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ABSTRACT 

Data redistribution problem has become a key challenge in the data intensive sensor networks 

(DISNs), wherein large volume of sensory data are sensed and generated from some sensor 

nodes about their surrounding physical world. Due to the resource constraints of sensor nodes 

there is a need to redistribute (offload) the generated data to the nodes with free storage space. 

However, such data redistribution, if not managed well, could be a serious energy drain not only 

to the data generators’ battery power but also to other sensor nodes involved in the redistribution 

process. We implement the data redistribution algorithms, which deal with redistribution of 

generated data and strive to minimize the energy consumption incurred by the data redistribution, 

while fully utilizing the storage capacity in the DISNs.  We first show that our redistribution 

problem is equivalent to the balanced assignment problem, which can be solved with well-known 

Hungarian algorithm. However, the Hungarian algorithm gives O(N )
3
 time complexity where 

N is the total number of sensor nodes in the network and    is the average storage capacity of 

each node. We design a fully distributed, highly scalable, and efficient data distributed 

mechanism, which is also adaptable to network dynamics such as dynamic data generating. We 

show both analytically and experimentally, our proposed distributed mechanism achieves best 

results. The goal of the thesis is to maximize the storage utilization of the sensor network and 

minimize the energy consumption required for the whole process of data redistribution. We focus 

on the in-network data redistribution where the data is redistributed between the highly utilized 

nodes and lightly utilized nodes.  
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Chapter-1 

INTRODUCTION 

We study how to redistribute the large amount of data into the network to fully utilize the storage 

capacity of all the sensor nodes, while at the same time, minimizing energy consumption 

incurred by the data redistribution. Note that we are not concerned with the data retrieval, which 

can be done using data mules [15] or by human operators manually. Since data redistribution is 

energy expensive wireless communication, a data generator obviously prefers to offload the data 

to other sensors close to it. When there are very few data generators distant from each other’s or 

the amount of data to offload is small, this problem becomes trivial – each data generator can 

perform a breadth first search (BFS) ordering of distance to other sensor nodes and offload data 

to its one-hop neighbors first, then two-hop neighbors and so on. However, when data generators 

are close to each other, or the amount of generated data is comparable to the amount of available 

storage space in the networks, redistribution contention arises. As shown in Figure 1, data 

generators DG1, DG2, and DG3 have conflicting offloading data storage area with each other. 

We call the sensor nodes, which are pursued by multiple data generators contention sensor 

nodes. The challenge is how to resolve such contention for data generators while still achieving 

optimal energy-efficient data redistribution.  

Two questions have to be answered:  

 How does a node know it is in the contention area?  

 Which data generator should go to get the contention node (especially, when one DG’s 

contention set is a subset of the other)?  
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.  

Fig.1. Data redistribution problem in sensor networks. 

Specifically, our data redistribution problem and algorithms should address the following 

questions: In an offline and centralized version where the data generators and the amount of data 

to be redistributed by each are already known, how does each data generator choose the 

destination nodes to redistribute their data? How much data to redistribute? In an online and 

distributed environment, where nodes do not know the network topologies and data are generated 

dynamically, how do data generators coordinate with each other so not to redistribute to the same 

area (or nodes) in the sensor networks? To answer the first question, we formulate the data 

redistribution problem as a graph-theoretical problem and show that it is equivalent to the 

assignment problem, which has polynomial time optimal solution. For the second question, we 

consider the data generators as electrical point charges and model the sensor network as the 
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electrostatic potential field in physics. We study the data redistribution as the movement of 

electric particle in the potential field consequently. 

1.1 Contribution of Thesis 

The main results and contributions are as follows:  

1) To the best of our knowledge, our work is the first one to formally formulate and study the 

data redistribution problem in sensor networks. 

2) We show that the data redistribution problem is equivalent to the classic balanced assignment 

problem, which can be solved optimally in polynomial time using Hungarian algorithm [7]. 

3) We propose heuristic algorithms to optimize Hungarian algorithm in the aspect of reducing 

the number of sensor nodes involved.  

4) We design a novel distributed algorithm by applying potential function of Electrostatics in 

Physics. Specifically, we implement a distributed protocol to establish potential fields to 

facilitate the data redistribution.  

5) Through our own simulator (written in C language), we show that our distributed algorithm is 

competitive to the centralized algorithm.  
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Chapter-2 

LITERATURE REVIEW 

2.1 Background and Motivation 

2.1.1 Data Intensive Sensor Networks (DISNs) 

Wireless sensor networks consist of spatially distributed small computing, communicating and 

sensing devices that have limited resources (processing speed, battery power, storage capacity, 

and communication bandwidth), which allow us to interact with the physical world around us. It 

has become a reality that the sensor network applications are no longer limited to just ambient 

sensing (e.g. light or temperature) or environmental and weather monitoring. With the 

emergence of a rich collection of sensory sources such as video cameras, microphones, RFID 

readers, telescopes and seismometers, a whole new array of data-intensive sensing applications 

have been researched and developed recently. They include multimedia surveillance networks 

[5], visual and acoustic sensor networks [10, 18], underwater or ocean seismic sensor networks 

[1, 9, 20] and geophysical monitoring [12, 21]. In such data intensive sensor networks (DISNs), 

large amount of sensed data about the physical environment are generated continuously from 

some sensor nodes called data generators.  

2.1.2 Challenges 

One of the major research problems in data intensive sensor network is how to manage the large 

amount of generated data and the mechanism to store these data for future retrieval or analysis. 

We call this problem as data redistribution problem. Large amount of data loss can be avoided by 

offloading data at the right time and to the right neighboring nodes.  

The need for data storage management arises primarily in class of sensor networks where 

information collected is not relayed to observers in real-time. The storage determines useful 
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lifetime and coverage of network. As once the available storage space is exhausted, a sensor can 

no longer collect and store data locally. Thus, data redistribution plays vital role where the rate of 

data generation is not uniform at sensors, some sensors may run out of storage space while space 

remains available at other nodes. By redistributing the data we can stabilize the network and 

balance the data among the sensor nodes. We study how to redistribute the data to the under-

loaded nodes and select a best possible destination sets for offloading the data from the over-

loaded nodes.  

Despite the advances in large lower-power flash memory such as parallel NAND flash 

technology [2], storage is still a serious resource constraint in data intensive sensor networks. 

According to [10], an acoustic sensor that has a 1GB flash memory and is designed to sample the 

entire audible spectrum will run out of its storage in 7 hours. Therefore, a major challenge in 

DISNs is that how to temporarily store the massive amount of generated data inside the sensor 

networks under limited storage capacity and battery power.  

2.2 Related Work 

More recently, new cooperative storage system for sensor networks called EnviroStore has been 

proposed by Luo et al. [11] to maximize the utilization of the network’s data storage capacity. To 

the best of our knowledge, [11] is the only work to study data redistribution to maximize data 

storage capacity in sensor networks. The storage system of EnviroStore is mainly designed for 

the disconnected operation in sensor networks where sensor nodes are deployed without any 

connected path to a base station. They came up with two data redistribution mechanisms. One is 

called in-network data redistribution, wherein data are migrated from nodes that are highly 

loaded (in terms of storage capacity) to nodes that are not. The other is called cross-partition 

data redistribution, wherein data are offloaded from overloaded network partitions to under 
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loaded partitions using mobile data mules. Both data redistribution mechanisms are heuristic-

based. We focus on the problem of in-network data redistribution. We formulate the data 

redistribution problem and design algorithms to achieve both storage maximization and energy 

minimization.  

The data migration problem has been studied extensively in the field of parallel computing [14, 

17] and disk storage [6]. They mainly study how to schedule workload and move associated data 

from source processors to destination processors, or change one storage configuration into 

another, to better respond to the data demand changes for the purpose of load balancing.  

Our problem concerns with the data redistribution energy minimization while fully utilizing 

storage capacity in wireless sensor networks. Our problem bears a resemblance to the graph 

Voronoi diagram problem [3] in the sense of “areas of influence”. Graph Voronoi diagram is the 

graph theory equivalency of the classical Voronoi diagram in computational geometry. Graph 

Voronoi diagram characterizes regions of proximity in graphs based on shortest paths between 

nodes. Yet there are two differences between our data redistribution problem and graph Voronoi 

diagram problem. First, in data redistribution problem, the node has weight, which indicates the 

size of the data to be redistributed. Second, graph Voronoi diagram does not consider the 

“capacity” of each node, which in our problem signifies the available storage space of sensor 

nodes. 

We compare our problem with generalized assignment problem proposed by Shmoys and 

Tardos[16]. It is stated as follows. There are a set of jobs and a set of machines – each job is to 

be processed by exactly one machine. Processing job j on machine i requires processing time pij  

and incurs a  cost of cij . Machine i has Ti processing time available. The objective of the 

generalized assignment problem is to minimize the total cost under the processing time 
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constraint of each machine. Shmoys and Tardos design a polynomial-time algorithm which, 

given a value C , either proves that no feasible schedule  of cost C exists, or finds a schedule of 

cost at most C  where machine i is available for at most 2Ti processing time. To map 

the generalized assignment problem to our data redistribution problem, cij is the shortest distance 

between the data generator of data item i and node j; each node has Ti   available storage space; 

storing data item j on node i occupies dj of i’s storage space. Being a graph-theoretical problem, 

our problem differs from generalized assignment problem. Moreover, Shmoys and Tardos 

relaxed the processing time constraint of each node. In our problem, the storage constraint each 

node is a stringent constraint and thus can n relaxed.  

There are a number of works that have adopted the idea of potential functions in sensor networks 

(see [19] for a good survey paper). They either study how to route packets from source to 

destination to avoid congestion in anycast [8] or multipath routing [13], or study the placement 

of mobile sinks in wireless sensor networks for energy balancing. In all those problems, there are 

particular traffic sources and sinks. In our data redistribution problem, we have traffic sources 

(data generators) while trying to find the sinks (offloaded nodes). The goal is to maximize 

storage utilization while reducing redistribution energy cost, which is different from above 

problems. 

2.3 Organization of thesis 

The rest of the thesis is organized as follows. In Chapter 3, we formalize the data redistribution 

problem and illustrate it with a simple example and prove that the data redistribution problem is 

equivalent to the balanced assignment problem. We present our data redistribution algorithm 

called potential field based distributed algorithm. In Chapter 4, we compare our proposed 
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centralized algorithms and our distributed algorithm with Hungarian algorithm, and present our 

analysis. Finally we make conclusion and point out our future work in Chapter 5. 



9 

 

Chapter-3 

Proposed Model 

3.1 Data Redistribution Problem 

In our data redistribution problem, there are sensor nodes, which generate continuous large 

amount of data and other sensor nodes, which do not generate any sensory data. Sensory data is a 

sequence of raw data item, which are of unit size. As the sensor nodes have limited storage 

capacity, the data generators when fully utilize their local storage has a need to redistribute the 

additional data to the sensor nodes with available storage space.  

The objective of the data redistribution problem is to redistribute/offload the data items from the 

data generators to other nodes in order to maximize the overall storage capacity of the entire 

network while minimizing the power consumption of the entire network. We measure the power 

consumption as a metric of number of hops (i.e. the distance from the data generators to all the 

nodes to which the data items have been redistributed). We choose the optimal path and thus 

reducing the overall cost of the network. We state the power consumption as the total 

redistribution cost of the network.  

3.2 Problem Formulation 

We represent our sensor network graph as G (V, E) where V = {1, 2, …, i,…, N} is the set of 

nodes and E is the set of edges. Two nodes can communicate directly with each other if there 

exists an edge between them. We use dij to denote the shortest path distance (in number of hops) 

between two sensor nodes i and j. We use si to denote the number of data items node i needs to 

redistribute and mi the available free storage space (in number of data items) at node i. If si > 0, 

then mi = 0, meaning node i is full and it cannot store data items offloaded by other nodes. Node 

i is a data generator in this case. If si = 0, then node i can store mi data items offloaded from other 
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nodes.  

Each data generator redistributes one data item at a time. For our energy cost model, we use the 

number of hops a data item transmits to approximate the energy consumption of redistributing 

the data item. This can be explained by the equal size of the data items and uniform distribution 

of sensor nodes, according to the First order radio model [4]: for a k-bit data over distance d, the 

transmission energy.  ETx(k,d) = Eelec* k+  *k*d
2
, the receiving energy. ERx(k)= Eelec*k,  

where  Eelec   and    are constants . The redistribution cost for data generator i (with si number 

of data items to redistribute) is the sum of the number of hops to redistribute all si data items. 

The total redistribution cost of the sensor networks is defined as the sum of the redistribution 

cost of all the data generators s. The goal of the problem is to redistribute the data items from the 

data generators into the network to maximize the storage utilization with minimum redistribution 

cost. Without loss of generality, we assume that the total size of the data items to be redistributed 

is less than or equal to the size of the total available storage space in the network. 

Let I denote the set of data items to be redistributed in the whole network, and let S(i), where i  є 

I, be data item i’s data generator. A redistribution function is defined as r : I → V  indicating data 

item i є I is distributed to node r(i) є V via the shortest path between S(i) and r(i). Our goal is to 

find such a redistribution function r to minimize the total redistribution cost:  

 

Under the storage constraint that: 

|{i  | i є I , r(i) = j }| ≤ mj       For all j є V. 
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Fig. 2. Illustrating data redistribution problem under storage constraint. 

Below we give a simple example to illustrate the data redistribution problem under storage 

constraint. 

EXAMPLE 1: Figure 2 illustrates the above described data redistribution problem in a small 

linear sensor network with seven sensors, each graph edge has a unit weight. The storage 

capacity and the number of data items to be redistributed of each sensor are shown in Figure 2. 

Node 2 has one data item, i1, to redistribute; node 4 has two data items, i2 and i3, to redistribute. 

The minimum cost solution is node 2 sends i1 to node 1, while node 4 sends i2 and i3 to nodes 3 

and 5, respectively. Total redistribution cost is 3 hops. 

3.3 Assignment Problem and Hungarian algorithm 

We prove that our data redistribution problem is a balanced assignment problem and introduce 

the Hungarian algorithm, which is an optimal solution for assignment problem. 

Balanced assignment problem: It can be stated as a problem where n individuals are assigned 

to n different jobs based on the cost for doing the respective jobs. The main idea here is to 
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minimize the total cost of completing these jobs by individuals. Below we show that our data 

redistribution cost is equivalent to the balanced assignment problem. 

Theorem 1: The data redistribution problem is equivalent to assignment problem. 

Proof: There are p data generators in the sensor network, with s1, s2,…., sp data items respectively. 

For a network with N nodes, there are q = N-p regular sensor nodes that has available storage 

space, with m1, m2, ...., mq  storage space respectively. We do the following transformations. 

First, since each data item has one unit memory space, we subdivide data generator node i into si 

(number of data items it has) nodes, each corresponding to one of its data items to redistribute. 

Second, for each sensor node i that has mi units of available storage spaces, we subdivide node i 

into mi number of nodes, each corresponding to one unit memory space of node i. As shown in 

Figure 3, we get a bipartite graph, where the left hand side is the set of data items and the right 

hand side is the set of available unit storage spaces. There is an edge between any node (data 

item) on the left and any node (unit memory space) on the right (we do not plot them for clarity), 

and the distance between them is the shortest distance (in terms of number of hops) between each 

data item’s data generator and the regular sensor node the unit memory space belongs to.  

If the number of data items is less than the number of the total available memory spaces in the 

sensor nodes (note that we assume the total size of the data items to be distributed is less than or 

equal to the size of the total available storage space in the network), we add dummy nodes on the 

left with edge cost zero to make it balanced assignment problem, which can be solved by 

Hungarian algorithm illustrated below. 
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Fig. 3. Assignment problem. 

Hungarian algorithm:  

The algorithm is stated below: 

We construct a cost matrix cij with i rows and j columns where 1≤i,j≤n, we consider n as the total 

network size. The steps are as follows: 

Step 1. (Finding reduced cost matrix) Find the minimum element in each row of cost matrix and 

subtract the value from each row and then find the minimum element in each column and 

subtract the value from each column. The resultant matrix is the reduced cost matrix. 

Step 2. Cover all the zeros in the reduced cost matrix with minimum number of lines. Let m be 

the lines required to cover all zeros.  

 If m<n, find minimum uncovered element k and subtract it from every uncovered 

element. Add k to each element that is covered by two lines. Continue step 2. 

 If m=n, go to step3. 
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Step 3. Starting with top row to make assignment till last row. Iterate all the above steps until we 

get unique assignments. 

The time complexity of Hungarian algorithm is O(n
3
). In our data redistribution problem wherein 

N sensor nodes exist and the average storage capacity of sensor node is , the time complexity is 

O(N )
3
 . 

3.4 Potential Field-Based Distributed Algorithm (PDA) 

In this section, we present our potential field-based data redistribution model. First, we give an 

overview introduction of the basic idea. Next, we introduce the definition of potential fields in 

sensor network context and describe how data items are redistributed along those fields. Third, 

we discuss convergence issue. Finally, we give a detailed explanation of the protocol.  

Let’s start with the Example 1 in Figure 2 again. The minimum cost solution is that node 2 sends 

its data item to node 1, while node 4 sends one data item to nodes 3 and the other one to node 5. 

However, in a distributed environment, node 2 obviously does not know the whole topology. 

From its perspective, it does not matter whether offloading its data to either node 3 or node 1 

since both have the same redistribution cost. However, we show below the concept of potential 

to further characterize the difference among the sensor nodes and to help sensor nodes (including 

data generators) to make right decision as to which neighbor nodes to offload data.  

Potential field model: We study the data redistribution using the analogy that the whole sensor 

network is an electric potential field, wherein each data generator is an electric charge. For data 

generator Si with si data items to offload, it has a positive electric charge of si. For arbitrary node 

j, its potential due to data generator Si, denoted as ø(i,j), is characterized as 
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, Where k0 is a constant and  is the distance (in terms of number of hops) between node j and 

data generator Si. According to superposition principle reference, the field of the whole sensor 

network is the linear superposition of all individual fields of the data generators. Therefore for 

arbitrary node j, its total potential, defined as ø(j), is: 

 =  

 

 

Fig. 4. Potential field in the sensor networks. 

Figure 4 shows the individual potential field due to data generators node2 and node 4, for the 

linear sensor network depicted in Figure 2. For example it shows that ø(4,3) = 2 × ø(2,3) and 

ø(4,0) = ø(2,0). It can be seen that for node 2’s two neighbors, node 1 and node 3, their total 
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potentials ø(1) < ø(3). All such information are utilized by the data generators and sensor nodes 

to make intelligent decisions in the process of data redistribution. 

Potential field based data redistribution.  

With above preparation, we need to further answer two questions. First, how can we build up the 

potentials that can effectively guide the data redistribution? Second, how can data generators 

coordinate with each other when there are contention sensor nodes? (i.e., multiple data 

generators offload to the same sensor nodes.) In the following, we address the above questions, 

which finally lead to a fully distributed data redistribution algorithm.  

We perform data redistribution by forwarding data items towards the steepest gradient along the 

potential field. This is analogous to the movement of electrical particles in electrostatic field. By 

following the steepest gradient, data items eventually reach their equilibrium status. The steepest 

gradient at each node is determined by comparing its Potential value with that of its neighbors, 

and it is towards the neighbor with the lowest potential value. Similarly, we can assume there is a 

“force” existing between any node and its neighbor nodes, which pushing the data items out of 

the data generators and into the network. Now consider a data item to be redistributed from Si. 

First, Si will always offload its data items to its closest nodes. Among the nodes with the same 

number of hops to Si, Si first offloads to the sensor node that has the minimum potential (due to 

the observation that the higher the potential of the node, the more offloading contention of it). 

This explains why in Example 1, data generator 2 sends its data to node 1, instead of node 3, as 

shown in Figure 4.  

Potential field based data redistribution protocol:  

The PDA happens in iteration. Each iteration consists of below three stages:  

1) Advertisement Stage. For data generator that has data items to offload, say Si, it floods a 
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message to the network with its ID and number of data items to offload (si). The algorithm stops 

when all the data generators have offloaded their data items. A time-to-live (TTL) value is 

included in the message indicating how many hops the message has traveled. The TTL value 

serves two purposes. First, it allows every receiver sensor to determine its distance (in terms of 

number of hops) to the data generator who initiated the flooding. Second, it allows limiting the 

flooding scope by only rebroadcasting messages, which have a TTL value greater than zero. This 

reduces the communication overhead. However, it does affect the accuracy of the data generator 

information received by other sensors. 

2) Storage commitment Stage. For each regular sensor j with available storage space m, on 

receiving such message from Si, it does the followings steps: 

a) Computes its potential value due to the data generator Si,  = . Note we omit k0 for 

clarity.  

b) Finds the data generator that gives the maximum potential value. Suppose such data generator 

is Sk, that is, k = (i, j)    ( (i,j) = 0 if data generator j did not receive Si’s message)  

c) Commits one unit of storage space to Sk. Updates = -1 and  =  

d) If j has committed all its available storage space, goes to Step e) below. Otherwise, goes back 

to Step b). 

e) Sends a message to each data generator which it committed storage space to, say si, with the 

number of storage space it committed,  . 

3) Data Offloading Stage. After receiving the commitment message, each data generator  

 does the following steps: 
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a) Compares the total number of received commitment,  = , with the number of data 

items to offload, si. If  ,  can completely satisfy all the commitments and thus sends to 

each sensor node the amount of data the sensor node committed to store. Otherwise,  offloads 

data to the closest among all the committed sensors. 

b) Updates its left data items to be offloaded for next round. If it still has data to offload, goes 

back to Stage 1).  

We see from above that in each iteration, each sensor commits all its storage space. However, it 

could be the case that the sensor’s commitment is not satisfied by its intended data generator. In 

this case, the sensor will participate in the data redistribution in the next round. Note that for 

either sensor nodes that no longer have storage spaces available or data generators that no longer 

have data items to offload; they do not participate in the next iteration. 

Discussion of PDA: PDA does not reply upon the knowledge of the initial and remaining 

storage capacity of other sensors. Further PDA does not reply upon a routing table and routing 

protocol support. So it is suitable to dynamic environment where maintaining a full fledged 

routing table is difficult. 

Performance and convergence analysis of PDA  

Below we show the convergence and performance analysis of PDA. 

Theorem 2: The PDA will stops in at most p rounds, where p is the number of data generators in 

the network. 

Proof: We first show that in each round, at least one data generator would receive commitment 

more than its number of data items to be offloaded, by way of contradiction. Assume that in the 

first iteration of PDA, none of the data generator receives more commitment than number of its 
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data items. That is, 

   

Sum up among all the data generators, we get 

 <  

Which is  <  

<  

This contradicts with the assumption that the total size of the data items to be distributed of all 

the data generators is less than or equal to the size of the total available storage space in the 

network. Therefore, at each round, at least one data generator will finish offloading. It takes at 

most p rounds, where p is the number of data generators in the network. 

EXAMPLE 2: Figure 5 illustrates the working of the potential field based data redistribution for 

the linear sensor network shown in Figure 2.  Initially the data generators, node 2 and node 4 

advertise its ID and the amount of data to be redistributed to the entire network. Each sensor 

node calculates the potential value due to each data generator. In storage commitment stage, each 

sensor node commits to the data generator with maximum potential value. Here node 1 commits 

to node 2. Node 3, node 5 and node 6 commits to node 4.Whereas node 0 randomly commits to 

any of the data generator as it has same potential value for both the data generators. In the data 

offloading stage, node 2 selects node 1 to offload its data items and node 4 selects node 3 and 

node 5 to offload its data items.  
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Fig.5. Potential field based data redistribution example. 
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       Chapter 4 

             Performance Evaluation 

To evaluate the performance of our proposed PDA algorithm, we have run an extensive set of 

simulations. In this simulation study, we have considered some scenarios for performance 

evaluation. For the purpose of our comparison, besides Hungarian Algorithm (HA), we also 

present several centralized heuristics, viz., Random Algorithm (RA), Greedy Algorithm (GA), 

and Cooperative Algorithm (CA). 

4.1 Centralized Heuristics 

Random Algorithm (RA) 

In RA, each data generator selects a node randomly and asks if it has storage space. If yes, it 

offloads the data items to the node otherwise, it continues to ask another random node until all its 

data items are offloaded. The performance of the Random Algorithm is worse when compared to 

other algorithm. The redistribution cost involved in RA is very high as the randomly selected 

node can be far away from the data generators. Thus, it is better to avoid RA for data 

redistribution. 

Greedy Algorithm (GA) 

In GA, each data generator always asks its closest nodes first.  Here the priority of the data 

generators offloading the data items plays important role. The data generators with lower id 

offload its data items completely at first place and the nodes with highest id offload its data items 

at the end.  GA performs better when compared to RA as the data generators select the nodes 

with least hop number from itself. But when compared to Hungarian algorithm it performs worse 

as the data generators with highest id have to offload its data items to the farthest node, which 

result in high redistribution cost.  
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Cooperative Algorithm (CA) 

In CA, each data generators cooperate with each other for the redistribution of data items. Here 

each data generator is given equal opportunity to offload its data items one by one until it 

completely offloads its data items. At first the data generator with lower id offloads one of its 

data item to other nodes and then the node with higher id offloads one of its data item to rest of 

the nodes with available storage space. This continues until all the data generators offload the 

data items completely.  As a result, the nodes with highest id are also given priority to offload its 

data items to its nearest nodes and thus reducing the total redistribution cost of the network. CA 

performs better than GA and RA.  

4.2 Simulation setup 

We simulate the results using our own simulator (written in C language). The sensor nodes are 

deployed in a grid topology. For our simulation we consider three scenarios: 

 The data generators are distributed at the center of the network. 

 The data generators are at one corner of the network. 

 The data generators are randomly distributed over the network. 

The data items to be offloaded by the data generators are also considered according to below 

cases: 

  The data generators with same number of data items to be redistributed. 

 The data generators with different number of data items to be redistributed. 

Below Table 1 shows the parameters we have used for the purpose of comparison in our 

simulations. 
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Parameters  Value 

Network size 

Maximum data to be redistributed 

Number of data generators 

20 x 20 Grid, 100 x 100 Grid 

 

 

40-99 

 

 

4, 20-80 

 

 

Table 1: Simulation Parameters. 

Data generators at the center of the network with different amount of data to be 

redistributed. In Figure 6 and 7, we deploy 400 sensor nodes evenly on a 20 × 20 network. The 

transmission range is unit one and each node has at most four one-hop neighbors. Nodes in black 

(nodes at (8, 10) and (10, 10)) are the data generators, which are two hops away from each other. 

The nodes in red represent the destination set for the data generator at (8, 10) and blue nodes are 

the destination set for the data generator at (10, 10). The data generator with lower id has 90 data 

items to redistribute whereas the data generator with higher id has 40 data items. The total 

redistribution cost for GA is 662 and for Hungarian algorithm the cost is 630. We observe that 

Hungarian algorithm is optimal as the cost involved in the redistribution is less when compared 

to GA. 
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  Fig.6. Redistribution with cost of 662 in GA.      Fig.7. Redistribution with cost of 630 in HA. 

Data generators at the center of the network with same amount of data to be redistributed. 

We deploy 400 sensor nodes on a 20 × 20 network out of which we consider four nodes as the 

data generators. Figure 8-12 shows the visual plot for the GA, HA, CA, RA and PDA 

respectively. Nodes in black (nodes at (8, 10), (12, 10), (8, 9), (12, 9)) are the data generators. 

The nodes in red represent the destination set for the data generator at (8, 10), blue nodes are the 

destination set for the data generator at (12, 10), yellow nodes represent the destination set for 

the data generator at (8, 9) and grey is the destination set for the data generator at (12, 9). Each of 

the data generators has 99 data items to be redistributed.  
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Fig.8. Redistribution with cost of 3524 in GA.       Fig.9. Redistribution with cost of 3160 in HA. 

    

 

Fig.10. Redistribution with cost of 3200 in CA.    Fig.11. Redistribution with cost of 5235 in RA. 
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Fig.12. Redistribution with cost of 3205 in PDA. 

Data generators at one corner of the network. Figure 13-17 shows the visual plot of GA, HA, 

CA, RA and PDA. Here we consider the nodes (0, 19), (3, 19), (0, 17) and (3, 17) as the data 

generators and we marked them as the black nodes. The nodes in red represent the destination set 

for the data generator at (0, 19), blue nodes are the destination set for the data generator at (3, 

19), yellow nodes represent destination set for the data generator at (0, 17) and grey is the 

destination set for the data generator at (3, 17). 

 



27 

 

       

Fig.13. Redistribution with cost of 6780 in GA.   Fig.14. Redistribution with cost of 6600 in HA. 

       

 Fig.15. Redistribution with cost of 6690 in CA.   Fig.16. Redistribution with cost of 8770 in RA. 
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Fig.17. Redistribution with cost of 6633 in PDA. 

Data generators randomly distributed over the network. Figure 18-22, shows the visual plot 

of GA, Hungarian algorithm, CA, RA and PDA respectively. Here we consider nodes (0, 18), (5, 

7), (18, 0) and (12, 10) as data generators and we marked them as black nodes. The nodes in red 

represent the destination set for the data generator at (0, 18), blue nodes are the destination set 

for the data generator at (12, 10), yellow nodes represent destination set for the data generator at 

(5, 7) and grey is the destination set for the data generator at (18, 0). 
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Fig.18. Redistribution with cost of 2964 in GA.   Fig.19. Redistribution with cost of 2698 in HA) 

      

Fig.20. Redistribution with cost of 2790 in CA.    Fig.21. Redistribution with cost of 5318 in RA. 
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Fig.22. Redistribution with cost of 2742 in PDA. 

Observation. Table 2-4 is the summary of total redistribution cost of all the data generators at 

the center of the network, at one corner and randomly distributed data generators respectively. 

We have observed with our simulations that our proposed Potential field based distributed 

algorithm performs better when compared to GA, CA and RA and it is comparable to the 

Hungarian algorithm, which is a centralized algorithm. In some cases even CA performs close to 

Hungarian algorithm and PDA as there is cooperation between the data generators to offload the 

data items. From the above figures we can visualize that our PDA algorithm performs close to 

the optimal Hungarian algorithm. Thus, we minimize the overall energy consumption of the 

network and maximize the storage utilization of the network using PDA. We calculate the total 

redistribution cost as the total sum of the hop numbers from the data generators to their 

respective destination set. 
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Table 2: Redistribution cost for the data generators at the center of network. 

Algorithm Redistribution Cost (In terms of hops) 

Greedy algorithm 3524 

Hungarian algorithm 3160 

Cooperative algorithm 3200 

Random algorithm 5235 

Potential field based distributed algorithm  3205 

Table 3: Redistribution cost for the data generators at one corner of network. 

Algorithm Redistribution Cost (In terms of hops) 

Greedy algorithm 6780 

Hungarian algorithm 6600 

Cooperative algorithm 6690 

Random algorithm 8770 

Potential field based distributed algorithm 6633 

Table 4.Redistribution cost for the data generators randomly distributed over the network. 

Algorithm Redistribution Cost (In terms of hops) 

Greedy algorithm 2964 

Hungarian algorithm 2698 

Cooperative algorithm 2790 

Random algorithm 5318 

Potential field based distributed algorithm 2742 
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In figure 23-25, we show the total redistribution cost of the four data generators located at one 

corner, center and randomly distributed over 20 × 20 network. 

     

Fig. 23 Data generators located at one corner.     Fig. 24 Data generators located at center.                                                                 

 

Fig. 25 Data generators randomly distributed.                                                                  
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Varying number of data generators and data items to be redistributed. In Figure 26 we vary 

the number of data generators deployed in a 100 × 100 network and also vary the maximum 

amount of data items to be redistributed over the entire network. We vary the data generators 

from 20, 40, 60 to 80 and maximum data items from 50, 70 to 90. We observe that PDA 

performs comparable to Hungarian algorithm and Greedy Algorithm performs worse than CA. 

The difference between the redistribution algorithms is seen clearly when there are more number 

of data generators with highest amount of data items to be redistributed. As the data generators 

and the maximum data items increases there arises the need of a suitable algorithm to avoid the 

contention and to reduce the total redistribution cost of the entire network. 

 

Fig.26.Total redistribution cost for 100 × 100 network with varying data generators and varying 

data items to be redistributed. 
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In Figure 27, we show how the RA performs worse and it not suitable for the redistribution of 

the data items in any size of network. Here we consider 100 × 100 network and vary the data 

generators as well as the maximum data to be redistributed. We compare RA with GA as the 

latter performs worse when compared to Hungarian algorithm, PDA and CA because the data 

generator with lower id selects nearest neighbors for offloading the data where the data 

generators with higher id incurs high redistribution cost but performs very well when compared 

to RA. 

 

 

Fig.27. Total redistribution cost for 100 × 100 network for GA and RA. 

Performance differential calculations. Figure 28 shows the performance percentage 

differential of GA, CA, PDA and RA for a network of 20 × 20 with four data generators at 

corner, center and random locations each with 99 data items to redistribute (Figures 8-12). 
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Fig. 28. Performance differential calculation for 20 × 20 network. 

Observation: Here we observe that our PDA algorithm performs well when compared to all 

other algorithms in all the scenarios as it is completely distributed. PDA and CA are close to 

each other when the data generators are at the center of the network. RA performs worse when 

compared to all the algorithms. 

In figures 29-31, we show the performance percentage differential of GA, CA, PDA and RA for 

100 × 100 network by varying number of data items to be redistributed and by varying number 

of data generators from 20, 40, 60, and 80 for the Figure 26. 
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Fig. 29. Performance differential for 50 data to be redistributed. 

 

Fig. 30. Performance differential for 70 data to be redistributed. 



37 

 

 

Fig. 31. Performance differential for 90 data to be redistributed. 

Observation: We observe that RA also performs close to GA when the number of data items to 

be redistributed is 90. CA performs close to PDA in some cases as all the data generators are 

given equal priority to offload their data items. Thus, we state that our centralized heuristics 

algorithms and the distributed algorithm perform close to the optimal Hungarian algorithm. 
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     Chapter 5  

Conclusion and Future work 

5.1 Conclusion  

We study the data redistribution problem in sensor networks. Our results are two-fold. First, we 

show that the data redistribution problem is equivalent to the classic assignment problem, which 

can be solved optimally in a centralized manner. Second, for a distributed algorithm, we have 

applied the idea of electrostatic potential field to develop a distributed data redistribution 

mechanism. Through our own simulations, we show that our distributed algorithm is competitive 

to the centralized algorithm.  

5.2 Future Work  

As future work, we plan to pursue in the following directions. First, data collected in sensor 

networks usually display temporal and spatial correlation. Instead of offloading all the over 

flown data, such sensory data characteristic should be exploited so that redistributed energy 

consumption can be further reduced while preserving all the sensory information well. Second, 

our data redistribution algorithms so far are offline algorithms, meaning that the number of data 

to be offloaded by data generators is known at the beginning of the experiment, and dynamic 

node failures are not a concern. We would like to study more robust dynamic online algorithms 

wherein data is generated dynamically and network topology could change as the result of node 

failure, join, and departure and link failure. Last, we will explore the rational behavior of sensor 

nodes from game theoretical perspective. After all, the selfish sensor nodes, considering that they 

could become data generators later on, rather are cautious as to store data generated by others. 
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