≦ i ≦ k, do not visit the

same edge twice, then Algo. 1 is optimal for k-stroll problem.

Proof. We give a proof sketch due to space constraint. If there exists a path of k + 1

edges between s and t that visits k distinct nodes, the two key characteristics of the DP viz.

optimal substructure and overlapping subproblems guarantees that the DP is optimal; as it

exists, it can find a shortest such path visiting k distinct nodes between s and t.

Algorithms for PPP. Next we solve PPP wherein l > 1. The key idea of Algo. 2 is to

find all pairs of ingress switch p(1) and egress switch p(n) and then treat finding the rest n

t

B

C

A

s

3

5

2

2

3

6

24

- 2 switches to place VNFs as an (n - 2)-stroll problem with s = p(1) and t = p(n). Its time

complexity is O(k · |V |6 · d).

Integer Linear Programming (ILP) for PPP. Below we present a ILP formulation (B)

that optimally solves PPP. For any two nodes u and v with (u, v) ∈ E, as the flow could

25

go either from u to v or v to u, it necessitates the use of directed edges (u, v) and (v, u).

Next we introduce a few decision variables. Let xj,k indicate if vnfj is placed on switch swk

or not. Let yi,u,v represent if directed edge (u, v) is traversed by VM pair (iv , iv). Let yi,j,e

indicate if an edge e is used to reach the vnfj by VM pair (ivm , imv).

Eqns. 11 and 12 place each of the n VNFs onto different switches. Eqns. 13 and 14

ensure for each VM pair (iv , iv), the traffic coming out of its source PM s(iv) arrives at

its destination PM s(iv). Eqn. 15 enforces the flow conservation on all switches: if any

VM pair(iv , iv) visits a switch, it must exit it. Obviously, the optimal solutions from ILP

(B) can also be achieved by below exhaustive O(|V|k) algorithm.

26

Algorithm 3: Exhaustive VNF Placement Algo. for PPP.
Input: A PPDC G(V, E) with VM pair placement s(v),
v ∈ V, and an SFC (vnf1, vnf2, ..., vnfn).
Output: A VNF placement p and the total comm. cost Cc(p).
1. Cc(p) = +∞;
2. Among all |Vs| · (|Vs| − 1) · ..., ·(|Vs| − n + 1) placements, find p that gives the
minimum cost Cc(p).
5. RETURN p and Cc(p).

Although Algo. 3 is time-consuming, as it can be implemented easily, we compare it

with other algorithms for benchmark.

3) State-of-the-Art VNF Placement: Steering [48] proposed a middlebox service (i.e.

VNF) placement problem with the objective of minimizing the average time for the

subscribers’ traffic. It proposed a heuristic algorithm that considers service dependency

between services. Two services are dependent if they appear consecutively in a service

chain required by some subscribers, and the degree of this dependency is determined by

the amount of traffic going through it. It then picks the service with the highest

dependency degree, finds its best location (i.e., minimizing the average time), and

finishes until all services are placed in the network. For a single SFC in our setup where

all its VNFs have the same dependency, Steering just finds the best locations for each of

the VNFs on by one.

Liu [31] et al. proposed a two-step greedy algorithm called CalCostStore ED. First, the

MBs are sorted in descending order of their importance factor, which is the number of

policies that uses this MB. Second, it calculates each MB’s cost score for each switch and

the switch with minimum cost score will be selected to place each MB. Here the cost

27

score is defined as the increment of the total end-to-end delay due to adding this MB plus

the weighted average delay of all unplaced MBs to this MB.

We compare our PPP algorithms with above two works for the following two reasons.

First, both works assume the ingress and egress locations for each subscriber’s traffic,

implying pairwise communication as in our report. Second, both works try to minimize

the total communication cost in terms of end-to-end delay or bandwidth consumption,

conforming to the goal of the VNF placement studied in this report.

5. PPM: POLICY-PRESERVING VNF MIGRATION

1) Problem Formulation: In PPM, the initial VNF placement is given by a placement

function p : [1, 2, ..., n]→ Vs, indicating that VNF vnfj is at switch p(j) ∈ Vs. The total

communication cost of all the l VM pairs with placement p is thus Cc(p) (Eq. 1). Next,

define a VNF migration function as m : [1, 2., ...n] → Vs, meaning that VNF vnfj will be

migrated from switch p(j) to switch m(j) (m(j) = p(j) if vnfj does not migrate). Let

))(),(()(1 jmjpcmC n
jm be the total migration cost of all the n VNFs with

migration m. Let Cc(m) be the total communication cost of all VM pairs after m. Let Ct(m)

be the total cost of VNF migration and VM communication cost after m. Then

)16())).(),(())1(),(((

))1(),(())(),(()()()(

1

1

11 1

ii

l

i
i

n

j

n

j

l

i
icmt

vsnmcmvsc

jmjmcjmjpcmCmCmC

The objective of PPM is to find a VM migration m that minimizes Ct(m). Below we

show that PPP is a special case of PPM, thus PPM is also NP-hard.

28

Theorem 4: PPP is a special case of PPM with = 0.

Proof: Plug = 0 into Eq. 16, we get

))).(),(())1(),((())1(),(()(1
1
11 iii

l
i

n
ji

l
it vsnmcmvscjmjmcmC

 As PPP is

to find a VNF placement, we replace m with p in r.h.s. of above equation and get

).()))(),(())1(),((())1(),(()(
1.1

1 11
pCvsnpcpvscjpjpcmC c

Eq

ii
n

j

l

i i
l

i it

2) VNF VM Migration Algorithm for PPM: Below we present our VNF migration

algorithm for PPM. Our key observation is that minimizing the total cost of VM

communication and VNF migration is to strike a balance between these two costs, as

VNF migration increases migration costs while decreasing VM communication cost. In

this regards, the PPM is similar to a multi-objective optimization problem (MOP) as it

tries to minimize migration and communication cost simultaneously. Pareto front is one

of the solutions of MOPs, which is a set of non-dominated solutions, being chosen as

optimal, if no objective can be improved without sacrificing at least one other objective.

We thus design below step-wise algorithm to approximate Pareto front, and show it

performs close to the optimal.

29

EXAMPLE 4: Fig. 7 illustrates how StepWise Algorithm (i.e., Algo. 4 works. The SFC

consists of 5 VNFs: vnf1,...,vnf5. Due to dynamic VM traffic, the new optimal VNF

placement is computed by VNF placement algorithm (i.e., Algo. 2) to minimize the total

communication cost among VM pairs. Note that some VNFs could have the same current

and new location such as vnf2. However, to migrate each VNF towards its new placed

location to decrease the total communication cost, the total migration cost increases.

30

Therefore, Algo. 4 attempts to find all the Parent fronts to strike a balance between these

two costs.

We also design Benefit algorithm: It is similar to greedy placement algorithm from Liu

[31] et al. In this algorithm, we try to migrate one VNF to all possible positions each time

to find the minimum total cost of migrate and communicate. The migrating order follows

the original SFCs.

Algorithm 5: Benefit Migration Algorithm for PPM.
Input: A PPDC G(V, E) with VM pair placement s(v), Vv , and VNF placement p(j), 1

≦ j≦ n, migrate coefficient traffic rate vector

 ;

Notations: pareto: an array of n elements;
pareto = [p(1), p(2), ..., p(n)]; // initial VNF placement
pareto|{j, a} = [p(1), ..., p(j | 1), a, p(j + 1), ..., p(n)] is
pareto with its j th element being replaced by a;
Output: The best VNF migration m and the total cost Ct(m).

0. Cm(m) = Cc(m) = ; Ct(m) = ∞;

1. for (1 ≦ j ≦ n)
2. for (1 ≦ i ≦|V|)

3. if ()(jpvi)

31

4. pareto|{j, vi} = [p(1), ..., p(j | 1), vi, p(j + 1), ..., p(n)]
5. Ct(pareto) = Cc(pareto) + Cm(pareto);
6. if (Ct(pareto) < Ct(m))
7. Ct(m) = Ct(pareto); m = pareto;
8. end if;
9. end if;
10. end for;
11. end for;
12. RETRUN m and Ct(m)

3) State-of-the-Art Tackling Dynamic Traffic: As our work is the first that migrates VNFs

to specifically attack dynamic traffic in cloud data centers, we couldn’t find any existing

VNF migration work for meaningful comparison. Two recent research viz. PLAN [16]

and PAM [43] instead proposed migrating communicating VMs to reduce dynamic traffic.

That is, given the dynamic traffic rates among VM pairs and the placement of VNFs

inside the data center, they propose to migrate VMs in order to minimize the sum of total

communication cost among VMs and the total migration of of VMs. Their main idea is to

migrate VM pairs with high traffic rates closer to SFCs by migrating source VM of each

pair closer to the ingress switch of the SFC and destination VM closer to the egress

switch. Below we briefly review these two VM migration techniques.

PLAN [16] is a heuristic algorithm that works in rounds. In each round, it computes

that which VM is migrated to which PM with available resources, such that the utility of

this migration is the maximum among all the VMs that have not been migrated.The

utility of migrating a VM is defined as the reduction of the VM’s communication cost

minus its migration cost. This continues until all the VMs are migrated, or no more VM

migration gives any positive utility. The goal of PLAN is to find a migration scheme that

32

maximizes the total utility of migrating all the VMs. PAM [43] showed that minimizing

the total communication and migration cost of VMs is equivalent to minimum cost flow

problem , which can be solved optimally and efficiently. As such, it is shown that PAM

performs better than that PLAN.

In contrast, we observe that migrating one VM pair does not affect communication cost

of other pairs while migrating one VNF affects all VM pairs traversing it. As such, VNF

migration is more influential on reducing dynamic network traffic than VM migration.

We show in the experiments that VNF migration outperforms the existing VM migration

traffic-mitigation techniques by 3~4 times.

6. PERFORMANCE EVALUATION

Simulation Setup. We compare our algorithms with existing work. For k-stroll problem

(i.e., PPP-1), we refer to the our DP algorithm (i.e., Algo. 1) as DP-Stroll. We compare

them with the 2 + ϵ performance guarantee (i.e., two times of the Optimal) by the

primal-dual algorithm, referred to as PrimalDual. For the general VNF placement (i.e.,

PPP), we refer to our DP-based algorithm (Algo. 2) as DP and compare it with Steering

[48], a seminal MB placement algorithm, and Greedy, a greedy algorithm proposed in

[31]. For VNF migration, we also compare StepWise with two latest VM migration

techniques viz. PLAN [16] and PAM [43]. For all the cases, we refer to the ILP-based

optimal algorithm (e.g., ILP (A)) as Optimal. They are summarized in Table II.

33

We consider fat-tree PPDCs of size k = 4 with 16 PMs, k = 8 with 128 PMs, and k = 16

with 1024 PMs. As 80% of cloud data center traffic originated by servers stays within

the rack [9]. we place 80% of the VM pairs into PMs under the same edge switches.

Recent flow characteristics found in Facebook data centers [40] show that 25% of flows

sends less than 1 KB and lasts less than a second, 70% sends less than 10 KB and lasts

less than 10 seconds, and less than 5% of the flows are larger than 1 MB or last longer

than100 seconds. We therefore assume the traffic rates of VM pairs are in the

range of [0, 1000], and 25% of VM pairs have light traffic rates in [0, 300), 70% medium

traffic rates in [300, 700], and 5% heavy rates in (700,1000]. Each data point in the plots

is an average of 20 runs with 95% confidence interval.

SFC Use Cases [2]. SFCs in a real-world data center are broadly categorized into two

types [2]. Access SFCs include segment firewalls and deep packet inspectors that

perform stateful inspection of traffic and policy identification, and web optimization

control that optimizes the link bandwidth usage. Application SFCs include

application-specific firewalls and application delivery controllers that distribute traffic

across a pool of application servers. As real-world SFCs could have 5 to 6 access

34

functions and 4 to 5 application function in a typical SFC [2], we consider up to 13 VNFs

in a SFC.

k-stroll (i.e., PPP-1) Algorithms. Fig. 8 compares k-stroll (i.e., PPP-1 for one VM pair)

algorithms viz. Optimal, PrimalDual, and DP-Stroll in k = 4 and k = 8 data centers

by varying number of VNFs l required for this VM pair to traverse. It shows that

DP-Stroll performs very close to Optimal, yielding only 4% of more cost, and

outperforms the 2 + ϵ performance guarantee of PrimalDual. With the increase

of l, the communication cost of this VM pair increases as its traffic needs to traverses

more VNFs. However, its cost decreases when l increases from 9 to 11 in Fig. 8(a) and

from 7 to 9 in Fig. 8(b). The reason is that the communication frequencies of this VM

pair are in general get smaller (due to randomness) for those two transitions.

Fig.8. Comparing k-stroll algorithms, l = 1.

35

VNF Placement (i.e. PPP) Algorithms. Fig. 9 compares Optimal, DP, Greedy, and

Steering in k = 8 fat tree data centers. Fig. 9(a) varies number of VM pairs l from 500,

1000, 1500, to 2000 while fixing number of VNFs n = 7 whereas Fig. 9(b) varies n while

fixing l. Our data shows that DP performs the same as Optimal does, and both outperform

Greedy, which outperforms Steering. For fair comparison Fig. 10 further adopts the same

parameter settings used in Greedy [31] that the link delays are a uniform distribution with

a mean value of 1.5 ms and variance of 0.5 ms. Under this setting, DP yields between

5.8% and 12.4% more costs than that of the Optimal in Fig. 10(a) and between 11.5% and

15.5% more costs than that of Optimal in Fig. 10(b). Both however, outperform the other

two by three to four times.

Fig. 9. Comparing VNF placement, k = 8.

36

Fig. 10. Comparing VNF placement with time delays, k = 8.

Effects of VNF Migrations.

Fig. 11 shows the performance comparison of Benefit, MCF, and PLAN by varying

migration coefficient µ. It shows that Benefit performs three or four times better than that

of the other two algorithms. MCF performs better than PLAN, as it is an optimal VM

migration algorithm.

37

Fig. 11. Comparison between Benefit, MCF and PLAN algorithms

The dynamic traffic in data centers is generally cycle-stationary that exhibits strong

diurnal patterns [18]. We thus adopt cycle-stationary traffic pattern with N stationary

intervals (N = 12 is the typical value for daily traffic) where the bandwidth of the SFC is

modulated by the scale factors in the hth interval (h = 0, ..., N - 1) chosen according to the

classical sinusoidal trend and given by the following expression:

Migration coefficient

38

Fig. 12 shows the performance comparison under dynamic scenarios. Besides above

cycle-stationary traffic pattern, we also notice that during one day’s period, the east coast

is three hours ahead than west coast, thus the VMs submitted by users in the east coast

always started earlier in terms of increasing or decreasing their traffic. We thus assume

half of the VM pairs in the data center belong to the users of east coast and the other half

west coast. It shows that StepWise performs the same as the Optimal under some

scenarios, and both outperform PLAN and MCF by at least two to three times.

Fig. 12. Comparing with MCF and PLAN.

7. CONCLUSIONS AND FUTURE WORK

In this report we proposed a new integrated framework of VNF placement and

migration in PPDCs. It targets diverse and dynamic VM traffic that commonly exists in

cloud data centers. It consists of two problems viz. PPP, which places VNFs into PPDCs

39

according to the diverse traffic rates of communicating VM pairs, and PPM, which then

adaptively migrates VNFs inside PPDCs in response of changing traffic rates of the VM

pairs. We designed optimal, approximation, and heuristic algorithms to solve them.

Working together, PPP and PPM are able to achieve resource optimization for a PPDC’s

lifetime. We believe PPP and PPM are theoretically fundamental problems as they

generalize or vary the well-know p-median problem and dynamic facility location

problem. Because of these theoretical roots, the algorithms proposed in this report could

be applicable to any applications that address SFC-based communication in dynamic

traffic environments such as edge computing or mobile crowd sourcing. In addition, it

provides an algorithmic framework that can be further improved and augmented by

considering more parameters in SFCs such as capacities of network nodes and edges. For

example, to address the capacity constraint of both network nodes and VNFs, we assume

that each VNF is located on a different node. In the future we will consider that each

node can store multiple VNFs thus how to consolidate VNF instances while respecting

resource constraints of each node becomes an interesting problem.

8. REFERENCES

[1] Cisco global cloud index: Forecast and methodology, 2016 to 2021 white report.

https://www.cisco.com/c/en/us/solutions/service-provider/global-cloud

index-gci/white-report-listing.html.

https://www.cisco.com/c/en/us/solutions/service-provider/global-cloud

40

[2] Service function chaining use cases in data centers (ietf).
https://tools.ietf.org/html/draft-ietf-sfc-dc-use-cases-06section-3.3.1.

[3] Zoom cloud meetings. https://zoom.us/.

[4] Zoom meeting connector core concepts.
https://support.zoom.us/hc/en-us/articles/201363113-Meeting-Connector-Core-Concepts.

[5] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center
network architecture. SIGCOMM Comput. Commun. Rev., 38(4):63–74, 2008.

[6] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B. Duarte.
Orchestrating virtualized network functions. IEEE Transactions on Network and Service
Management, 13(4):725–739, 2016.

[7] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba. On orchestrating virtual
network functions. In Proc. of the 2015 11th International Conference on Network and
Service Management (CNSM).

[8] M. Bateni and J. Chuzhoy. Approximation algorithms for the directed k-tour and
k-stroll problems. In Proc. of APPROX/RANDOM 2010, 2010.

[9] T. Benson, A. Akella, and D. A. Maltz. Network traffific characteristics of data
centers in the wild. In Proc. of ACM IMC 2010.

[10] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan. Optimal
virtual network function placement in multi-cloud service function chaining architecture.
Computer Communications, 102:1 – 16, 2017.

[11] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and minimum
latency tours. In Proc. of IEEE FOCS 2003.

[12] C. Chekuri, N. Korula, and M. Pal. Improved algorithms for orienteering and related
problems.

[13] Y. Chen, J. Wu, and B. Ji. Virtual network function deployment in tree-structured
networks. In Proc. of ICNP 2018.

[14] C. Clark, K. Fraser, and S. Hand. Live migration of virtual machines. In Proc. of
NSDI 2005.

41

[15] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz. Near optimal placement of virtual
network functions. In Proc. of IEEE INFOCOM 2015.

[16] L. Cui, F. P. Tso, D. P. Pezaros, W. Jia, and W. Zhao. Plan: Joint policy- and
network-aware vm management for cloud data centers. IEEE Transactions on Parallel
and Distributed Systems, 28(4):1163–1175, 2017.

[17] R. Cziva and D. P. Pezaros. Container network functions: bringing nfv to the
network edge. IEEE Communications Magazine, 55(6):24–31, 2017.

[18] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca. An approach for service
function chain routing and virtual function network instance migration

in network function virtualization architectures. IEEE/ACM Transactions on Networking,
25(4):2008–2025, 2017.

[19] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul. Enforcing
network-wide policies in the presence of dynamic middlebox actions using flowtags. In
Proc. of USENIX NSDI 2014.13

[20] N. Garg. Saving an : A 2-approximation for the k-mst problem in graphs. In Proc. of
ACM STOC 2005.

[21] S. Gu, Z. Li, C. Wu, and C. Huang. An effificient auction mechanism for service
chains in the nfv market. In Proc. of IEEE INFOCOM 2016.

[22] A. Gushchin, A. Walid, and A. Tang. Scalable routing in sdn-enabled networks with
consolidated middleboxes. In Proc. of ACM Hotmiddlebox, 2015.

[23] H. Hantouti, N. Benamar, T. Taleb, and A. Laghrissi. Traffific steering for service
function chaining. IEEE Communications Surveys Tutorials, 21(1):487–

507, 2019.

[24] H. Huang, S. Guo, J. Wu, and J. Li. Service chaining for hybrid network function.
IEEE Transactions on Cloud Computing, 7:1082–1094, 2019.

[25] M. Huang, W. Liang, Y. Ma, and S. Guo. Maximizing throughput of delay-sensitive
nfv-enabled request admissions via virtualized network function

placement. IEEE Transactions on Cloud Computing, 2019.

42

[26] B. Jaumard and H. Pouya. Migration plan with minimum overall migration time or
cost. J. Opt. Commun. Netw., 10:1 – 13, 2018.

[27] M. Jia, W. Liang, M. Huang, Z. Xu, and Y. Ma. Routing cost minimization and
throughput maximization of nfv-enabled unicasting in software-defifined

networks. IEEE Transactions on Network and Service Management, 15(2):732–745,
2018.

[28] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware switching layer for data
centers. In Proc. of ACM SIGCOMM 2008.

[29] A. Laghrissi and T. Taleb. A survey on the placement of virtual resources and virtual
network functions. IEEE Communications Surveys Tutorials,

21(2):1409–1434, 2019.

[30] X. Li and C. Qian. A survey of network function placement. In IEEE CCNC 2016.

[31] J. Liu, Y. Li, Y. Zhang, L. Su, and D. Jin. Improve service chaining performance
with optimized middlebox placement. IEEE Transactions on Services

Computing, 10(4):560–573, 2017.

[32] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu. On dynamic service function chain
deployment and readjustment. IEEE Transactions on Network and Service

Management, 14(3):543–553, 2017.

[33] W. Ma, J. Beltran, D. Pan, and N. Pissinou. Traffific aware placement of
interdependent nfv middleboxes. IEEE Transactions on Network and Service
Management, 16(4):1303–1317, Dec. 2019.

[34] V. Mann, A. Gupta, P. Dutta, A. Vishnoi, P. Bhattacharya, R. Poddar, and A. Iyer.
Remedy: Network-aware steady state vm management for data centers. In Proc. of the
NETWORKING 2012.

[35] E. Melachrinoudisa and H. Min. The dynamic relocation and phase-out of a hybrid,
two-echelon plant/warehousing facility: A multiple objective approach. European
Journal of Operational Research, 123(1):1 – 15, 2000.

43

[36] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of data center
networks with traffific-aware virtual machine placement. In Proc. of IEEE INFOCOM
2010.

[37] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and R. Boutaba.
Network function virtualization: State-of-the-art and research challenges. IEEE
Communications Surveys and Tutorials, 18(1), 2015.

[38] J. Reese. Solution methods for the p-median problem: An annotated bibliography.
Networks, 48(3):125–142, 2006.

[39] Amber Rae Richte. Dynamic Facility Relocation and Inventory Management for
Disaster Relief. Ph.D. Thesis, UC Berkeley, 2016.

[40] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the social network’s
(datacenter) network. In Proc. of ACM SIGCOMM 2015.

[41] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye. Provably effificient algorithms for
joint placement and allocation of virtual network functions. In Proc. of INFOCOM 2017.

[42] L. Tang, X. He, P. Zhao, G. Zhao, Y. Zhou, and Q. Chen. Virtual network function
migration based on dynamic resource requirements prediction. IEEE Access,
7:112348–112362, 2019.

[43] H. Flores V. Tran and B. Tang. Pam & pal: Policy-aware virtual machine migration
and placement in dynamic cloud data centers. In Proc. of IEEE INFOCOM 2020.

[44] X.Fei, F. Liu, H. Xu, and H. Jin. Adaptive vnf scaling and flflow routing with
proactive demand prediction. In Proc. of IEEE INFOCOM 2018.

[45] B. Yi, X. Wang, M. Huang, and A. Dong. A multi-criteria decision approach for
minimizing the inflfluence of vnf migration. Computer Networks, 159:51– 62, 2019.

[46] F. Zhang, G. Liu, X. Fu, and Ramin Yahyapour. A survey on virtual machine
migration: Challenges, techniques, and open issues. IEEE Communications Surveys &
Tutorials, 20:1206–1243, 2018.

[47] X. Zhang, C. Wu, Z. Li, and F. C.M. Lau. Proactive vnf provisioning with
multi-timescale cloud resources: Fusing online learning and online optimization. In Proc.
of IEEE INFOCOM 2017.

44

[48] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani, R. Mishra, R.
Patney, M. Shirazipour, R. Subrahmaniam, C. Truchan, and M. Tatipamula. Steering: A
software-defifined networking for inline service chaining. In Proc. of IEEE ICNP 2013.

9. APPENDIX

9.1. Data Center for FatTree Topology
/**
* <h1>FatTree Topology </h1>
* This is the data center for FatTree Topology to store the structure of the FatTree
* and other data
* @author sunjingsong
* @version 1.0
* @since 8-3-2020
*/
public class FatTree {

// Data fields
// The structure of the tree
public ArrayList<String> coreSwitches; // core switches
public ArrayList<String> aggrSwitches; // aggregation switches
public ArrayList<String> edgeSwitches; // edge switches
public ArrayList<String> allSwitches; // allSwitches = core + aggregation +

edge
public ArrayList<String> allPositions; // core + aggregation + edge + hosts
public ArrayList<String> pods; // pods
public ArrayList<String> hosts; // physical machines
public HashMap<String, HashSet<String>> links; // the link between two nodes
public int numberOfPorts; // number of ports
public int numberOfPods; // Pod number in Fat Tree
public int coreSwitchNumber; // The number of core switches
public int aggrSwitchNumber; // The number of aggregation switches
public int edgeSwitchNumber; // The number of edge switches
public int hostNum; // The number of hosts
public int numberOfPairs;
public int numberOfVNFs;
public double minEnd = Double.MAX_VALUE;

// The services of the tree
public ArrayList<int[]> pairs; // the communication pairs
public int[] VNFs; // middle boxes

45

public double migrateCoefficient; // migrate coefficient
public int totalFrequency; // the total communication frequency along the

VNFs chain

public HashMap<Integer, Double> start; // {Possible first VNF position: total
cost of hosts->1st VNF}

public HashMap<Integer, Double> end; // {Possible last VNF position: total
cost of last VNF->hosts}

public HashMap<String, Double> distance; // {node1 + node2: the distance of
two nodes}

public double[][] costTable;
public int[] optimalVNFs;
public int[] switchesTable;
public HashMap<Integer, String> indexNodeMap;
public HashMap<String, Integer> nodeIndexMap;
public HashMap<String, String> hostEdgeMap;
public HashSet<String> left;
public HashSet<String> right;
public int operation; // placement and migration
public int maxFrequency;

/** Initialize the topology */
public FatTree(int operation, int numberOfPorts, int numberOfPairs, int

numberOfVNFs, int freq) {
this.operation = operation;
this.numberOfPorts = numberOfPorts;
this.numberOfPairs = numberOfPairs;
this.numberOfVNFs = numberOfVNFs;
this.maxFrequency = freq;
// Make operations
setOperation();
// Initial variables
initialVariables();
createTopo(); // Create a topology tree
generate_VM_pairs(); // Generate VM pairs
Distance ds = new Distance(this); // Calculate the distance
generateVNFs(); // Generate VNFs
// setMigrationCoefficient(); // set migration coefficient

}

/**

46

* Initializing the FatTree Data
*/
public void initialVariables() {

this.coreSwitches = new ArrayList(); // core switches
this.aggrSwitches = new ArrayList();// aggregation switches
this.edgeSwitches = new ArrayList(); // edge switches
this.allSwitches = new ArrayList(); // core + aggregation + edge
this.allPositions = new ArrayList(); // core + aggregation + edge + hosts
this.pods = new ArrayList(); // pods
this.hosts = new ArrayList(); // physical machines
this.links = new HashMap<>(); // the link between two nodes
this.indexNodeMap = new HashMap();
this.nodeIndexMap = new HashMap();
this.hostEdgeMap = new HashMap();
this.left = new HashSet();
this.right = new HashSet();
// The services of the tree
this.migrateCoefficient = 0.0; // migrate coefficient
this.totalFrequency = 0; // the total communication frequency

along the VNFs chain
this.maxFrequency = 1000;
start = new HashMap(); // {Possible first VNF position: total

cost of hosts->1st VNF}
end = new HashMap(); // {Possible last VNF position: total

cost of last VNF->hosts}
distance = new HashMap(); // {node1 + node2: the distance of two

nodes}
}

/** Set the operation: placement and migration */
public void setOperation() {
}

/** Create a fat tree based on the number of ports from user input */
public void createTopo() {

int k = this.numberOfPorts;

this.numberOfPods = k;
this.coreSwitchNumber = (int)Math.pow(k/2, 2);

47

this.aggrSwitchNumber = (int)(k * k / 2);
this.edgeSwitchNumber = (int)(k * k / 2);
this.hostNum = (int)(k * Math.pow(k / 2, 2));

// Generate core switches
for (int i = 0; i < this.coreSwitchNumber; i++) {

this.coreSwitches.add("cs" + i);
this.allSwitches.add("cs" + i);
this.allPositions.add("cs" + i);

}

// Traversal each pod
for (int j = 0; j < this.numberOfPods; j++) {

this.pods.add("po" + j);
// Aggregation switches
for (int l = 0; l < (int)(this.aggrSwitchNumber / this.numberOfPods);

l++) {
String aggrSwitch = "as" + j + "_" + l;
this.aggrSwitches.add(aggrSwitch);
this.allSwitches.add(aggrSwitch);
this.allPositions.add(aggrSwitch);
// Each pod contains k / 2 aggregation switches
for (int m = (int)(k * l / 2); m < (int)(k * (l + 1) / 2); m++)

{
links.putIfAbsent(aggrSwitch, new HashSet<>());
links.putIfAbsent(this.coreSwitches.get(m), new

HashSet<>());
links.get(aggrSwitch).add(this.coreSwitches.get(m));
links.get(this.coreSwitches.get(m)).add(aggrSwitch);

}
}

// Edge switches
for (int l = 0; l < (int)(this.edgeSwitchNumber / this.numberOfPods);

l++) {
String edgeSwitch = "es" + j + "_" + l;
this.edgeSwitches.add(edgeSwitch);
this.allSwitches.add(edgeSwitch);
this.allPositions.add(edgeSwitch);
// Each pod contains k / 2 edge switches
for (int m = (int)(this.edgeSwitchNumber * j / this.numberOfPods);

48

m < (int)(this.edgeSwitchNumber * (j + 1) /
this.numberOfPods); m++) {

links.putIfAbsent(edgeSwitch, new HashSet<>());
links.putIfAbsent(this.aggrSwitches.get(m), new

HashSet<>());
links.get(edgeSwitch).add(this.aggrSwitches.get(m));
links.get(this.aggrSwitches.get(m)).add(edgeSwitch);

}

// Physical Machines
for (int m = 0; m < (int)(this.hostNum / this.numberOfPods /

(this.edgeSwitchNumber / this.numberOfPods));
m++){

String host = "pm" + j + "_" + l + "_" + m;
this.hosts.add(host);
this.allPositions.add(host);
links.putIfAbsent(edgeSwitch, new HashSet<>());
links.putIfAbsent(host, new HashSet<>());
links.get(edgeSwitch).add(host);
links.get(host).add(edgeSwitch);
this.hostEdgeMap.put(host, edgeSwitch);

}
}

}

int index = 0;
for (String pos: this.allPositions) {

this.indexNodeMap.put(index, pos);
this.nodeIndexMap.put(pos, index);
index++;

}

index = 0;
this.switchesTable = new int[this.allSwitches.size()];
for (String swit: this.allSwitches) {

this.switchesTable[index++] = nodeIndexMap.get(swit);
}

49

this.costTable = new
double[this.allPositions.size()][this.allPositions.size()];

}

/**
* Generate VM pairs and their frequency. The VM pairs following the pattern

80% under
* same edge switch. Their frequency follows Facebook's pattern
*/
public void generate_VM_pairs() {

this.pairs = new ArrayList();
int size = this.hosts.size();
int num = numberOfPairs;
int number25 = (int)(num * 0.25);
int number80 = (int)(num * 0.80);
int number95 = (int)(num * 0.95);
int totalNumber = 0;
Random rand = new Random();

while (num > 0) {
totalNumber += 1;
int i = rand.nextInt(size - 1);
String host1 = this.hosts.get(i);
int j = rand.nextInt(size - 1);
String host2 = this.hosts.get(j);

if (numberOfPairs >= 5) {
if (totalNumber <= number80) {

i = rand.nextInt(size - 1);
host1 = this.hosts.get(i);
int index = rand.nextInt(this.numberOfPorts / 2);
host2 = host1.substring(0, host1.lastIndexOf('_'))

+ '_' + index;
} else {

i = rand.nextInt(size - 1);
host1 = this.hosts.get(i);
ArrayList<String> str = new ArrayList();

for (String sw: this.edgeSwitches) {

50

if (sw.equals(host1.substring(0, host1.lastIndexOf('_')))) {
continue;

}
str.add(sw);
}

j = rand.nextInt(str.size());
int index = rand.nextInt(this.numberOfPorts / 2);
host2 = "pm" + str.get(j).substring(2) + "_" + index;

}
} else {

int prob = rand.nextInt(100) + 1;
if (prob <= 80) {

i = rand.nextInt(size - 1);
host1 = this.hosts.get(i);
int index = rand.nextInt(this.numberOfPorts / 2);
host2 = host1.substring(0, host1.lastIndexOf('_'))

+ '_' + index;
} else {

i = rand.nextInt(size - 1);
host1 = this.hosts.get(i);
ArrayList<String> str = new ArrayList();

for (String sw: this.edgeSwitches) {
if (sw.equals(host1.substring(0, host1.lastIndexOf('_')))) {

continue;
}
str.add(sw);
}

j = rand.nextInt(str.size());
int index = rand.nextInt(this.numberOfPorts / 2);
host2 = "pm" + str.get(j).substring(2) + "_" + index;
System.out.println(host2);

}
}

int k = this.maxFrequency / 10;
int frequency = 0;
if (numberOfPairs >= 5) {

51

if (totalNumber <= number25) {
frequency = rand.nextInt(3 * k);
this.totalFrequency += frequency;

} else if (totalNumber <= number95) {
frequency = rand.nextInt(7 * k - 3 * k) + 3* k;
this.totalFrequency += frequency;

} else {
frequency = rand.nextInt(10 * k + 1 - 7 * k) + 7 * k;
this.totalFrequency += frequency;

}
} else {

int prob = rand.nextInt(100) + 1;
if (prob <= 25) {

frequency = rand.nextInt(3 * k);
this.totalFrequency += frequency;

} else if (prob <= 95) {
frequency = rand.nextInt(7 * k - 3 * k) + 3 * k;
this.totalFrequency += frequency;

} else {
frequency = rand.nextInt(10 * k + 1 - 7 * k) + 7 * k;
this.totalFrequency += frequency;

}
}
this.pairs.add(new int[]{this.nodeIndexMap.get(host1),

this.nodeIndexMap.get(host2), frequency});
num -= 1;

}

int i;
for (i = 0; i < this.hosts.size() / 2; i++) {

this.left.add(this.hosts.get(i));
}

for (i = this.hosts.size() / 2; i < this.hosts.size(); i++) {
this.right.add(this.hosts.get(i));

}
}

/**
* Update VM pairs randomly
*/

52

public void update_VM_pairs_Frequency() {
this.totalFrequency = 0;
int num = numberOfPairs;
int number25 = (int)(num * 0.25);
int number80 = (int)(num * 0.80);
int number95 = (int)(num * 0.95);
int totalNumber = 0;
Random rand = new Random();
HashSet<Integer> set = new HashSet();
for (int i = 0; i < numberOfPairs; i++) {

set.add(i);
}
int size = numberOfPairs;
int idx = Integer.MAX_VALUE;
while (num > 0) {

totalNumber += 1;
int r = rand.nextInt(size);
int n = 0;
for (int it: set) {

if (r == n) {
idx = it;
set.remove(it);
size--;
break;

}
n++;

}

int frequency = 0;
int k = this.maxFrequency / 10;
if (numberOfPairs >= 5) {

if (totalNumber <= number25) {
frequency = rand.nextInt(3 * k);
this.totalFrequency += frequency;

} else if (totalNumber <= number95) {
frequency = rand.nextInt(7 * k - 3 * k) + 3 * k;
this.totalFrequency += frequency;

} else {
frequency = rand.nextInt(10 * k + 1 - 7 * k) + 7 * k;
this.totalFrequency += frequency;

53

}
} else {

int prob = rand.nextInt(100) + 1;
if (prob <= 25) {

frequency = rand.nextInt(3 * k);
this.totalFrequency += frequency;

} else if (prob <= 95) {
frequency = rand.nextInt(7 * k - 3 * k) + 3 * k;
this.totalFrequency += frequency;

} else {
frequency = rand.nextInt(10 * k + 1 - 7 * k) + 7 * k;
this.totalFrequency += frequency;

}
}
int h1 = this.pairs.get(idx)[0];
int h2 = this.pairs.get(idx)[1];
this.pairs.set(idx, new int[] {h1, h2, frequency});
num -= 1;

}

System.out.println("After Changing the frequency");
String str = "";
str += "===\n";
str += "The VM pairs shows as below(Frequency 0~300: 25%; 300~700: 70%;

700~1000: 5%):\n";
for (int[] obj: this.pairs) {

str += "[" + this.indexNodeMap.get(obj[0]) + ", " +
this.indexNodeMap.get(obj[1]) +

", Frequency: " + obj[2] + "]\n";
}

str += "===\n";
System.out.println(str);

}

/** Update VM pairs in the report with 12 epoch
* @param epoch
* @param cycle count the epoch
*/
public void update_VM_pairs_Frequency(int epoch, int cycle) {

54

System.out.println("epoch " + epoch);
if (epoch == 0) {

for (int i = 0; i < this.pairs.size(); i++) {
int h1 = this.pairs.get(i)[0];
int h2 = this.pairs.get(i)[1];
String host1 = this.indexNodeMap.get(h1);
String host2 = this.indexNodeMap.get(h2);
int oldFreq = this.pairs.get(i)[2];
int freq = oldFreq;
if (cycle <= 6) {

freq *= 2;
} else {

freq /= 2;
}
if (left.contains(host1) || left.contains(host2)) {

this.pairs.set(i, new int[] {h1, h2, freq});
this.totalFrequency += (freq - oldFreq);

}
}

} else {
for (int i = 0; i < this.pairs.size(); i++) {

int h1 = this.pairs.get(i)[0];
int h2 = this.pairs.get(i)[1];
String host1 = this.indexNodeMap.get(h1);
String host2 = this.indexNodeMap.get(h2);
int oldFreq = this.pairs.get(i)[2];
int freq = oldFreq;
if (cycle <= 6) {

freq *= 2;
} else {

freq /= 2;
}
if (right.contains(host1) || right.contains(host2)) {

this.pairs.set(i, new int[] {h1, h2, freq});
this.totalFrequency += (freq - oldFreq);

}
}

}

55

System.out.println("After Changing the frequency");
String str = "";
str += "===\n";
str += "The VM pairs shows as below(Frequency 0~300: 25%; 300~700: 70%;

700~1000: 5%):\n";
for (int[] obj: this.pairs) {

str += "[" + this.indexNodeMap.get(obj[0]) + ", " +
this.indexNodeMap.get(obj[1]) +

", Frequency: " + obj[2] + "]\n";
}

str += "===\n";
System.out.println(str);

}

/**
* Generate VNFs chain randomly
*/
public void generateVNFs() {

// randomly generate VNFs based on the user input
int num = numberOfVNFs;
this.VNFs = new int[num];
this.optimalVNFs = new int[num];
if (num > this.allSwitches.size()) {

System.out.println("Too many VNFs without enough positions to put");
}
int size = this.allSwitches.size();
HashSet<Integer> used = new HashSet();

int k = 0; // The index of VNFs
while (num > 0) {

Random rand = new Random();
String tmp = this.allSwitches.get(rand.nextInt(size));
int index = nodeIndexMap.get(tmp);
if (!used.contains(index)) {

this.VNFs[k++] = index;
used.add(index);
num -= 1;

}
}

56

}

public void setMigrationCoefficient(int num) {
this.migrateCoefficient = num;

}

/**
* Print the FatTree structure and the data stored in FatTree
*/
public String toString() {

String str = "===\n";
str += "The Structure of the fat tree is: \n";
int num = 0;
str += "Core Switches: {\n";
str += "\t";
for (String coreSwitch: this.coreSwitches) {

num++;
str += coreSwitch + " ";
if (num == 10) {

num = 0;
str += "\n";
str += "\t";

}
}
str += "\n}\n\n";

num = 0;
str += "PODS: {\n";
str += "\t";
for (String pod: this.pods) {

num++;
str += pod + " ";
if (num == 10) {

num = 0;
str += "\n";
str += "\t";

}
}
str += "\n}\n\n";

num = 0;

57

str += "Aggregation Switches: {\n";
str += "\t";
for (String aggrSwitch: this.aggrSwitches) {

num++;
str += aggrSwitch + " ";
if (num == 10) {

num = 0;
str += "\n";
str += "\t";

}
}
str += "\n}\n\n";

num = 0;
str += "Edge Switches: {\n";
str += "\t";
for (String edgeSwitch: this.edgeSwitches) {

num++;
str += edgeSwitch + " ";
if (num == 10) {

num = 0;
str += "\n";
str += "\t";

}
}
str += "\n}\n\n";

num = 0;
str += "Physical Machines: {\n";
str += "\t";
for (String host: this.hosts) {

num++;
str += host + " ";
if (num == 10) {

num = 0;
str += "\n";
str += "\t";

}
}
str += "\n}\n\n";

58

str += "===\n";
str += "The VM pairs shows as below(Frequency 0~300: 25%; 300~700: 70%;

700~1000: 5%):\n";
for (int[] obj: this.pairs) {

str += "[" + indexNodeMap.get(obj[0]) + ", " + indexNodeMap.get(obj[1])
+

", Frequency: " + obj[2] + "]\n";
}

str += "===\n";

return str;
}

}

9.2. DP algorithm for placement
/**
* <h1>DP k-stroll Algorithm </h1>
* The ShortestPathDPA program implements the DP k-stroll algorithm to find the
best
* Service Function chains with lowest cost. The major part of the algorithm uses
* a 4-dimension DP to represent different ingress and egress combinations, edges,
* and cost.
* This method also uses another 3-DP to store the current VNF locations to prevent
the
* duplicated edges
* @author sunjingsong
* @version 1.0
* @since 8-3-2020
*/
public class ShortestPathDPA {

// Data field
public int operation;
public Cost cost;
public int[] originalVNFs;
public int[] optimalVNFs;
public double originalCost;
public double optimalCost;
public double[][] graph;

59

public double minCostStart = Double.MAX_VALUE;
public double minCostEnd = Double.MAX_VALUE;

/**
* This is a construct method for instantiating object
* @param cost A model for calculating various cost
*/
public ShortestPathDPA(Cost cost) {

this.cost = cost;
}

/**
* This is the entry point method to input FatTree, original VNFs chains,
* current optimal VNFs chains and their correspond cost
* Two steps: (1) create adjacency matrix of switches, (2) Start the calculating
* @param ft FatTree Topology with the data(i.e. VM pairs, VNFs, Frequency,and

switches)
* @param originalVNFs Initial VNFs chains
* @param optimalVNFs Initial Optimal VNFs chains
* @param originalCost Initial total cost
* @param optimalCost Optimal cost
* @return optimal cost based on DP Algorithm
*/
public double execute(FatTree ft, int[] originalVNFs,

int[] optimalVNFs, double originalCost, double optimalCost) {
this.originalVNFs = originalVNFs;
this.optimalVNFs = optimalVNFs;
this.originalCost = originalCost;
this.optimalCost = optimalCost;
createGraph(ft);
shortestPath(ft);
return this.optimalCost;

}

/**
* This is the method to traversal all possible ingress and egress combinations
* which is the Algorithm 2 in the report
* @param ft FatTree with the data related VM pairs and frequency
*/
public void shortestPath(FatTree ft) {

60

double lowestCost = this.optimalCost;
int[] bestVNFs = new int[this.optimalVNFs.length];
for (int i = 0; i < bestVNFs.length; i++) {

bestVNFs[i] = this.optimalVNFs[i];
}

int k = ft.VNFs.length - 1;
double[][][][] dp = new double[graph.length][graph.length][k + 1][3];
int[][][][] visited = new int[graph.length][graph.length][k +

1][graph.length];
for (Map.Entry<Integer, Double> ingress: ft.start.entrySet()) {

for (Map.Entry<Integer, Double> egress: ft.end.entrySet()) {
if (ingress.getKey() != egress.getKey()) {

ft.VNFs[0] = ingress.getKey();
this.optimalVNFs[0] = ingress.getKey();
ft.VNFs[ft.VNFs.length - 1] = egress.getKey();
this.optimalVNFs[ft.VNFs.length - 1] = egress.getKey();
this.minCostStart = ingress.getValue();
this.minCostEnd = egress.getValue();
HashMap<Integer, Integer> map = new HashMap<>();

for (int i = 0; i < ft.switchesTable.length; i++) {
map.put(ft.switchesTable[i], i);

}

int u = map.get(ft.VNFs[0]);
int v = map.get(ft.VNFs[ft.VNFs.length - 1]);
if (dp[u][v][k][2] != 0 && dp[u][v][k][2] != Double.MAX_VALUE) {

this.optimalCost = dp[u][v][k][2] + this.minCostStart +
this.minCostEnd;

int i = u;
int j = v;
int e = k;
int idx = 0;
ft.VNFs[idx] = ft.switchesTable[i];
this.optimalVNFs[idx] = ft.switchesTable[i];
idx++;
while (e != 1) {

i = (int)dp[i][j][e][0];
j = (int)dp[i][j][e][1];
ft.VNFs[idx] = ft.switchesTable[i];
this.optimalVNFs[idx] = ft.switchesTable[i];

61

idx++;
e--;

}
} else {

DP(ft, dp, visited);
}

if (lowestCost > this.optimalCost) {
lowestCost = this.optimalCost;
for (int i = 0; i < bestVNFs.length; i++) {

bestVNFs[i] = this.optimalVNFs[i];
}

}

}
}

}

this.optimalCost = lowestCost;
for (int i = 0; i < bestVNFs.length; i++) {

this.optimalVNFs[i] = bestVNFs[i];
ft.VNFs[i] = bestVNFs[i];

}
}

/**
* The major part for DP Algorithm (Algorithm 1 in the report)
* @param ft FatTree object
* @param dp 4-DP array
* @param visited stored occupied switches
*/
public void DP(FatTree ft, double[][][][] dp, int[][][][] visited) {

boolean isBiggerThanPrev = false;

HashMap<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < ft.switchesTable.length; i++) {

map.put(ft.switchesTable[i], i);
}

if (ft.VNFs.length == 1) {

62

for (int swit: ft.switchesTable) {
ft.VNFs[0] = swit;
double minCost = cost.calculateTotalCost(ft);
if (this.optimalCost > minCost) {

this.optimalCost = minCost;
this.optimalVNFs[0] = swit;

}
}
ft.VNFs[0] = this.optimalVNFs[0];
return;

}

int u = map.get(ft.VNFs[0]);
int v = map.get(ft.VNFs[ft.VNFs.length - 1]);
int k = ft.VNFs.length - 1;
int len = graph.length;
for (int e = 1; e <= k; e++) {// edges

double globalMinVal = Double.MAX_VALUE;
for (int i = 0; i < len; i++) {// sources

for (int j = 0; j < len; j++) {// destinations
dp[i][j][e] = new double[] {i, j, Double.MAX_VALUE};

if (e == 1) {
visited[i][j][e][i] = 1;
visited[i][j][e][j] = 1;
dp[i][j][e][2] = graph[i][j];

}

if (e > 1) {

int minIndex = -1;
double minVal = Double.MAX_VALUE;
if (dp[i][j][e][2] != 0 && dp[i][j][e][2] !=

Double.MAX_VALUE) {
continue;

}
for (int a = 0; a < len; a++) {

if (a != u && a != v && i != a && j != a && dp[i][j][e
- 1][2]

!= Double.MAX_VALUE) {
if ((minVal > graph[i][a] + dp[a][j][e - 1][2]) &&

63

(visited[a][j][e - 1][i] == 0)) {
minIndex = a;
minVal = graph[i][a] + dp[a][j][e - 1][2];

}

}
}

globalMinVal = Math.min(globalMinVal, minVal);
if (minIndex != -1) {

for (int m = 0; m < visited[i][j][e].length; m++) {
visited[i][j][e][m] = visited[minIndex][j][e -

1][m];
}
visited[i][j][e][i] = 1;
dp[i][j][e] = new double[]{minIndex, j, minVal};

}
}

}
}
if (globalMinVal > this.optimalCost) {

isBiggerThanPrev = true;
break;

}
}
if (isBiggerThanPrev) {

this.optimalCost = Double.MAX_VALUE;
return;

}
this.optimalCost = dp[u][v][k][2] + this.minCostStart + this.minCostEnd;
int i = u;
int j = v;
int e = k;
int idx = 0;
ft.VNFs[idx] = ft.switchesTable[i];
this.optimalVNFs[idx] = ft.switchesTable[i];
idx++;
while (e != 1) {

i = (int)dp[i][j][e][0];
j = (int)dp[i][j][e][1];
ft.VNFs[idx] = ft.switchesTable[i];

64

this.optimalVNFs[idx] = ft.switchesTable[i];
idx++;
e--;

}
}

/**
* Create an adjacency matrix between different switches
* @param ft FatTree ojbect
*/
public void createGraph(FatTree ft) {

graph = new double[ft.switchesTable.length][ft.switchesTable.length];
for (int i = 0; i < ft.switchesTable.length; i++) {

for (int j = 0; j < ft.switchesTable.length; j++) {
graph[i][j] =
ft.costTable[ft.switchesTable[i]][ft.switchesTable[j]] *

ft.totalFrequency;
}

}

}

}

9.3. Exhaustive algorithm for placement and migration
/**
* <h1>Exhaustive Algorithm </h1>
* The Exhaustive program implements exhaustive algorithm to placing VNFs or
migrating VNFs.
* This method try each possible VNFs chain and calculate the cost. It is NP-hard.
* However, our Algorithm makes some optimzing by cutting branches based on current
* cost and future minimum steps
* @author sunjingsong
* @version 1.0
* @since 8-3-2020
*/
public class Exhaustive {

// Data Field
public int operation;

65

public Cost cost;
public int[] originalVNFs;
public int[] optimalVNFs;
public double originalCost;
public double optimalCost;

/**
* This is the construct method for instantiating this model
* @param operation 0-Placement, 1-Migration
* @param cost The model for calculating cost
*/
public Exhaustive(int operation, Cost cost) {

this.operation = operation;
this.cost = cost;
if (operation == 0) {

System.out.println("Exhaustive Method To Placement");
} else {

System.out.println("Exhaustive Method To Migration");
}

}

/**
* This is the entry point method to input FatTree, original VNFs chains,
* current optimal VNFs chains and their correspond cost
* This method start the exhaustive algorithm
* @param ft FatTree Topology with the data(i.e. VM pairs, VNFs, Frequency,and

switches)
* @param originalVNFs Initial VNFs chains
* @param optimalVNFs Initial Optimal VNFs chains
* @param originalCost Initial total cost
* @param optimalCost Optimal cost
* @return optimal cost based on DP Algorithm
*/
public double execute(FatTree ft, int[] originalVNFs,

int[] optimalVNFs, double originalCost, double optimalCost) {
this.originalVNFs = originalVNFs;
this.optimalVNFs = optimalVNFs;
this.originalCost = originalCost;
this.optimalCost = optimalCost;

66

int index = 0;
HashSet<Integer> used = new HashSet();
help(ft, index, used);
for (int i = 0; i < ft.optimalVNFs.length; i++) {

ft.optimalVNFs[i] = this.optimalVNFs[i];
}
return this.optimalCost;

}

/**
* This is the major part for exhaustive algorithm(Optimal solution in report)
* @param ft FatTree Object
* @param index indicates the length of VNFs chain
* @param used stored occupied switches to prevent duplicated placement
*/
public void help(FatTree ft, int index, HashSet<Integer> used) {

if (index == this.optimalVNFs.length) {
optimize(ft);
return;

}

for (int i = 0; i < ft.switchesTable.length; i++) {

if (!used.contains(i)) {
int temp = ft.switchesTable[i];
ft.VNFs[index] = ft.switchesTable[i];
if (index < this.optimalVNFs.length && !optimize(ft, index + 1))

{
ft.VNFs[index] = temp;
continue;

}
used.add(i);
help(ft, index + 1, used);
used.remove(i);

}
}

}

/**
* Find if the cost of partial VNFs chain is greater than optimal cost
* If so then return true, if not return false

67

* @param ft FatTree Object
* @param n current number of VNFs
* @return
*/
public boolean optimize(FatTree ft, int n) {

double operationCost = this.operation == 0? 0: cost.migrateCost(ft,
this.originalVNFs);

double positionCost = cost.calculateTotalCost(ft, n);
double cost = positionCost + operationCost;

if (cost < this.optimalCost) {
return true;

} else {
return false;

}
}

/**
* Find the optimal cost
* @param ft FatTree Object
*/
public void optimize(FatTree ft) {

double operationCost = this.operation == 0? 0: cost.migrateCost(ft,
this.originalVNFs);

double positionCost = cost.calculateTotalCost(ft);
double cost = positionCost + operationCost;

if (cost < this.optimalCost) {
this.optimalCost = cost;
for (int i = 0; i < this.optimalVNFs.length; i++) {

this.optimalVNFs[i] = ft.VNFs[i];
}

}
}

}

9.4. Greedy algorithm for placement
/**

68

* <h1>Greedy Algorithm For Placement </h1>
* A two-step greedy algorithm for placement in the report
* @author sunjingsong
* @version 1.0
* @since 8-3-2020
*/
public class Greedy {

public int operation;
public Cost cost;
public int[] originalVNFs;
public int[] optimalVNFs;
public double originalCost;
public double optimalCost;
public double[][] graph;
public double minCostStart = Double.MAX_VALUE;
public double minCostEnd = Double.MAX_VALUE;

public Greedy(int operation, Cost cost) {
this.operation = operation;
this.cost = cost;
if (operation == 0) {

System.out.println("Greedy Algorithm To Placement");
} else {

System.out.println("Greedy Algorithm To Migration");
}

}

public double execute1(FatTree ft, int[] originalVNFs,
int[] optimalVNFs, double originalCost, double optimalCost) {
System.out.println("Algo 1");
this.originalVNFs = originalVNFs;
this.optimalVNFs = optimalVNFs;
this.originalCost = originalCost;
this.optimalCost = optimalCost;
algorithm1(ft);
return this.optimalCost;

}

public void algorithm1(FatTree ft) {
int n = ft.VNFs.length;

69

HashSet<Integer> set = new HashSet<>();
// Without VNFs
// double cost = this.cost.totalCostWithoutVNF(ft);
// Greedy placement VNF one by one
for (int i = 1; i <= n; i++) {

int minIndex = -1;
// double baseCost = this.cost.calculateTotalCost(ft, i - 1);
double minCost = Double.MAX_VALUE;
for (int j = 0; j < ft.switchesTable.length; j++) {

ft.VNFs[i - 1] = ft.switchesTable[j];
if (!set.contains(ft.switchesTable[j])) {

double newCost = this.cost.calculateTotalCostGreedy(ft, i);

if (newCost < minCost) {
minCost = newCost;
minIndex = j;

}
}

}
set.add(ft.switchesTable[minIndex]);
ft.VNFs[i - 1] = ft.switchesTable[minIndex];
this.optimalVNFs[i - 1] = ft.switchesTable[minIndex];

}
this.optimalCost = this.cost.calculateTotalCost(ft);

}

public double execute2(FatTree ft, int[] originalVNFs,
int[] optimalVNFs, double originalCost, double optimalCost) {
System.out.println("Algo 2");
this.originalVNFs = originalVNFs;
this.optimalVNFs = optimalVNFs;
this.originalCost = originalCost;
this.optimalCost = optimalCost;
algorithm1(ft);
return this.optimalCost;

}

public void algorithm2(FatTree ft) {
int n = ft.VNFs.length;
HashSet<Integer> set = new HashSet<>();
// Without VNFs

70

double oldCost = this.cost.totalCostWithoutVNF(ft);
// Greedy placement VNF one by one
for (int i = 1; i <= n; i++) {

int minIndex = -1;
double minScore = Double.MAX_VALUE;
for (int j = 0; j < ft.switchesTable.length; j++) {

ft.VNFs[i - 1] = ft.switchesTable[j];
if (!set.contains(ft.switchesTable[j])) {

double newCost = this.cost.calculateTotalCostGreedy(ft, i);
double scoreOrg = newCost - oldCost;
double scoreEd = this.cost.calculateED(ft, i,

ft.switchesTable[j]);
double score = scoreOrg + scoreEd;
if (score < minScore) {

minScore = score;
minIndex = j;

}
}

}
set.add(ft.switchesTable[minIndex]);
ft.VNFs[i - 1] = ft.switchesTable[minIndex];
this.optimalVNFs[i - 1] = ft.switchesTable[minIndex];

}
this.optimalCost = this.cost.calculateTotalCost(ft);

}
}

9.5. Calculate FatTree cost
public class Cost {

public void endCosts(FatTree ft) {
for (int pos: ft.switchesTable) {

double start = 0, end = 0;
for (Integer[] item : ft.pairs) {

start += ft.costTable[pos][item[0]] * item[2];
end += ft.costTable[pos][item[1]] * item[2];

}
ft.start.put(pos, start);
ft.end.put(pos, end);
ft.minEnd = Math.min(ft.minEnd, end);

71

}
}

public double totalCostWithoutVNF(FatTree ft) {
double result = 0;
for (Integer[] pair: ft.pairs) {

result += ft.costTable[pair[0]][pair[1]] * pair[2];
}
return result;

}

public double calculateTotalCost(FatTree ft) {
double totalCost = 0.0;
double totalDistance = 0.0;
totalCost += ft.start.get(ft.VNFs[0]);
totalCost += ft.end.get(ft.VNFs[ft.VNFs.length - 1]);

if (ft.VNFs.length > 0) {
for (int i = 0; i < ft.VNFs.length - 1; i++) {

totalDistance += ft.costTable[ft.VNFs[i]][ft.VNFs[i + 1]];
}
totalCost += totalDistance * ft.totalFrequency;

}
return totalCost;

}

public double calculateTotalCostGreedy(FatTree ft, int k) {
double totalCost = 0.0;
double totalDistance = 0.0;
totalCost += ft.start.get(ft.VNFs[0]);
totalCost += ft.end.get(ft.VNFs[ft.VNFs.length - 1]);

if (ft.VNFs.length > 0) {
for (int i = 0; i < ft.VNFs.length - 1; i++) {

totalDistance += ft.costTable[ft.VNFs[i]][ft.VNFs[i + 1]];
}
totalCost += totalDistance * ft.totalFrequency;

}
return totalCost;

72

}

public double calculateTotalCost(FatTree ft, int k) {
double totalCost = 0.0;
double totalDistance = 0.0;
totalCost += ft.start.get(ft.VNFs[0]);
totalCost += ft.minEnd;

if (k > 1) {
for (int i = 0; i < k - 1; i++) {

totalDistance += ft.costTable[ft.VNFs[i]][ft.VNFs[i + 1]];
}
totalDistance += ft.VNFs.length - k;
totalCost += totalDistance * ft.totalFrequency;

}
return totalCost;

}

public double calculateED(FatTree ft, int k, int l) {
int n = ft.pairs.size();
HashSet<Integer> set = new HashSet<>();
set.add(l);
for (int i = 0; i < k; i++) {

set.add(ft.VNFs[i]);
}
double totalDistance = 0;
if (ft.VNFs.length > 0) {

for (int i = 0; i < ft.switchesTable.length; i++) {
if (!set.contains(ft.switchesTable[i])) {

totalDistance += ft.costTable[ft.switchesTable[i]][l];
}

}
}
return totalDistance / (ft.switchesTable.length - set.size()) * n;

}

public double migrateCost(FatTree ft, int[] oldVNFs) {
double distance = 0.0;
int len = oldVNFs.length;
for (int i = 0; i < len; i++) {

distance += ft.costTable[ft.VNFs[i]][oldVNFs[i]];

73

}
double cost = distance * ft.migrateCoefficient;
return cost;

}

public double twoNodesMigrateCost(FatTree ft, int node1, int node2) {
double distance = ft.costTable[node1][node2];
double cost = distance * ft.migrateCoefficient;
return cost;

}

public double printMigrateCost(FatTree ft, int[] oldVNFs) {
double totalCost = 0.0;
int len = oldVNFs.length;
for (int i = 0; i < len; i++) {

double cost = ft.costTable[ft.VNFs[i]][oldVNFs[i]]*
ft.migrateCoefficient;

System.out.println("The migration cost of " +
ft.indexNodeMap.get(ft.VNFs[i]) + " from " + ft.indexNodeMap.get(oldVNFs[i])

+ " to " + ft.indexNodeMap.get(ft.VNFs[i]) + " is " + cost);
totalCost += cost;

}
System.out.println("The total migration cost is: " + totalCost);
return totalCost;

}
}

9.6. Calculate FatTree hops between switches
public class Distance {

public Distance(FatTree ft) {
int i = 0;
int j = 0;
for (String node1: ft.allPositions) {

for (String node2: ft.allPositions) {
ft.distance.put(node1 + node2, calculateDistance(ft, node1,

node2));
ft.costTable[i][j++] = calculateDistance(ft, node1, node2);

74

}
i++;
j = 0;

}
}

public double calculateDistance(FatTree ft, String node1, String node2) {
// same nodes
if (node1 == node2) {
return 0;
} else if (!isNode(node1) || !isNode(node2)) {
return -1;
}

// cs--cs
if (node1.substring(0, 2).equals("cs") && node2.substring(0,

2).equals("cs")) {
if (sameAggr(ft, node1, node2)) {

return 2;
} else {

return 4;
}
}

// cs--as or as--cs
if (node1.substring(0, 2).equals("cs") && node2.substring(0,

2).equals("as")||
node1.substring(0, 2).equals("as") && node2.substring(0,

2).equals("cs")) {
if (ft.links.get(node1).contains(node2)) return 1;
else return 3;
}

// cs--es or es--cs
if (node1.substring(0, 2).equals("cs") && node2.substring(0,

2).equals("es")||
node1.substring(0, 2).equals("es") && node2.substring(0,

2).equals("cs")) {
return 2;

75

}

// cs--pm or pm--cs
if (node1.substring(0, 2).equals("cs") && node2.substring(0,

2).equals("pm")||
node1.substring(0, 2).equals("pm") && node2.substring(0,

2).equals("cs")) {
return 3;
}

// as--as
if (node1.substring(0, 2).equals("as") && node2.substring(0,

2).equals("as")) {
if (node1.substring(0, 3).equals(node2.substring(0, 3))) { // same pod

return 2;
} else { // different pod

// connected to same core switch
for (String item: ft.links.get(node1)) {

if (item.substring(0, 2).equals("cs")) {
if (ft.links.get(node2).contains(item)) return 2;

}
}
// different core switch
return 4;

}
}

// as--es or es--as
if (node1.substring(0, 2).equals("as") && node2.substring(0,

2).equals("es")||
node1.substring(0, 2).equals("es") && node2.substring(0,

2).equals("as")) {
if (node1.substring(2, 3).equals(node2.substring(2, 3))) { // same

pod
return 1;

} else { // different pod
return 3;

}
}

// as--pm or pm--as

76

if (node1.substring(0, 2).equals("as") && node2.substring(0,
2).equals("pm")||

node1.substring(0, 2).equals("pm") && node2.substring(0,
2).equals("as")) {

if (node1.substring(2, 3).equals(node2.substring(2, 3))) { // same pod
return 2;

} else { // different pod
return 4;

}
}

// es--es
if (node1.substring(0, 2).equals("es") && node2.substring(0,

2).equals("es")) {
if (node1.substring(0, 3).equals(node2.substring(0, 3))) { // same pod

return 2;
} else { // different pod

return 4;
}
}

// es--pm or pm--es
if (node1.substring(0, 2).equals("es") && node2.substring(0,

2).equals("pm")||
node1.substring(0, 2).equals("pm") && node2.substring(0,

2).equals("es")) {
if (node1.substring(2, 3).equals(node2.substring(2, 3))) { // same pod

if (node1.substring(3, 5).equals(node2.substring(3, 5))) {// same edge
return 1;

} else { // different edge
return 3;

}
} else { // different pod

return 5;
}
}

// pm--pm
if (node1.substring(0, 2).equals("pm") && node2.substring(0,

2).equals("pm")) {

77

if (node1.substring(0, 3).equals(node2.substring(0, 3))) { // same pod
if (node1.substring(3, 5).equals(node2.substring(3, 5))) {// same edge

return 2;
} else {

return 4;
}

} else { // different pod
return 6;

}
}

return -1;

}

public boolean sameAggr(FatTree ft, String node1, String node2) {
for (String item: ft.links.get(node1)) {

if (item.substring(0, 2).equals("as")) {
if (ft.links.get(node2).contains(item)) return true;

}
}
return false;

}
public boolean isNode(String node) {

return node.substring(0,2).equals("pm") ||
node.substring(0,2).equals("cs") ||

node.substring(0,2).equals("as") ||
node.substring(0,2).equals("es");

}

}

9.7. Benefit Algorithm For Migration
public class Benefit {

public int[] originalVNFs;
public int[] optimalVNFs;
public double originalCost;
public double optimalCost;

78

public FatTree ft;
public Cost cost;
public Benefit(FatTree ft, int[] originalVNFs, int[] optimalVNFs,

double originalCost, double optimalCost) {
this.ft = ft;
this.originalVNFs = originalVNFs;
this.optimalVNFs = optimalVNFs;
this.originalCost = originalCost;
this.optimalCost = optimalCost;
cost = new Cost();

}

public void execute() {
migrateVNFs();
for (int i = 0; i < this.optimalVNFs.length; i++) {

ft.optimalVNFs[i] = this.optimalVNFs[i];
}

}

public void migrateVNFs() {
HashSet<Integer> set = new HashSet();
for (int VNF: this.originalVNFs) {

set.add(VNF);
}
int[] tempVNFs = new int[this.originalVNFs.length];
for (int i = 0; i < tempVNFs.length; i++) {

tempVNFs[i] = this.originalVNFs[i];
}

double minCost = this.optimalCost;
for (int i = 0; i < tempVNFs.length; i++) {

for (int pos: ft.switchesTable) {
double tempCost = 0;
if (!set.contains(pos)) {

int temp = tempVNFs[i];
tempVNFs[i] = pos;
tempCost += cost.calculateLocationCost(ft, tempVNFs);
tempCost += cost.migrateCost(ft, this.originalVNFs,

tempVNFs);
if (tempCost < minCost) {

minCost = tempCost;

79

set.remove(temp);
set.add(pos);

} else {
tempVNFs[i] = temp;

}
}

}
}

for (int i = 0; i < tempVNFs.length; i++) {
this.optimalVNFs[i] = tempVNFs[i];

}
}

}

9.8. StepWise Algorithm For Migration
public class Stepwise {

public int[] originalVNFs;
public int[] optimalVNFs;
public double originalCost;
public double optimalCost;
public int maxHops;
public FatTree ft;
public Cost cost;
HashMap<Integer, HashSet<Integer>> graph;
ArrayList<ArrayList<int[]>> paths;
public Stepwise(FatTree ft, int[] originalVNFs, int[] optimalVNFs,

double originalCost, double optimalCost) {
this.ft = ft;
this.originalVNFs = originalVNFs;
this.optimalVNFs = optimalVNFs;
this.originalCost = originalCost;
this.optimalCost = optimalCost;
cost = new Cost();

}

public void execute() {
createGraph();
findPaths();
migrateVNFs();

80

for (int i = 0; i < this.optimalVNFs.length; i++) {
ft.optimalVNFs[i] = this.optimalVNFs[i];

}
//shortestPath();

}

public void migrateVNFs() {
HashSet<Integer> visited = new HashSet();
for (int VNF: this.originalVNFs) {

visited.add(VNF);
}

int[] tempVNFs = new int[ft.VNFs.length];
for (int i = 0; i < tempVNFs.length; i++) {

tempVNFs[i] = this.originalVNFs[i];
}

double minCost = this.originalCost;
for (int i = 0; i < paths.size(); i++) {

ArrayList<int[]> path = paths.get(i);
for (int j = 0; j < path.size(); j++) {

if (!visited.contains(path.get(j)[0])) {
visited.add(path.get(j)[0]);
tempVNFs[i] = path.get(j)[0];
double totalCost = totalCost(tempVNFs);
if (totalCost < minCost) {

minCost = totalCost;
updateOptimalVNFs(tempVNFs);

}
}

}
}
this.optimalCost = minCost;

}

public void updateOptimalVNFs(int[] tempVNFs) {
for (int i = 0; i < tempVNFs.length; i++) {

this.optimalVNFs[i] = tempVNFs[i];
}

}
public double totalCost(int[] modifiedVNFs) {

81

double hop = 0.0;
double totalCost = 0.0;
for (int i = 0; i < modifiedVNFs.length; i++) {

hop += ft.costTable[modifiedVNFs[i]][this.originalVNFs[i]];
}
totalCost += hop * ft.migrateCoefficient;
totalCost += cost.calculateLocationCost(ft, modifiedVNFs);
return totalCost;

}

public void findPaths() {
paths = new ArrayList();
for (int i = 0; i < this.originalVNFs.length; i++) {

ArrayList<int[]> path = shortestPath(this.originalVNFs[i],
this.optimalVNFs[i]);

paths.add(path);
}

}

public ArrayList<int[]> shortestPath(int s, int t) {
int[] nodes = new int[ft.costTable.length];
Arrays.fill(nodes, Integer.MAX_VALUE);
nodes[s] = 0;

HashSet<Integer> visited = new HashSet();
ArrayList<int[]> path = new ArrayList<>();

PriorityQueue<ArrayList<int[]>> pq = new PriorityQueue<ArrayList<int[]>>(
(ArrayList<int[]> a, ArrayList<int[]> b) -> {

return a.get(a.size() - 1)[1] - b.get(b.size() - 1)[1];
});

int chosenIndex = s;
path.add(new int[] {chosenIndex, nodes[chosenIndex]});
visited.add(chosenIndex);

while (chosenIndex != t) {
for (int adj: graph.get(chosenIndex)) {
if (!visited.contains(adj)) {

int hop = nodes[chosenIndex] + 1;

82

if (hop < nodes[adj]) {
nodes[adj] = hop;
ArrayList<int[]> temp = new ArrayList();
temp.addAll(path);
temp.add(new int[] {adj, nodes[adj]});
pq.offer(temp);

}
}
}
if (!pq.isEmpty()) {
path.clear();
ArrayList<int[]> temp = pq.poll();
path.addAll(temp);
chosenIndex = temp.get(temp.size() - 1)[0];
visited.add(chosenIndex);
} else {
return null;
}

}
return path;

}

public void createGraph() {
this.graph = new HashMap();
for (int i = 0; i < ft.costTable.length; i++) {

for (int j = 0; j < ft.costTable[i].length; j++) {
if (ft.costTable[i][j] == 1.0) {

graph.putIfAbsent(i, new HashSet<>());
graph.putIfAbsent(j, new HashSet<>());
graph.get(i).add(j);
graph.get(j).add(i);

}
}

}
}

}

	ABSTRACT
	1.INTRODUCTION
	2.RELATED WORK
	3.PRELIMINARIES
	4.PPP: POLICY-AWARE VNF PLACEMENT
	5.PPM: POLICY-PRESERVING VNF MIGRATION
	2. for (1 ≦ i ≦|V|)
	6.PERFORMANCE EVALUATION
	7.CONCLUSIONS AND FUTURE WORK
	8.REFERENCES
	[1] Cisco global cloud index: Forecast and methodo
	9.APPENDIX
	i = rand.nextInt(size - 1);
	 i = rand.nextInt(size - 1);
	 j = rand.nextInt(str.size());
	i = rand.nextInt(size - 1);
	i = rand.nextInt(size - 1);
	 j = rand.nextInt(str.size());
	 i = (int)dp[i][j][e][0];
	 j = (int)dp[i][j][e][1];
	i = (int)dp[i][j][e][0];
	j = (int)dp[i][j][e][1];
	j = 0;

