

Profit-Based File Replication in Data Intensive

Cloud Data Centers

Project Report by: Muhannad Alghamdi

Acknowledgement

This report is written based on our paper “Profit-Based File Replication in Data Intensive Cloud

Data Centers” submitted to 2017 IEEE International Conference on Communication (ICC). I

thank Dr. Bin Tang for the support, guidance, and assistance. Also, Dr. Bin Tang and I thank our

committee members Dr. Jianchao Han and Dr .Mohsen Beheshti for their support.

Table of Contents
Abstract .. 5

Chapter 1 .. 6

 1. Introduction ... 7

 1.2 Related Work ... 7

Chapter 2 .. 10

2. The Fat-tree topology ... 11

Chapter 3 .. 13

3. File Replication Problem (FRP) in Data Center ... 14

 3.1 System Model ... 14

 3.2 Energy Model .. 14

 3.3 Problem Formulation .. 15

 3.3.1 File Sets and Set of File Sets .. 15

 3.3.2 Energy Consumption of Data Access in Data Center ... 16

 3.4 Objective of FRP .. 17

Chapter 4 .. 18

 4. Algorithms for FRP .. 19

 4.1 An Approximation Algorithm .. 19

 4.1.1 Time Complexity of algorithm 1 .. 20

 4.1.2 Submodularity ... 22

 4.1.3 Profit Algorithm Thermos and proofs ... 22

 4.2 Heuristic Algorithms.. 24

 4.2.1 Local Greedy Algorithm... 25

 4.2.2 Pod-Based Greedy Algorithm ... 25

Chapter 5 .. 27

 5. Simulation and Performance Evaluation ... 28

 5.1 Simulation Setting ... 28

 5.2 Energy Consumption Models .. 28

 5.3 Data File Access Pattern .. 29

 5.4 Performance Comparison Under Uniform and Skewed Energy Models ... 29

 5.5 Performance Comparison Under CloudSim .. 31

 5.5.1 Random Placement of Data Files .. 32

 5.5.2 Study of scalability ... 33

 5.5.3 Zipf Distribution .. 35

Chapter 6 .. 36

 6. Conclusion and Future Work .. 37

References .. 38

Appendix A ... 39

 A.1 Calculating the Total Access Time ... 40

 A.2 Profit Algorithm ... 43

 A.2.1 Find the Replica Effect for a Host and a File .. 43

 A.2.2 Code for Checking All the replica effects .. 44

 A.3 Greedy Algorithm .. 45

 A.3.1 Greedy Algorithm with Zipf .. 46

 A.4 Pod-Based Algorithm ... 47

Abstract

 In a cloud data center, many applications require processing of a large amount of data. Nowadays, the

amount of energy consumed in a cloud data center became very high, and there are many solutions

were proposed to reduce it. One of the problems that needs solutions. One of the solutions to reduce

the energy consumption is the file replication strategies. File replication, which brings the data closer to

the computing unit, helps minimizing network delays and bandwidth usage. we formulate the file

replication problem (FRP) in data center, with the goal of minimizing the total energy consumption of

data file access inside data centers. In contrast to all the existing work of data replication in data centers,

which are mainly heuristic based, we design a time-efficient approximation algorithm with performance

guarantee. The file replication algorithm is based on a novel concept called “profit”, and optimizes over

a submodular function that can be computed efficiently. We also design two energy- and time-efficient

heuristic file replication algorithms. Via extensive simulations using CloudSim, a popular simulation

framework for cloud computing, we compare all the algorithms under different network scenarios. We

show that the approximation algorithm outperforms the other two under different network parameters,

while all three effectively reducing the total energy consumptions of data access in data centers.

Chapter 1

Introduction

1. Introduction

Cloud computing, which provides computing applications, platforms, and infrastructures as

services, has emerged as a popular and mainstream technology in today’s IT industry. The

current cloud data centers, such as Amazon EC2 and Microsoft Azure, support many Internet

applications including social networks, video streaming, and search engines. The cloud-based

data centers enable individual and business users to easily obtain aforesaid services with pay-

as-you-go manner, thus saving the cost of maintaining their own compute infrastructure. All

above applications process extreme large amount of data [16]. When users submit jobs to cloud

data centers for processing, virtual machines are allocated to execute corresponding

application programs, which process the large amount of data. A virtual machine (VM) running

on top of physical machine (PM) is an OS environment with its dedicated resources such as CPU

cycles, memory, and bandwidth, and is isolated from other parts of the PM. Such isolation

enables multiple OS environments on the same PM, allowing that applications previously

running on multiple PMs to be consolidated into a single PM. With virtualization, a cloud data

center can allocate and utilize its resources more efficiently and provide services to user

applications in an effective manner. The execution of the user applications needs that the input

data of the application to be available locally for its allocated VM. Therefore how to efficiently

locate and access the data for the VMs becomes very important in data centers. Meanwhile,

power consumption is still one of the biggest concerns in any data center [14]. Consequently, in

cloud data center with thousands of PMs and switches and hundreds of thousands of network

links, data file access could consume large amount of energy power in data center. Data

replication, which brings data files closer to the computing VMs, is an effective strategy that

reduces the data access latencies and bandwidth consumption, thus saving energy in data

centers. There have been a few researches that employ data replication techniques to reduce

the energy consumption [2], [3], [9], [5], data access delay [2], [3], [12], as well as achieving

fault tolerance [8] in data centers. However, almost all of them design heuristic algorithms that

do not offer any performance guarantee. Consequently, it is not clearly how performance

improvement can be achieved all the time with those heuristic algorithms. In contrast, we

design a time efficient approximation algorithm with performance guarantee. We prove that

our data replication algorithm reduces the total energy consumption of data access in data

center by at least half of that achieved by an optimal replication solution. Based on a novel

concept called “profit”, it optimizes over a submodular function that can be computed

efficiently. We also design two other energy-efficient heuristic data replication algorithms

based on the access patterns of pods and PMs in the data centers. We show that the

approximation algorithm outperforms the other two under different network parameters,

while all three effectively reducing the total energy consumptions of data access in data

centers.

1.2 Related Work

Ping et al. [12] was one of the first that proposed to replicate data across data centers. Their

proposed data replica placement algorithm can efficiently achieve near optimal data access

delay. The location of replicas for each data object is determined by periodically processing a

log of recent data accesses, and by employing a weighted k-means clustering of user locations

and deploying replica closer to the centroid of each cluster. Li et al. [8] proposed a replication-

based reliability model, which analyzes data storage failures and data loss probability to

determine where to create replica copies. Dong et al. [5] proposed replication strategy to

minimize power consumption in the backbone network across multiple data centers. They

formulated the problem as linear programming and determined optimal points of replication

based on the data center traffic demands and popularity of data objects. Boru et al. [2], [3]

proposed a data replication technique for cloud computing data centers for joint optimization

of energy consumption and bandwidth capacity of data centers as well as inside each

datacenter. Lin et al. [9] proposed a replication placement scheme called eStor, under which

data was placed in a constrained layout. Some replicas are placed in a sequential way, while

other replicas are placed in a random fashion. eStore allows users to configure the replication

level and number of replicas, and turn off some nodes without data loss. However, almost all

above design heuristic algorithms without any performance guarantee. In current cloud data

centers, enormous user data and complex applications call for new replication algorithms. In

this paper, we propose a time efficient approximation algorithm with provable performance

guarantee. Using a novel concept called “profit”, we prove that our algorithm obtains the profit

by at least half of what achieved by an optimal algorithm.

Chapter 2

The Fat-tree topology

2. The Fat-tree topology

In this project, we used the fat-tree network [1] as the cloud data center topology, as it is

widely used in data centers to interconnect commodity Ethernet switches. However, the FRP and

its algorithms are applicable to any types of data center topologies. A k-ary fat-tree is shown in

Fig. 1 with k = 4, where k is the number of ports of each switch. There are three layers of switches:

edge switch, aggregation switch and core switch from bottom to top. The lower two layers are

separated into k pods. A pod is a modular unit of compute, storage, and networking resources

that works as a unit in data center. Each pod contains
𝑘

2
 aggregation switches and

𝑘

2
 edge

switches, which form a complete bipartite graph in between. Each edge switch is directly

connected to k / 2 physical machines; and each of its remaining k / 2 ports is connected to each

of the k / 2 aggregation switches from the same pod. There are
𝑘2

4
 k-port core switches, each of

which is connected to each of k pods. In general, a k-ary fat-tree data center contains
𝑘3

4
 physical

machines. The data center has its own database called Data Center DB, as shown in Fig. 1. The

Data Center DB stores all the data files that are needed by the user applications running on this

data center. It is connected to all the core switches. This applies to applications such as search

engine wherein information is only queried buy users, and is in consistent with the data center

layout proposed in [2], [3]. However, our problem formulation and solutions work for a more

general scenario, wherein the data files are initially randomly placed on PMs. This applies to

applications such as social networking where information is generated by users. Since in both

scenarios, the data files are read much more frequently than updated, we assume that data

replicas need not be updated.

Figure 1 A k-ary fat tree data center with database (Data Center DB). Where K = 4.

Chapter 3

File Replication Problem (FRP)

3. File Replication Problem (FRP) in Data Center

3.1 System Model

We model a cloud data center as a graph G(V;E), where V = Vp U Vs includes the set of PMs

Vp and the set of (edge, aggregate, and core) switches Vs. Each edge in E connects either

one switch to another switch or a switch to a PM. Without loss of generality, let Vp = {1 ,2

,….., |Vp|} , and Vs = {|Vp|+1 , |Vp|+2 ,….., |V|} . There are N data files F= {f1 ,f2 ,f3,…. , fN}

in the data center, where data file fj (1 ≤ j ≤ N) is originally produced and stored at its

source PM Sj ∈ Vp. The size of fj is sj . Note that a PM can be the source PM of multiple data

files. Let mi be the storage capacity of PM i. There are n user jobs that are submitted to the

cloud data center, and the VMs in PMs are allocated to process these jobs. Suppose that PM

i is allocated ni jobs1 {ti1 , ti2 , ….., tin}. , wherein job tik (1 ≤ k ≤ ni). requires some of the data

files Fik ⊆ F as input files for execution. Let aij be the number of times that PM i needs to

access data file fj to execute all its ni jobs. aij is also referred to as the request frequency of

PM i to file fj . A file with a larger request frequency therefore needs to be brought closer to

the PMs that need them the most.

3.2 Energy Model

The measure the power consumption of one time access of data file fj from PM i is the

minimum number of switches existing between PM i and Sj , the source PM of fj . This is in

accordance to the findings made by Meng et al. [10], which observes that the energy

consumption of communication inside data center is proportional to the number

of switches the communication traverses. However, our problem and algorithm can be

easily adjusted to accommodate he scenario that different switches consumes different

amount of energy (for example, high-end core switches consume more power than

aggregation and edge switches.).Let eij denote the energy consumption between any two

nodes (switches or PMs) i ∈ V and j ∈ V . First, we calculate the total energy consumption in

the data center to execute all the jobs without any data replication, which is the sum of

energy consumption of each PM accessing each data file from its source PM. Denote it as

, we have:

3.3 Problem Formulation

 The objective of the FRP is to minimize the total energy consumption of data access in

the data center by replicating data files into different PMs while satisfying the storage capacity

of each PM. Let’s give the following definitions and notations.

3.3.1 File Sets and Set of File Sets

Define file set of a PM as the set of data files that this PM stores (including the initial files

 it stores as a source PM). For PM i, let Fi ⊆ F denote its file set, and let:

denote the total size of data files in Fi. Let the sets of the file sets be represneted as:

 Initially, Fi is the set of files that have PM i as source PMs. That is,

where:

We denote the above initial file set of each PM and the set of file sets as Fi
init (1 ≤ i ≤ |Vp|) and

Finit = .

3.3.2 Energy Consumption of Data Access in Data Center

With replication, multiple copies of the same data file can exist in the data center. For

energy saving, each PM accesses the copy that incurs the smallest amount of energy. Given any

F and any PM i, we refer to the PM that stores a copy of fj that i can access fj with smallest

amount of energy as i’s access PM for fj , and denote it as Aij(F) . That is,

Given any ,the minimum energy consumption of data

access in data center is therefore

Note that equation 1 from section (3.1) can be represented as .

3.4 Objective of FRP

The objective of FRP is to select a set of |Vp| file sets ,

such that the minimum total energy consumption of data access in data center. It

also can be represented as:

The FRP is NP-hard [7], [13]. Below we design time efficient approximation

algorithm as well as heuristic algorithms to solve it.

Chapter 4

Algorithms for FRP

4. Algorithms for FRP

4.1 An Approximation Algorithm

Our approximation algorithm delivers a solution whose total energy consumption reduction is

at least one half of the optimal total energy consumption. We first give below definition.

Definition 1: (Profit of Replicating file fj at PM i under F): The profit of replicating file fj at PM i

under , denoted as , is the

reduction of total energy cost in the data center when placing a copy of fj at PM i divided by

s(fj), given that the current set of file sets is F. Let F’ =

then we can have,

Obviously, in above definition, if fj ∈ Fi, i.e., a copy of fj is already located at PM i, then

 = 0. The intuition behind the “profit” is that replicating a file into a PM is

more profitable if this reduces more energy consumption of file access in the data center as

well as the file has a smaller size (so that less storage space of a PM it occupies). We therefore

should choose a file-PM pair for replication that achieves the maximum reduction of energy

consumption while costing least amount of storage space for the replicated file. Algorithm 1

(Figure 2) below is a “profit”-based greedy algorithm that takes place in rounds. In each round,

it decides that by replicating which file at which PM, it can reduce the total energy of data

access the most. Here we refer to such a file and PM in that round as target file and

target PM, respectively. This continues until either there is no storage space available at any

PMs for file replication, or it can no longer reduce the total energy by replication (Line1). Let’s

denote the set of file sets produced by Algorithm 1 as:

4.1.1 Time Complexity of algorithm 1

The initialization stage (Line 0 in Figure 2) takes , as finding minimum

energy consumption between any two PMs takes , and calculating the total energy

consumption without replication (Equation 1 in section 3.1) takes |Vp| ∙ l. The while loop (Line

1) takes about rounds, which can be upper-bounded by |Vp| ∙ m’

with m’ being the average storage capacity of a PM. Each round takes at most , since

it iterates over all PM-file pairs to decide which file is replicated into which PM, and it

takes to calculate . Therefore, the time complexity of Algorithm 1(the profit

algorithm is:

Figure 2 the Profit Algorithm.

4.1.2 Submodularity

A set function is called submodular if for every A ⊆ B ⊆ U and

 it holds that:

Next we prove that is submodular when all the files have the same unit size.

4.1.3 Profit Algorithm Thermos and proofs

Theorem 1: is submodular when

Proof: In each round of Algorithm 1, it selects a data file, say fj, and places a copy of it into

the storage of PM i. It is equivalent to say that a variable Dijk is selected in this round,

where 1 ≤ i ≤ |Vp|, 1 ≤ j ≤ l, and 1 ≤ k ≤ mi . Dijk indicates that fj is placed in the kth

storage slot of PM i. Algorithm 1 essentially selects a sequence of such variables. Then we

can rewrite as , where A is the set of variables selected so far. Next we show

that is

submodular. Let U be the entire set of variables selected after the algorithm, and let A ⊆ B

⊆ U. Let Dijk ∈ U - B. Since is a minimization function, we need to show that:

Let denote the total energy consumption accessing fj after A is selected. Since Dijk can

only possibly affect the energy consumption accessing fj, we only need to show that

.

This is indeed true since in each round of Algorithm 1, it finds the PM-file pair that reduces the

access energy consumption the most.

Next we show that Algorithm 1 delivers a solution whose total energy cost reduction is

at least one half of the optimal total access cost reduction. The proof technique used below is

similar to that used in [11] for a closely related problem of data replication in data grid scientific

applications.

Theorem 2: Given any instance of FRP, let 𝜀init be the total energy consumption of data access

without replication, 𝜀min be the optimal total energy consumption of data access with

replication, and 𝜀g be the total energy consumption of data access given by Algorithm 1. We

have:

when all the files have the same unit size.

Proof: Let L is the total number of rounds in Algorithm1. And let the sequence of selections in

Algorithm 1 is , with indicating that at round

i, data file is replicated at PM . Let the optimal sequence of selections be

, with indicating that at round i, data file is

replicated at site . Let and be the

profit from optimal algorithm and Algorithm 1 respectively. Consider a new data center graph

G’, where the storage capacity of each PM i is changed from mi to 2mi. For each PM i, let its

first mi storage slots store the data files obtained in Algorithm 1, and its second mi storage slots

store the data files selected in optimal algorithm. Now we calculate the profit O’ for G’. O’ ≥ O,

because each site in G0 stores extra data files beyond the data files stored in the same PM in G.

Let the sequence of selections in G’ be

The profit after the first L selections is C. For the second L selections, we need to calculate the

profit when adding on . Thus, the sum of the

profits due to selection of is less than or equal to C too.

Therefore, O is less than or equal to O’, which is less than or equal to two times of C.

4.2 Heuristic Algorithms

We further propose two other time-efficient heuristic file replication algorithms, and

compare them with the approximation algorithm via simulations.

4.2.1 Local Greedy Algorithm

In Local Greedy, it replicates each PM’s most frequently requested data files in its local

storage. That is, for PM i with mi storage capacity, it places the mi data files (out of the 𝑙 files)

that have the highest request frequencies by PM i. Using a heap, finding the top mi files from l

files take . Therefore, it takes for all the |Vp| PMs,

where 𝑚 is the average storage capacity of a PM. After this replication, calculating the total

energy cost is |𝑉𝑝| ∙ 𝑙 ∙ |𝑉𝑝| ∙ 𝑚 since for each PM-file pair, finding a copy of this file that is

closest to the PM takes |𝑉𝑝| ∙ 𝑚 time. Therefore, the time complexity for the Local Greedy is

𝑂(|𝑉𝑝|
2

∙ 𝑚 ∙ 𝑙).

4.2.2 Pod-Based Greedy Algorithm

In this algorithm, it first finds the aggregate request frequency of each file in each pod

(i.e., the sum of the request frequencies of all the PMs in this pod for that data file). Then in

each pod, it replicates the data files with the highest aggregate request frequency that are

allowed by the total storage capacity of that pod. Specifically, we start with the file with the

highest aggregate frequency, and place a copy of it to the PM that has the highest request

frequency to it. If this PM is full, it tries the one with the second highest request frequency, etc.

This finishes until all those data files are placed into the pod. Finding the aggregate request

frequencies take 𝑂(|𝑉𝑝| ∙ 𝑙), placing replica copies of data files into all the pods takes 𝑂(|𝑉𝑝| ∙ 𝑙), and

calculating the total energy cost is |𝑉𝑝| ∙ 𝑙 ∙ |𝑉𝑝| ∙ 𝑚 . Therefore, the time complexity for Pod-Based

algorithm is 𝑂(|𝑉𝑝|
2

∙ 𝑚 ∙ 𝑙).

Chapter 5

Simulation and Performance Evaluation

5. Simulation and Performance Evaluation

5.1 Simulation Setting

In this section, we compare the performances of the three file replication algorithms.

We refer to our approximation algorithm as Profit, the pod-based greedy algorithm as Pod, and

the local greedy algorithm as Local. We generate fat-tree data centers of different sizes: k = 8, a

small data center with 128 PMs; and k = 16, a large data center with 1024 PMs. The size of each

data file and its replica copies is 2 GB. The storage capacity of each PM is varied from 100GB

to 500GB. There are 1000 data files that are either located in the central database of the cloud

data center (referred to as Central DB), or are randomly placed on the PMs (referred to

as Random Placement).

5.2 Energy Consumption Models

We use re, ra, and rc to denote the power consumption of transmitting one data file copy on

the edge, aggregate, and core switches respectively. We consider two energy consumption

models that are currently adopted in cloud data center research:

 In uniform energy model, the energy consumption of data access is measured as

number of switches the data traverses [10]. We set re = ra = rc = 1.

 In skewed energy model, the core switches handle huge amount of traffic across the

entire data center, therefore consuming more energy power than aggregate switches,

which consume more energy power than edge switches. We set re = 1, ra = 5, and rc = 10.

5.3 Data File Access Pattern

We adopt two data file access patterns to characterize the request frequencies of data

files.

 In Zipf distribution, the request frequency to access the 𝑗𝑡ℎ(1 ≤ 𝑗 ≤ 𝑙) popular data

file is represented by 𝑝𝑗 =
1

𝑗𝜃 ∑
1

𝑘𝜃
𝑙
𝑘=1

 We choose 𝜃 to be 0.6 based on the real trace

studies collected at Facebook data center [6], [15].

 In random access, the request frequency of each file by each PM is a random number

between 0 and 100.

5.4 Performance Comparison Under Uniform and Skewed

Energy Models

Fig. 3 and Fig. 4 show the total energy consumption of the three algorithms by varying the

storage capacity of each PM, under uniform and skewed energy models, respectively. It shows

that all three replication algorithms effectively reduce the total energy consumption of file

access in the data center. Profit outperforms Local and Pod in the entire parameter range under

both energy models. We also observe that all three algorithms perform better under skewed

energy model than under uniform energy model by reducing more energy consumptions. This is

because in skewed energy model, core switches cost more energy than aggregation and edge

switches. By storing the replica copies at local PMs, access traffic does not go through core

switches often, therefore reducing energy consumption more in skewed energy model than in

uniform energy model. Finally, we observe that under each energy model, the energy

consumption by all three algorithms decrease with the increase of storage capacity in most

cases, except for Pod when storage capacity exceeds 200 GB. Under Pod, each pod continues

storing only one copy of each data file with the increasing of storage, therefore keeping the

energy consumption the same.

5.5 Performance Comparison Under CloudSim

CloudSim is one of the most popular open source cloud simulators in the research and

academia. We set the link bandwidth as 100MB/s in CloudSim, and measure the total access

time of data files yielded by the three algorithms, as shown in Fig 5. We observe that Profit

performs better than Local, which outperforms Pod. In particular, when the storage is large

(500 GB), Profit can reduce the total access time of the data center by roughly half via

replication. Note that under CloudSim, both uniform and skewed energy models perform the

same, since the access time only depends on file sizes and link bandwidth, which is fixed in this

case.

5.5.1 Random Placement of Data Files

All simulations so far assume the availability of a central DB, and all the data files are initially

stored in this central DB. Next we study the effects of the random initial placement of data files.

We set the bandwidth of the links under edge switches as 1GB, under aggregation switches as

2GB, and under core switches as 5GB. Fig. 6 shows that the total access cost of different

algorithms. The performance comparison of the three algorithms stay the same as in the

central DB. However, the costs are much smaller than those in Fig. 5, since the links have much

higher bandwidth.

5.5.2 Study of Scalability

We study the performances of the three algorithms in larger data center of 1024 PMs, in order

to understand their scalability. All the set up is the same as in Fig. 6, except for the size of the

data center. We compare Profit and Local, since both outperforms Pod. Table II shows the total

energy consumptions of both algorithms in a small 128-PM data center and a large 1024 PMs.

We set the storage capacity of each PM as 300GB, the medium in the storage parameter range.

The last column, Improvement Percentage, is calculated as the energy consumption difference

between Profit and Local divided by energy consumption of Local. It shows that in small data

center, Profit improves upon Greedy by 6:69% while in large data center, it is 13:78%

improvement. This shows that our approximation algorithm performs better than Local in large

data centers therefore is more scalable.

Fig. 7. Performance comparison for data center with 1024 PMs, with random initial placement.

5.5.3 Zipf Distribution

We study the performance of the proposed algorithms under Zipf distribution access

pattern. Fig. 8 shows that under Zipf distribution, the performance difference between Profit

and Local is even larger. This shows that Profit works particularly well for data files with distinct

popularity levels. When data files have distinct popularity levels, the popular data is always be

replicated to more PMs according to our approximation algorithm, therefore reducing the

energy consumption the most.

Fig. 8. Performance comparison for data center with 128 PMs with Zipf distribution access pattern.

Chapter 6

Conclusion and Future Work

6. Conclusion and Future Work

We studied file replication problem in data intensive cloud data centers, and designed a

time-efficient approximation algorithm with performance guarantee. It was based on a novel

concept called “profit”, and optimizes over a submodular function that can be computed

efficiently. Our algorithm reduced the total energy consumption of data access by at least half

of what is achieved by an optimal replication solution. We also designed two energy- and time-

efficient heuristic file replication algorithms. Currently, we assume that the VMs that execute

user jobs stay in a particular PM for its entire lifetime. As future work, it would be interesting to

investigate how dynamics of VM migration can interplay with the data replication, to better

achieve the energy efficiency in cloud data centers.

REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network architecture. SIGCOMM Comput. Commun. Rev.,
38(4):63–74, August 2008.

[2] D. Boru, D. Kliazovich, F. Granelli, P. Bouvry, and A. Y. Zomaya. Energy-efficient data replication in cloud computing datacenters. Cluste
Computing, 18(1):385–402, 2015.

[3] D. Boru, D. Kliazovich, F. Granelli, P. Bouvry, and A. Y. Zomaya. Models for efficient data replication in cloud computing datacenters. In Proc.
of the IEEE ICC, 2015.

[4] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya. Cloudsim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms. Software: Practice and Experience (SPE), 41(1):23–50, 2011.

[5] X. Dong, T. El-Gorashi, and J. M. H. Elmirghani. Green ip over wdm networks with data centers. JOURNAL OF LIGHTWAVE TECHNOLOGY,
29(12):1861–1880, 2011.

[6] L. Durbeck, N. Macias, and J. Tront. Energy efficiency of zipf traffic distributions within facebook’s data center fabric architecture. In Proc.
25th International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS), 2015.

[7] M. Karlsson and C. Karamanolis. Choosing replica placement heuristics for wide-area systems. In Proc. of the IEEE ICDCS, 2004.

[8] W. Li, Y. Yang, and D. Yuan. A novel cost-effective dynamic data replication strategy for reliability in cloud data centers. In Proc. Of the
International Conference on Dependable, Autonomic and Secure Computing (DASC), 2011.

[9] B. Lin, S. Li, X. Liao, Q. Wu, and S. Yang. estor: energy efficient and resilient data center storage. In Proc. of the International Conference on
Cloud and Service Computing (CSC), 2011.

[10] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of data center networks with traffic-aware virtual machine placement. In Proc.
of IEEE INFOCOM, 2010.

[11] D. T. Nukarapu, B. Tang, L. Wang, and S. Lu. Data replication in data intensive scientific applications with performance guarantee. IEEE
Transactions on Parallel and Distributed Systems, 22(8):1299–1306, 2011.

[12] F. Ping, X. Li, C. McConnell, R. Vabbalareddy, and J. H. Hwang. Towards optimal data replication across data centers. In Proc. of the
International Conference on Distributed Computing Systems Workshops (ICDCSW), 2011.

[13] L. Qiu, V. Padmanabhan, and G. Voelker. On the placement of web server replicas. In Proc. of the IEEE INFOCOM, 2001.

[14] V.K. Mohan Raj and R. Shriram. Power management in virtualized datacenter - a survey. Journal of Network and Computer Applications
69:117–133, 2016.

[15] N. Sharma, S. Barker, D. Irwin, and P. Shenoy. Blink: Managing server clusters on intermittent power. SIGARCH Comput. Archit. News,
39(1):185–198, 2011.

[16] B. Wang, Z. Qi, R. Ma, H. Guan, and A. V. Vasilakos. A survey on data center networking for cloud computing. Computer Networks, 91:528–
547, 2015.

Appendix A
Selected Parts of the Code

A.1 Calculating the Total Access Time

There are two ways to calculate the total energy consumption first one is by considering
each host and then search for the files in the host itself, hosts in the same edge, hosts in the
same pod, hosts outside of the pod (or in the central database).

 public double
totalAccessTime(ArrayList<org.cloudbus.cloudsim.checkpoint.centralexample.Fil

e> FileList,double [][] accessrates, ArrayList<NetworkHost> hosts){

 double energyconsumption =0;

 double totalBandwidth= 0;

 boolean found= false;

 for (int j=0 ; j < hosts.size(); j++){

 for (int i = 0 ; i < FileList.size() ; i++){

 if (hosts.get(j).localDataBase.contains(i) == true){ // The

file is in the same machine COST= 0

 found = true;

 energyconsumption += 0d * (accessrates[j][i]);

 totalBandwidth+= 0d * (accessrates[j][i]); //in

second

 countInHost++;

 if(j == host){

 System.out.println("The File : " + i + " In PM

1 :"+" The Accessrate is :" + accessrates[j][i]);

 System.out.println("The one time access is "

+ 0);

 PM1agrr+= 0;

 PM1agrrZiph+= 0 * accessrates[j][i];

 System.out.println("The multiplication is :" +

0 * accessrates[j][i]);

 }

 }

 if (found != true){ //file is not in the same machine;

 for(int ii = 0 ; ii < hosts.get(j).edge.size(); ii++){ //

for the cost from other machines in the same edge Cost 3;

 if (

hosts.get(hosts.get(j).edge.get(ii)).localDataBase.contains(i))

 {

 found= true;//the file is in the edge

 countInEdge++;

 energyconsumption += 1d * (accessrates[j][i]);

 totalBandwidth+= 4d * (accessrates[j][i]) ; //in

seconds

 break;

 }}}

 if (found != true){

 for(int ii = 0 ; ii < hosts.get(j).pod.size();

ii++){ //for the cost from machines in the same pod COST 7

 if

(hosts.get(hosts.get(j).pod.get(ii)).localDataBase.contains(i)){

 countInPod++;

 found = true; // file in pod

 energyconsumption += 7d *

(accessrates[j][i]);

 totalBandwidth+= 6d *

(accessrates[j][i]) ; //in seconds

 break;

 }

 }

 }

 if (found != true){// not in the pod at all take it from

database with COST 22

 {

 found = true; // file out of pod (or Central

database)

 energyconsumption += 22d *

(accessrates[j][i]);

 totalBandwidth+= 6.8d * (accessrates[j][i]);

//in seconds

 }

 }

 found = false;

 }

 // machine j has been checked against file i

 }// file i is done let's move to second file

 return energyconsumption; // if I want the total access time I

manually change this line to return totalBandwidth.

 }

 The other way is to calculate the Total Access Time and the energy consumption using
the distances. We have 0 distance when the file is in the host, 1 distance when the file is in the
same edge, 3 distance when the file is in the same pod, 5 distance if the file is not in the same
pod or in the Central Database.

public int TotalAccessTime2(ArrayList<FileCopy> p){

 double energyConsumption = 0;

 double TotalAccessTime = 0;

 for(int i = 0 ; i < p.size(); i++){

 if (p.get(i).distance == 0){

 energyConsumption += 0 * rates[p.get(i).hostID][p.get(i).fileID];

 TotalAccessTime += 0;

 }

 if (p.get(i).distance == 1){

 energyConsumption += 1 * rates[p.get(i).hostID][p.get(i).fileID];

 TotalAccessTime += 4 * rates[p.get(i).hostID][p.get(i).fileID];

 }

 if(p.get(i).distance == 3){

 energyConsumption += 7 * rates[p.get(i).hostID][p.get(i).fileID];

 TotalAccessTime += 6 * rates[p.get(i).hostID][p.get(i).fileID];

 }

 if(p.get(i).distance == 5){

 energyConsumption += 22 * rates[p.get(i).hostID][p.get(i).fileID];

 TotalAccessTime += 6.8 * rates[p.get(i).hostID][p.get(i).fileID];

 }

 }

 System.out.println("The total accesstime from TotalAT :" + totalAccessTime);

 System.out.println("The total bandwith from TotalAT :" + totaltime);

 return 0 ;

 }

The helper function to allocate each file and the distance between this file and the hosts.

public void Disallocator(){

 int id;

 int FileID;

 for(int i = 0 ; i < hostListg.size() ; i++) {

 for(int j = 0 ; j < hostListg.get(i).localDataBase.size(); j++){

 FileID= hostListg.get(i).localDataBase.get(j);

 pairs.get(i*1000 + FileID).isThere = true;

 pairs.get((i*1000) + FileID).distance = 0;

 for(int t = 0 ; t < hostListg.get(i).edge.size(); t++){

 id = hostListg.get(i).edge.get(t) *1000;

 if(pairs.get(id+ FileID).distance > 1){

 pairs.get(id+ FileID).distance = 1;

 }

 }

 for(int x = 0 ; x < hostListg.get(i).pod.size(); x++){

 id = hostListg.get(i).pod.get(x) *1000;

 if(pairs.get(id + FileID).distance > 3){

 pairs.get(id + FileID).distance = 3;

 }

 }

 }

 }

 }

A.2 Profit Algorithm
A.2.1 Find the Replica Effect for a Host and a File

public double replicaEffect (int hostID , int

fileID,ArrayList<org.cloudbus.cloudsim.checkpoint.centralexample.File> FileList,

ArrayList<NetworkHost> hosts){

 double replicaE=0; // to calculate the aggregated replica effect

 int id ;

 id = hostID*1000;

 if(pairs.get(id + fileID).distance == 5){ //File is Not in Pod

 replicaE+= (6.8) * rates[hostID][fileID];

 for(int i = 0 ; i < hosts.get(hostID).edge.size(); i++){

 id = hostListg.get(hostID).edge.get(i) * 1000;

 if(pairs.get(id + fileID).distance > 1){

 replicaE+= (6.8 - 4) * rates[hosts.get(hostID).edge.get(i)][fileID];

 }

 }

 for(int i = 0 ; i < hosts.get(hostID).pod.size(); i++){

 id = hostListg.get(hostID).pod.get(i) * 1000;

 if(pairs.get(id+ fileID).distance > 3){

 replicaE+= (6.8 - 6) * rates[hosts.get(hostID).pod.get(i)][fileID];

 }

 }

 }

 if(pairs.get(id + fileID).distance == 3){ // File is in the Same pod /not

edge

 replicaE += (6 - 0) * rates[hostID][fileID];

 for(int i = 0 ; i < hosts.get(hostID).edge.size(); i++){

 id = hostListg.get(hostID).edge.get(i) * 1000;

 id = hosts.get(hostID).edge.get(i) *1000;

 if(pairs.get(id + fileID).distance > 1){

 replicaE += (6 - 4) * rates[hosts.get(hostID).edge.get(i)][fileID];

 }

 }

 }

 if(pairs.get(id + fileID).distance == 1){ // File in the same edge

 replicaE += 4 * rates[hostID][fileID];

 return replicaE; // return the aggregated effect for this replica

 }

A.2.2 Code for Checking All the replica effects

After we check all the replicas effects we then choose the winners and make the actual
replication

public int minAccessTime

(ArrayList<org.cloudbus.cloudsim.checkpoint.centralexample.File> FileList,

ArrayList<NetworkHost> hosts){

 double maxReduction = Double.MIN_VALUE;

 double value= 0;

 int winHost=0 ;

 int winFile= 0;

 int id;

 for(int d = 0 ; d < (hosts.get(0).m * hosts.size()); d++){ //Number of round to
fill the datacenter (Note some of these rounds are not counted in case there is no Central DataBase)

 maxReduction = Double.MIN_VALUE;

 for (int i = 0 ; i < FileList.size(); i ++){

 for (int j= 0 ; j < hosts.size(); j++){

 if(hosts.get(j).localDataBase.size() >= hosts.get(j).m

hosts.get(j).localDataBase.contains(i)) // if Host is full or contain the file already

 {

 value = Double.MIN_VALUE;

 }

 else{

 value= replicaEffect(j, i, FileListg, hostListg); // calculate the

replica effect for this round

 if (value > maxReduction){

 maxReduction = value;

 winHost = j;

 winFile= i;

 }

 }

 }

 }

 System.out.println("The winners are host " + winHost + " and File :" +

winFile);

//The actual replication starts here

if(hostListg.get(winHost).localDataBase.size() < hostListg.get(winHost).m

&& !hostListg.get(winHost).localDataBase.contains(winFile)){

 hostListg.get(winHost).localDataBase.add(winFile);

 pairs.get(winHost*1000 + winFile).isThere = true;

 pairs.get((winHost*1000) + winFile).distance = 0;

 for(int i = 0 ; i < hosts.get(winHost).edge.size(); i++){

 id = hosts.get(winHost).edge.get(i) *1000;

 if(pairs.get(id+ winFile).distance > 1){

 pairs.get(id+ winFile).distance = 1;

 }

 }

 for(int i = 0 ; i < hosts.get(winHost).pod.size(); i++){

 id = hosts.get(winHost).pod.get(i) *1000;

 if(pairs.get(id + winFile).distance > 3){

 pairs.get(id + winFile).distance = 3;

 }

 }

 }

 //The actual replication Ends here

 }

 totalAccessTime(FileListg, rates, hostListg); Calculate the Total access Time

Or the Total energy consumption based on the user desire

 return 0;

 }

A.3 Greedy Algorithm

public double

greedyAlgo(ArrayList<org.cloudbus.cloudsim.checkpoint.centralexample.File>

FileList,double [][] accessrates, ArrayList<NetworkHost> hosts){

 int redTotalAccessTime = 0; // The reduced total access time

 boolean done = true;

 double count;

 for (int i = 0 ; i < hosts.size(); i ++){

 count = 100;

 done =true;

 while (done){

 for (int j = 0 ; j < FileList.size(); j ++){

if (accessrates[i][j] == count &&

!hostListg.get(i).localDataBase.contains(j)){

hosts.get(i).localDataBase.add(Integer.parseInt(FileList.get(j).g

etName()));

 }

 if(hosts.get(i).localDataBase.size() == hosts.get(i).m){

 break;

 }

 }

 count --; // after checking all the 100 check the 99 and so on …

if(count == 0 || hosts.get(i).localDataBase.size() ==

hosts.get(i).m) done=false;

 }

 }

 return totalAccessTime(FileListg, rates, hostListg); //calculate the

total access time or the total energy consumption

 }

A.3.1 Greedy Algorithm with Zipf
 With Zipf, the Greedy Algorithm is a special case since each host will replicate the first
files as his storage can take. For example, with storage of 500GB for per host, each host will
replicate the first 250 files. For simplicity, a special function were coded for this purpose

 public double greedyAlgo2(){ //this is espical case for Ziph

 for (int i = 0 ; i < hostListg.size(); i ++){

 for(int j = 0 ; j < hostListg.get(i).m; j++){

 if(hostListg.get(i).localDataBase.size() < hostListg.get(i).m &&

!hostListg.get(i).localDataBase.contains(j))

 hostListg.get(i).localDataBase.add(FileListg.get(j).id);

 }

 }

 return totalAccessTime(FileListg,rates,hostListg);

 }

 A.4 Pod-Based Algorithm

public int

podBasedAlgo(ArrayList<org.cloudbus.cloudsim.checkpoint.centralexample.File>

FileList,double [][] accessrates, ArrayList<NetworkHost>

hosts,ArrayList<filesData> files){

 boolean done = true;

 int count =1;

 Collections.sort(files, new Comparator<filesData>(){

 public int compare(filesData o1, filesData o2){

 return Double.compare(o2.sumPerPod , o1.sumPerPod);

 }

 }); // sort the files array to have the hot files

 // sort highest servers for each file

 for (int i = 0 ; i< files.size() ; i++){

 Collections.sort(files.get(i).rest, new Comparator<PointZ>(){

 public int compare(PointZ o1, PointZ o2){

 return Double.compare(o2.y , o1.y);

 }

 });

 }

 Collections.sort(files, new Comparator<filesData>(){

 public int compare(filesData o1, filesData o2){

 return Double.compare(o2.sumPerPod , o1.sumPerPod);

 }

 });

 for (int i = 0 ; i < files.size() ; i ++){

 if (hosts.get(files.get(i).MaxID).localDataBase.size() <

hosts.get(files.get(i).MaxID).m &&

!hosts.get(files.get(i).MaxID).localDataBase.contains(FileList.get(files.get(

i).column).getName())){//check if the local database if full

hosts.get(files.get(i).MaxID).localDataBase.add(Integer.parseInt(FileList.get

(files.get(i).column).getName()));//add the file in the local database of the

host with the highest accessrate

 } else { // if the host is full put the file in the second

server with the highest rate (for example if the host with 10 is full then

put it in the host with 9...)

 for(int j= 0 ; j < files.get(i).rest.size() ; j++){

 if (hosts.get(files.get(i).rest.get(j).x).localDataBase.size() <

hosts.get(files.get(i).rest.get(j).x).m &&

!hosts.get(files.get(i).rest.get(j).x).localDataBase.contains(Integer.parseIn

t(FileList.get(files.get(i).column).getName()))){

hosts.get(files.get(i).rest.get(j).x).localDataBase.add(Integer.parseInt(File

List.get(files.get(i).column).getName()));

 break;

 }

 }

 }

 }

 return 0;

 }

To decide what are the hot files for each pod I used a helper function:

public ArrayList<filesData> podBasedC2(double [][] accessrates , int k){

 int min= k;

 ArrayList<filesData> files = new ArrayList<filesData>();

 for (int j = 0 ; j < accessrates[0].length; j ++)

 {

 filesData file = new filesData();

 double aggregatedSum = 0 ;

 double temp= Double.MIN_VALUE;

 file.MaxID=0;

 for(int i= min ; i < (min + ((Config.portNum/2)*(Config.portNum/2))); i++){

 PointZ p = new PointZ();

 aggregatedSum+= accessrates[i][j];

 temp = accessrates[i][j];

 p.x = i;

 p.y = temp;

 file.row =i;

 if(temp > file.maxValue){ file.maxValue = temp;

 file.MaxID= i;

 ;}

 file.rest.add(p);

 }

 file.column= j;

 file.sumPerPod= aggregatedSum;

 files.add(file);

 }

 return files;

 }

Also, to represent each file as a competitive file for being hot I used a helper class

public class filesData {

 public int row = -1; //which row

 public int column = -1; // which column

 public int MaxID = -1; //the Host Where this file should be stored (has

the max access rate);

 public double sumPerPod = -1; // the total accessRate for this file in

a pod

 public double maxValue= -1;

 public ArrayList<PointZ> rest = new ArrayList<PointZ>(); // the rest of

hosts that can hold this file

}

