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Abstract 

 

 In a cloud data center, many applications require processing of a large amount of data. Nowadays, the 

amount of energy consumed in a cloud data center became very high, and there are many solutions 

were proposed to reduce it. One of the problems that needs solutions. One of the solutions to reduce 

the energy consumption is the file replication strategies. File replication, which brings the data closer to 

the computing unit, helps minimizing network delays and bandwidth usage. we formulate the file 

replication problem (FRP) in data center, with the goal of minimizing the total energy consumption of 

data file access inside data centers. In contrast to all the existing work of data replication in data centers, 

which are mainly heuristic based, we design a time-efficient approximation algorithm with performance 

guarantee. The file replication algorithm is based on a novel concept called “profit”, and optimizes over 

a submodular function that can be computed efficiently. We also design two energy- and time-efficient 

heuristic file replication algorithms. Via extensive simulations using CloudSim, a popular simulation 

framework for cloud computing, we compare all the algorithms under different network scenarios. We 

show that the approximation algorithm outperforms the other two under different network parameters, 

while all three effectively reducing the total energy consumptions of data access in data centers. 
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Introduction  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1. Introduction  

 

Cloud computing, which provides computing applications, platforms, and infrastructures as 

services, has emerged as a popular and mainstream technology in today’s IT industry. The 

current cloud data centers, such as Amazon EC2 and Microsoft Azure, support many Internet 

applications including social networks, video streaming, and search engines. The cloud-based 

data centers enable individual and business users to easily obtain aforesaid services with pay-

as-you-go manner, thus saving the cost of maintaining their own compute infrastructure. All 

above applications process extreme large amount of data [16]. When users submit jobs to cloud 

data centers for processing, virtual machines are allocated to execute corresponding 

application programs, which process the large amount of data. A virtual machine (VM) running 

on top of physical machine (PM) is an OS environment with its dedicated resources such as CPU 

cycles, memory, and bandwidth, and is isolated from other parts of the PM. Such isolation 

enables multiple OS environments on the same PM, allowing that applications previously 

running on multiple PMs to be consolidated into a single PM. With virtualization, a cloud data 

center can allocate and utilize its resources more efficiently and provide services to user 

applications in an effective manner. The execution of the user applications needs that the input 

data of the application to be available locally for its allocated VM. Therefore how to efficiently 

locate and access the data for the VMs becomes very important in data centers. Meanwhile, 

power consumption is still one of the biggest concerns in any data center [14]. Consequently, in 

cloud data center with thousands of PMs and switches and hundreds of thousands of network 



links, data file access could consume large amount of energy power in data center. Data 

replication, which brings data files closer to the computing VMs, is an effective strategy that 

reduces the data access latencies and bandwidth consumption, thus saving energy in data 

centers. There have been a few researches that employ data replication techniques to reduce 

the energy consumption [2], [3], [9], [5], data access delay [2], [3], [12], as well as achieving 

fault tolerance [8] in data centers. However, almost all of them design heuristic algorithms that 

do not offer any performance guarantee. Consequently, it is not clearly how performance 

improvement can be achieved all the time with those heuristic algorithms. In contrast, we 

design a time efficient approximation algorithm with performance guarantee. We prove that 

our data replication algorithm reduces the total energy consumption of data access in data 

center by at least half of that achieved by an optimal replication solution. Based on a novel 

concept called “profit”, it optimizes over a submodular function that can be computed 

efficiently. We also design two other energy-efficient heuristic data replication algorithms 

based on the access patterns of pods and PMs in the data centers. We show that the 

approximation algorithm outperforms the other two under different network parameters, 

while all three effectively reducing the total energy consumptions of data access in data 

centers. 

1.2 Related Work 

Ping et al. [12] was one of the first that proposed to replicate data across data centers. Their 

proposed data replica placement algorithm can efficiently achieve near optimal data access 

delay. The location of replicas for each data object is determined by periodically processing a 

log of recent data accesses, and by employing a weighted k-means clustering of user locations 



and deploying replica closer to the centroid of each cluster. Li et al. [8] proposed a replication-

based reliability model, which analyzes data storage failures and data loss probability to 

determine where to create replica copies. Dong et al. [5] proposed replication strategy to 

minimize power consumption in the backbone network across multiple data centers. They 

formulated the problem as linear programming and determined optimal points of replication 

based on the data center traffic demands and popularity of data objects. Boru et al. [2], [3] 

proposed a data replication technique for cloud computing data centers for joint optimization 

of energy consumption and bandwidth capacity of data centers as well as inside each 

datacenter. Lin et al. [9] proposed a replication placement scheme called eStor, under which 

data was placed in a constrained layout. Some replicas are placed in a sequential way, while 

other replicas are placed in a random fashion. eStore allows users to configure the replication 

level and number of replicas, and turn off some nodes without data loss. However, almost all 

above design heuristic algorithms without any performance guarantee. In current cloud data 

centers, enormous user data and complex applications call for new replication algorithms. In 

this paper, we propose a time efficient approximation algorithm with provable performance 

guarantee. Using a novel concept called “profit”, we prove that our algorithm obtains the profit 

by at least half of what achieved by an optimal algorithm. 
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2. The Fat-tree topology  
 

In this project, we used the fat-tree network [1] as the cloud data center topology, as it is 

widely used in data centers to interconnect commodity Ethernet switches. However, the FRP and 

its algorithms are applicable to any types of data center topologies. A k-ary fat-tree is shown in 

Fig. 1 with k = 4, where k is the number of ports of each switch. There are three layers of switches: 

edge switch, aggregation switch and core switch from bottom to top. The lower two layers are 

separated into k pods. A pod is a modular unit of compute, storage, and networking resources 

that works as a unit in data center. Each pod contains 
𝑘

2
 aggregation switches and 

𝑘

2
 edge 

switches, which form a complete bipartite graph in between. Each edge switch is directly 

connected to k / 2 physical machines; and each of its remaining k / 2 ports is connected to each 

of the k / 2 aggregation switches from the same pod. There are 
𝑘2

4
 k-port core switches, each of 

which is connected to each of k pods. In general, a k-ary fat-tree data center contains  
𝑘3

4
 physical 

machines. The data center has its own database called Data Center DB, as shown in Fig. 1. The 

Data Center DB stores all the data files that are needed by the user applications running on this 

data center. It is connected to all the core switches. This applies to applications such as search 

engine wherein information is only queried buy users, and is in consistent with the data center 

layout proposed in [2], [3]. However, our problem formulation and solutions work for a more 

general scenario, wherein the data files are initially randomly placed on PMs. This applies to 

applications such as social networking where information is generated by users. Since in both 



scenarios, the data files are read much more frequently than updated, we assume that data 

replicas need not be updated. 

 

 

 

Figure 1 A k-ary fat tree data center with database (Data Center DB). Where K = 4. 
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File Replication Problem (FRP) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

3. File Replication Problem (FRP) in Data Center 

3.1 System Model 

We model a cloud data center as a graph G(V;E), where V = Vp U Vs includes the set of PMs 

Vp and the set of (edge, aggregate, and core) switches Vs. Each edge in E connects either 

one switch to another switch or a switch to a PM. Without loss of generality, let Vp = {1 ,2 

,….., |Vp|} , and Vs =  {|Vp|+1 , |Vp|+2 ,….., |V|} . There are N data files F= {f1 ,f2 ,f3,…. , fN} 

in the data center, where data file fj ( 1 ≤ j  ≤  N) is originally produced and stored at its 

source PM Sj  ∈  Vp. The size of fj is sj . Note that a PM can be the source PM of multiple data 

files. Let mi be the storage capacity of PM i. There are n user jobs that are submitted to the 

cloud data center, and the VMs in PMs are allocated to process these jobs. Suppose that PM 

i is allocated ni jobs1  {ti1 , ti2 , ….., tin}. , wherein job tik (1 ≤  k ≤ ni). requires some of the data 

files Fik ⊆ F as input files for execution. Let aij be the number of times that PM i needs to 

access data file fj to execute all its ni jobs. aij is also referred to as the request frequency of 

PM i to file fj . A file with a larger request frequency therefore needs to be brought closer to 

the PMs that need them the most. 

3.2 Energy Model 

The measure the power consumption of one time access of data file fj from PM i is the 

minimum number of switches existing between PM i and Sj , the source PM of fj . This is in 



accordance to the findings made by Meng et al. [10], which observes that the energy 

consumption of communication inside data center is proportional to the number 

of switches the communication traverses. However, our problem and algorithm can be 

easily adjusted to accommodate he scenario that different switches consumes different 

amount of energy (for example, high-end core switches consume more power than 

aggregation and edge switches.).Let eij denote the energy consumption between any two 

nodes (switches or PMs) i  ∈ V and j ∈ V . First, we calculate the total energy consumption in 

the data center to execute all the jobs without any data replication, which is the sum of 

energy consumption of each PM accessing each data file from its source PM. Denote it as 

, we have: 

 

  

3.3 Problem Formulation 

  The objective of the FRP is to minimize the total energy consumption of data access in 

the data center by replicating data files into different PMs while satisfying the storage capacity 

of each PM. Let’s give the following definitions and notations. 

3.3.1 File Sets and Set of File Sets 

Define file set of a PM as the set of data files that this PM stores (including the initial files 



 it stores as a source PM). For PM i, let Fi ⊆ F denote its file set, and let:

   

denote the total size of data files in Fi. Let the sets of the file sets be represneted as: 

 

 Initially, Fi is the set of files that have PM i as source PMs. That is, 

   

where: 

 

We denote the above initial file set of each PM and the set of file sets as Fi
init  ( 1 ≤  i  ≤ |Vp|) and 

Finit = . 

3.3.2 Energy Consumption of Data Access in Data Center 

With replication, multiple copies of the same data file can exist in the data center. For 

energy saving, each PM accesses the copy that incurs the smallest amount of energy. Given any 

F and any PM i, we refer to the PM that stores a copy of fj that i can access fj with smallest 

amount of energy as i’s access PM for fj , and denote it as Aij(F) . That is, 

 



Given any  ,the minimum energy consumption of data 

access in data center is therefore 

 

Note that equation 1 from section (3.1) can be represented as . 

3.4 Objective of FRP 

The objective of FRP is to select a set of |Vp| file sets  , 

such that the minimum total energy consumption of data access in data center. It 

also can be represented as: 

 

The FRP is NP-hard [7], [13]. Below we design time efficient approximation 

algorithm as well as heuristic algorithms to solve it. 

 

 

 

 

 

 



 

 

 

Chapter 4 
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4.  Algorithms for FRP  

4.1 An Approximation Algorithm 

Our approximation algorithm delivers a solution whose total energy consumption reduction is 

at least one half of the optimal total energy consumption. We first give below definition. 

Definition 1: (Profit of Replicating file fj at PM i under F): The profit of replicating file fj at PM i 

under  , denoted as , is the 

reduction of total energy cost in the data center when placing a copy of fj at PM i divided by 

s(fj), given that the current set of file sets is F. Let F’ = 

 

then we can have, 

 

Obviously, in above definition, if fj ∈ Fi, i.e., a copy of fj is already located at PM i, then 

 = 0. The intuition behind the “profit” is that replicating a file into a PM is 

more profitable if this reduces more energy consumption of file access in the data center as 

well as the file has a smaller size (so that less storage space of a PM it occupies). We therefore 

should choose a file-PM pair for replication that achieves the maximum reduction of energy 

consumption while costing least amount of storage space for the replicated file. Algorithm 1 

(Figure 2) below is a “profit”-based greedy algorithm that takes place in rounds. In each round, 



it decides that by replicating which file at which PM, it can reduce the total energy of data 

access the most. Here we refer to such a file and PM in that round as target file and 

target PM, respectively. This continues until either there is no storage space available at any 

PMs for file replication, or it can no longer reduce the total energy by replication (Line1). Let’s 

denote the set of file sets produced by Algorithm 1 as:

   

4.1.1 Time Complexity of algorithm 1 

The initialization stage (Line 0 in Figure 2) takes  , as finding minimum 

energy consumption between any two PMs takes  , and calculating the total energy 

consumption without replication (Equation 1 in section 3.1) takes |Vp| ∙ l. The while loop (Line 

1) takes about  rounds, which can be upper-bounded by |Vp| ∙ m’ 

with m’ being the average storage capacity of a PM. Each round takes at most  , since 

it iterates over all PM-file pairs to decide which file is replicated into which PM, and it 

takes  to calculate  . Therefore, the time complexity of Algorithm 1(the profit 

algorithm is: 

 

  

 



 

               

Figure 2 the Profit Algorithm. 

 



4.1.2 Submodularity 

A set function  is called submodular if for every A  ⊆ B  ⊆ U and  

 it holds that: 

 

Next we prove that is submodular when all the files have the same unit size.  

4.1.3 Profit Algorithm Thermos and proofs 

Theorem 1: is submodular when   

Proof: In each round of Algorithm 1, it selects a data file, say fj, and places a copy of it into 

the storage of PM i. It is equivalent to say that a variable Dijk is selected in this round, 

where      1 ≤ i ≤ |Vp|, 1 ≤ j ≤ l, and 1 ≤ k ≤ mi .  Dijk indicates that fj is placed in the kth 

storage slot of PM i. Algorithm 1 essentially selects a sequence of such variables. Then we 

can rewrite  as  , where A is the set of variables selected so far. Next we show 

that  is 

submodular. Let U be the entire set of variables selected after the algorithm, and let A ⊆ B 

⊆ U. Let Dijk ∈ U - B. Since  is a minimization function, we need to show that:

 



Let   denote the total energy consumption accessing fj after A is selected. Since Dijk can 

only possibly affect the energy consumption accessing fj, we only need to show that 

.  

This is indeed true since in each round of Algorithm 1, it finds the PM-file pair that reduces the 

access energy consumption the most. 

Next we show that Algorithm 1 delivers a solution whose total energy cost reduction is 

at least one half of the optimal total access cost reduction. The proof technique used below is 

similar to that used in [11] for a closely related problem of data replication in data grid scientific 

applications. 

Theorem 2: Given any instance of FRP, let 𝜀init be the total energy consumption of data access 

without replication, 𝜀min be the optimal total energy consumption of data access with 

replication, and 𝜀g be the total energy consumption of data access given by Algorithm 1. We 

have: 

              

when all the files have the same unit size. 

Proof: Let L is the total number of rounds in Algorithm1. And let the sequence of selections in 

Algorithm 1 is , with   indicating that at round 



i, data file  is replicated at PM  . Let the optimal sequence of selections be 

, with  indicating that at round i, data file  is 

replicated at site . Let   and  be the 

profit from optimal algorithm and Algorithm 1 respectively. Consider a new data center graph 

G’, where the storage capacity of each PM i is changed from mi to 2mi. For each PM i, let its 

first mi storage slots store the data files obtained in Algorithm 1, and its second mi storage slots 

store the data files selected in optimal algorithm. Now we calculate the profit O’ for G’. O’ ≥ O, 

because each site in G0 stores extra data files beyond the data files stored in the same PM in G. 

Let the sequence of selections in G’ be  

The profit after the first L selections is C. For the second L selections, we need to calculate the 

profit when adding  on  . Thus, the sum of the 

profits due to selection of  is less than or equal to C too. 

Therefore, O is less than or equal to O’, which is less than or equal to two times of C. 

4.2 Heuristic Algorithms 

We further propose two other time-efficient heuristic file replication algorithms, and 

compare them with the approximation algorithm via simulations. 

 

 



4.2.1 Local Greedy Algorithm 

In Local Greedy, it replicates each PM’s most frequently requested data files in its local 

storage. That is, for PM i with mi storage capacity, it places the mi data files (out of the 𝑙 files) 

that have the highest request frequencies by PM i. Using a heap, finding the top mi files from l 

files take  . Therefore, it takes  for all the |Vp| PMs, 

where 𝑚 is the average storage capacity of a PM. After this replication, calculating the total 

energy cost is  |𝑉𝑝|  ∙ 𝑙 ∙ |𝑉𝑝| ∙ 𝑚  since for each PM-file pair, finding a copy of this file that is 

closest to the PM takes |𝑉𝑝| ∙ 𝑚  time. Therefore, the time complexity for the Local Greedy is 

𝑂(|𝑉𝑝|
2

∙  𝑚 ∙ 𝑙).  

4.2.2 Pod-Based Greedy Algorithm 

In this algorithm, it first finds the aggregate request frequency of each file in each pod 

(i.e., the sum of the request frequencies of all the PMs in this pod for that data file). Then in 

each pod, it replicates the data files with the highest aggregate request frequency that are 

allowed by the total storage capacity of that pod. Specifically, we start with the file with the 

highest aggregate frequency, and place a copy of it to the PM that has the highest request 

frequency to it. If this PM is full, it tries the one with the second highest request frequency, etc. 

This finishes until all those data files are placed into the pod. Finding the aggregate request 

frequencies take 𝑂( |𝑉𝑝| ∙ 𝑙), placing replica copies of data files into all the pods takes 𝑂( |𝑉𝑝| ∙ 𝑙), and 



calculating the total energy cost is |𝑉𝑝|  ∙ 𝑙 ∙ |𝑉𝑝| ∙ 𝑚 . Therefore, the time complexity for Pod-Based 

algorithm is 𝑂(|𝑉𝑝|
2

∙  𝑚 ∙ 𝑙). 
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Simulation and Performance Evaluation 

 

 

 

 

 

 

 



5. Simulation and Performance Evaluation 

5.1 Simulation Setting 

In this section, we compare the performances of the three file replication algorithms. 

We refer to our approximation algorithm as Profit, the pod-based greedy algorithm as Pod, and 

the local greedy algorithm as Local. We generate fat-tree data centers of different sizes: k = 8, a 

small data center with 128 PMs; and k = 16, a large data center with 1024 PMs. The size of each 

data file and its replica copies is 2 GB. The storage capacity of each PM is varied from 100GB 

to 500GB. There are 1000 data files that are either located in the central database of the cloud 

data center (referred to as Central DB), or are randomly placed on the PMs (referred to 

as Random Placement). 

5.2 Energy Consumption Models 

We use re, ra, and rc to denote the power consumption of transmitting one data file copy on 

the edge, aggregate, and core switches respectively. We consider two energy consumption 

models that are currently adopted in cloud data center research: 

 In uniform energy model, the energy consumption of data access is measured as 

number of switches the data traverses [10]. We set re = ra = rc = 1. 

 In skewed energy model, the core switches handle huge amount of traffic across the  



entire data center, therefore consuming more energy power than aggregate switches, 

which consume more energy power than edge switches. We set re = 1, ra = 5, and rc = 10. 

5.3 Data File Access Pattern 

We adopt two data file access patterns to characterize the request frequencies of data 

files. 

 In Zipf distribution, the request frequency to access the 𝑗𝑡ℎ(1 ≤ 𝑗 ≤  𝑙) popular data 

file is represented by  𝑝𝑗 =  
1

𝑗𝜃 ∑
1

𝑘𝜃
𝑙
𝑘=1

    We choose 𝜃 to be 0.6 based on the real trace 

studies collected at Facebook data center [6], [15]. 

 In random access, the request frequency of each file by each PM is a random number 

between 0 and 100. 

5.4 Performance Comparison Under Uniform and Skewed 

Energy Models  

Fig. 3 and Fig. 4 show the total energy consumption of the three algorithms by varying the 

storage capacity of each PM, under uniform and skewed energy models, respectively. It shows 

that all three replication algorithms effectively reduce the total energy consumption of file 

access in the data center. Profit outperforms Local and Pod in the entire parameter range under 

both energy models. We also observe that all three algorithms perform better under skewed 

energy model than under uniform energy model by reducing more energy consumptions. This is 

because in skewed energy model, core switches cost more energy than aggregation and edge 



switches. By storing the replica copies at local PMs, access traffic does not go through core 

switches often, therefore reducing energy consumption more in skewed energy model than in 

uniform energy model. Finally, we observe that under each energy model, the energy 

consumption by all three algorithms decrease with the increase of storage capacity in most 

cases, except for Pod when storage capacity exceeds 200 GB. Under Pod, each pod continues 

storing only one copy of each data file with the increasing of storage, therefore keeping the 

energy consumption the same. 

 

 



 

5.5 Performance Comparison Under CloudSim 

CloudSim is one of the most popular open source cloud simulators in the research and 

academia. We set the link bandwidth as 100MB/s in CloudSim, and measure the total access 

time of data files yielded by the three algorithms, as shown in Fig 5. We observe that Profit 

performs better than Local, which outperforms Pod. In particular, when the storage is large 

(500 GB), Profit can reduce the total access time of the data center by roughly half via 

replication. Note that under CloudSim, both uniform and skewed energy models perform the 

same, since the access time only depends on file sizes and link bandwidth, which is fixed in this 

case. 

 



 

5.5.1 Random Placement of Data Files 

All simulations so far assume the availability of a central DB, and all the data files are initially 

stored in this central DB. Next we study the effects of the random initial placement of data files. 

We set the bandwidth of the links under edge switches as 1GB, under aggregation switches as 

2GB, and under core switches as 5GB. Fig. 6 shows that the total access cost of different 

algorithms. The performance comparison of the three algorithms stay the same as in the 

central DB. However, the costs are much smaller than those in Fig. 5, since the links have much 

higher bandwidth. 



 

 

5.5.2 Study of Scalability 

We study the performances of the three algorithms in larger data center of 1024 PMs, in order 

to understand their scalability. All the set up is the same as in Fig. 6, except for the size of the 

data center. We compare Profit and Local, since both outperforms Pod. Table II shows the total 

energy consumptions of both algorithms in a small 128-PM data center and a large 1024 PMs. 

We set the storage capacity of each PM as 300GB, the medium in the storage parameter range. 

The last column, Improvement Percentage, is calculated as the energy consumption difference 

between Profit and Local divided by energy consumption of Local. It shows that in small data 

center, Profit improves upon Greedy by 6:69% while in large data center, it is 13:78% 

improvement. This shows that our approximation algorithm performs better than Local in large 

data centers therefore is more scalable. 



 

Fig. 7. Performance comparison for data center with 1024 PMs, with random initial placement. 

 

 

 

 

 

 

 

 



5.5.3 Zipf Distribution 

We study the performance of the proposed algorithms under Zipf distribution access 

pattern. Fig. 8 shows that under Zipf distribution, the performance difference between Profit 

and Local is even larger. This shows that Profit works particularly well for data files with distinct 

popularity levels. When data files have distinct popularity levels, the popular data is always be 

replicated to more PMs according to our approximation algorithm, therefore reducing the 

energy consumption the most. 

 

Fig. 8. Performance comparison for data center with 128 PMs with Zipf distribution access pattern. 
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6. Conclusion and Future Work 

We studied file replication problem in data intensive cloud data centers, and designed a 

time-efficient approximation algorithm with performance guarantee. It was based on a novel 

concept called “profit”, and optimizes over a submodular function that can be computed 

efficiently. Our algorithm reduced the total energy consumption of data access by at least half 

of what is achieved by an optimal replication solution. We also designed two energy- and time-

efficient heuristic file replication algorithms. Currently, we assume that the VMs that execute 

user jobs stay in a particular PM for its entire lifetime. As future work, it would be interesting to 

investigate how dynamics of VM migration can interplay with the data replication, to better 

achieve the energy efficiency in cloud data centers. 
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Appendix A 
Selected Parts of the Code 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

A.1 Calculating the Total Access Time 
 

There are two ways to calculate the total energy consumption first one is by considering 
each host and then search for the files in the host itself, hosts in the same edge, hosts in the 
same pod, hosts outside of the pod (or in the central database). 

  
 public double 
totalAccessTime(ArrayList<org.cloudbus.cloudsim.checkpoint.centralexample.Fil

e> FileList,double [][] accessrates, ArrayList<NetworkHost> hosts){ 

    double energyconsumption =0; 

          double totalBandwidth= 0; 

           

           

          boolean found= false; 

 

           

          for (int j=0 ; j < hosts.size(); j++){ 

 

              for (int i = 0 ; i < FileList.size() ; i++ ){ 

              

                 if (hosts.get(j).localDataBase.contains(i) == true){  // The 

file is in the same machine COST= 0 

               

                     found = true; 

                         energyconsumption += 0d * (accessrates[j][i]);  

                         totalBandwidth+= 0d *  (accessrates[j][i]); //in 

second  

                         countInHost++; 

                        if(j == host){ 

                          System.out.println("The File : " + i + " In PM 

1 :"+"  The Accessrate is :" + accessrates[j][i]); 

                          System.out.println("The one time access is  " 

+ 0 ); 

                          PM1agrr+= 0; 

                          PM1agrrZiph+= 0 * accessrates[j][i]; 

                          System.out.println("The multiplication is :" + 

0 * accessrates[j][i] ); 

                         } 

                        

                 } 

                 if (found != true){ //file is not in the same machine; 

                 for(int ii = 0 ; ii < hosts.get(j).edge.size(); ii++){ // 

for the cost from other machines in the same edge Cost 3; 

                         if ( 

hosts.get(hosts.get(j).edge.get(ii)).localDataBase.contains(i) ) 

                         { 

   

                            found= true;//the file is in the edge 

                            countInEdge++; 

                            energyconsumption += 1d * (accessrates[j][i]); 



                            totalBandwidth+= 4d * (accessrates[j][i]) ; //in 

seconds 

                             

                         break; 

                            }}} 

                  if (found != true){ 

                             for(int ii = 0 ; ii < hosts.get(j).pod.size(); 

ii++){ //for the cost from machines in the same pod COST 7 

                                 if 

(hosts.get(hosts.get(j).pod.get(ii)).localDataBase.contains(i)){ 

                                  countInPod++; 

           

                                    found = true; // file in pod  

                                   

                                      energyconsumption += 7d * 

(accessrates[j][i]); 

                                      totalBandwidth+= 6d * 

(accessrates[j][i]) ;  //in seconds                                        

                                     break; 

                             }   

                         } 

                     } 

                  if (found != true){// not in the pod at all take it from 

database with COST 22 

                             {   

                               

                               

                              found = true; // file out of pod (or Central 

database) 

                                 energyconsumption += 22d * 

(accessrates[j][i]); 

                                 totalBandwidth+= 6.8d * (accessrates[j][i]);  

//in seconds  

                                  

                              }         

                         } 

                  found = false;  

                     }   

                        // machine j has been checked against file i 

                 }// file i is done let's move to second file  

           

        return energyconsumption; // if I want the total access time I 

manually change this line to return totalBandwidth. 

      } 

 

 The other way is to calculate the Total Access Time and the energy consumption using 
the distances. We have 0 distance when the file is in the host, 1 distance when the file is in the 
same edge, 3 distance when the file is in the same pod, 5 distance if the file is not in the same 
pod or in the Central Database. 

 
public int TotalAccessTime2(ArrayList<FileCopy> p){ 

      

     double energyConsumption = 0; 

      double TotalAccessTime = 0; 

      for( int i = 0 ; i < p.size(); i++){ 

        



        

       if ( p.get(i).distance == 0){ 

       energyConsumption += 0 * rates[p.get(i).hostID][p.get(i).fileID]; 

        TotalAccessTime += 0; 

       }  

        

       if ( p.get(i).distance == 1){ 

         

       energyConsumption += 1 * rates[p.get(i).hostID][p.get(i).fileID]; 

        TotalAccessTime += 4 * rates[p.get(i).hostID][p.get(i).fileID]; 

       }  

        

       if(p.get(i).distance == 3){ 

         

         

       energyConsumption +=  7 * rates[p.get(i).hostID][p.get(i).fileID]; 

       TotalAccessTime += 6 * rates[p.get(i).hostID][p.get(i).fileID]; 

         

       }  

      if(p.get(i).distance == 5){ 

         

      energyConsumption += 22 * rates[p.get(i).hostID][p.get(i).fileID]; 

      TotalAccessTime += 6.8 * rates[p.get(i).hostID][p.get(i).fileID]; 

        

       } 

       

      } 

      System.out.println("The total accesstime from TotalAT :" + totalAccessTime); 

      System.out.println("The total bandwith  from TotalAT :" + totaltime); 

      return 0 ; 

     } 

 

The helper function to allocate each file and the distance between this file and the hosts. 

 
public void Disallocator(){ 

      int id; 

      int FileID; 

      for(int i = 0 ; i < hostListg.size() ; i++) { 

        

       for(int j = 0 ; j < hostListg.get(i).localDataBase.size(); j++){ 

       

        FileID= hostListg.get(i).localDataBase.get(j); 

         

          pairs.get(i*1000 + FileID).isThere = true; 

              pairs.get((i*1000) + FileID).distance  = 0; 

               

             for(int t = 0 ; t < hostListg.get(i).edge.size(); t++){ 

              id = hostListg.get(i).edge.get(t) *1000; 

                    if(pairs.get(id+ FileID ).distance > 1){ 

                  

                 pairs.get(id+ FileID).distance = 1; 

                 

               } 

             } 

              

               for(int x = 0 ; x < hostListg.get(i).pod.size(); x++){ 

                id = hostListg.get(i).pod.get(x) *1000; 

              if(pairs.get(id + FileID).distance > 3){ 

                  

                 pairs.get(id + FileID).distance = 3; 

                  



                } 

                 

                 

                } 

        

        

        

      } 

       

       

       

     } 

     } 

 
 

A.2  Profit Algorithm 
A.2.1  Find the Replica Effect for a Host and a File  

 
public double replicaEffect (int hostID , int 

fileID,ArrayList<org.cloudbus.cloudsim.checkpoint.centralexample.File> FileList, 

ArrayList<NetworkHost> hosts  ){ 

      double replicaE=0;  // to calculate the aggregated replica effect  

       int id ; 

 

         id = hostID*1000; 

         if(pairs.get(id + fileID).distance == 5){ //File is Not in Pod                

         replicaE+= (6.8) * rates[hostID][fileID]; 

                

         for(int i = 0 ; i < hosts.get(hostID).edge.size(); i++){ 

                   

         id = hostListg.get(hostID).edge.get(i) * 1000; 

                    

         if(pairs.get(id + fileID ).distance > 1){ 

                    

           replicaE+= (6.8 - 4) * rates[hosts.get(hostID).edge.get(i)][fileID];  

                    

                         }  

                     

              } 

                   

                

           for(int i = 0 ; i < hosts.get(hostID).pod.size(); i++){ 

 

           id = hostListg.get(hostID).pod.get(i) * 1000; 

           if(pairs.get(id+ fileID ).distance > 3){ 

           replicaE+= (6.8 - 6) * rates[hosts.get(hostID).pod.get(i)][fileID]; 

                  } 

                      } 

              } 

                   

            if(pairs.get(id + fileID).distance == 3){ // File is in the Same pod /not 

edge 

                

          replicaE += (6 - 0) * rates[hostID][fileID]; 

             

              for(int i = 0 ; i < hosts.get(hostID).edge.size(); i++){ 

              id = hostListg.get(hostID).edge.get(i) * 1000; 



                

              id = hosts.get(hostID).edge.get(i) *1000; 

              if(pairs.get(id + fileID ).distance > 1){ 

                     

              replicaE +=  (6 - 4) *  rates[hosts.get(hostID).edge.get(i)][fileID]; 

                  

           } 

            

                   } 

              } 

               

              if(pairs.get(id + fileID).distance == 1){ // File in the same edge 

                

                         

               replicaE += 4 * rates[hostID][fileID]; 

               

 

         

         return   replicaE; // return the aggregated effect for this replica  

      } 

 

A.2.2 Code for Checking All the replica effects 
  

After we check all the replicas effects we then choose the winners and make the actual 
replication  

 
 

public int minAccessTime 

(ArrayList<org.cloudbus.cloudsim.checkpoint.centralexample.File> FileList, 

ArrayList<NetworkHost> hosts){ 

 

       

      double maxReduction = Double.MIN_VALUE; 

      double value= 0; 

      int winHost=0 ; 

      int winFile= 0; 

      int id; 

     for(int d = 0 ; d <  (hosts.get(0).m * hosts.size()); d++){   //Number of round to 
fill the datacenter (Note some of these rounds are not counted in case there is no Central DataBase) 
        

      maxReduction = Double.MIN_VALUE; 

        

 

           for (int i = 0 ; i < FileList.size(); i ++){ 

             

            for (int j= 0 ; j < hosts.size(); j++){ 

 

 if(hosts.get(j).localDataBase.size() >= hosts.get(j).m 

hosts.get(j).localDataBase.contains(i)) // if Host is full or contain the file already 

                      { 

                       value = Double.MIN_VALUE; 

                      } 

                      else{  

             

          value= replicaEffect(j, i, FileListg, hostListg); // calculate the 

replica effect for this round  

                   if ( value > maxReduction){ 



                     

                    maxReduction = value; 

                    winHost = j; 

                    winFile= i; 

                     

                   } 

                      }   

           } 

           } 

           

           System.out.println("The winners are host " + winHost + " and File :" + 

winFile); 

 

//The actual replication starts here 

if(hostListg.get(winHost).localDataBase.size() < hostListg.get(winHost).m             

&& !hostListg.get(winHost).localDataBase.contains(winFile)){ 

              hostListg.get(winHost).localDataBase.add(winFile); 

               

          pairs.get(winHost*1000 + winFile).isThere = true; 

         pairs.get((winHost*1000) + winFile).distance  = 0; 

          

          

          

        for(int i = 0 ; i < hosts.get(winHost).edge.size(); i++){ 

         id = hosts.get(winHost).edge.get(i) *1000; 

               if(pairs.get(id+ winFile ).distance > 1){ 

             

            pairs.get(id+ winFile).distance = 1; 

            

          } 

        } 

         

          for(int i = 0 ; i < hosts.get(winHost).pod.size(); i++){ 

           id = hosts.get(winHost).pod.get(i) *1000; 

         if(pairs.get(id + winFile).distance > 3){ 

             

            pairs.get(id + winFile).distance = 3; 

             

           } 

            

            

           } 

           } 

    //The actual replication Ends here 

 

     } 

      

       totalAccessTime(FileListg, rates, hostListg); Calculate the Total access Time 

Or the Total energy consumption based on the user desire  

      return 0; 

     } 

      
 

A.3 Greedy Algorithm 
 
public double 

greedyAlgo(ArrayList<org.cloudbus.cloudsim.checkpoint.centralexample.File> 

FileList,double [][] accessrates, ArrayList<NetworkHost> hosts){ 

     int redTotalAccessTime = 0; // The reduced total access time 

     boolean done = true; 



     double count; 

 

      

       for (int i = 0 ; i < hosts.size(); i ++){ 

       

      count = 100; 

      done =true; 

       

        while (done){ 

             

        for (int j = 0 ; j < FileList.size(); j ++){ 

        

if (accessrates[i][j] == count &&   

!hostListg.get(i).localDataBase.contains(j)){ 

         

hosts.get(i).localDataBase.add(Integer.parseInt(FileList.get(j).g

etName())); 

  

 

          

        } 

         

       if(hosts.get(i).localDataBase.size() == hosts.get(i).m){ 

           

          break; 

           

                   } 

         

    } 

      count --; // after checking all the 100 check the 99 and so on … 

if(count == 0 || hosts.get(i).localDataBase.size() == 

hosts.get(i).m) done=false; 

       

   } 

     } 

      return totalAccessTime(FileListg, rates, hostListg); //calculate the 

total access time or the total energy consumption  

     } 

  
 

 

 

 

A.3.1 Greedy Algorithm with Zipf  
 With Zipf, the Greedy Algorithm is a special case since each host will replicate the first 
files as his storage can take. For example, with storage of 500GB for per host, each host will 
replicate the first 250 files. For simplicity, a special function were coded for this purpose  
     
 public double greedyAlgo2(){ //this is espical case for Ziph 

          

    for (int i = 0 ; i < hostListg.size(); i ++){ 

    for( int j = 0 ; j < hostListg.get(i).m; j++){ 

    if(hostListg.get(i).localDataBase.size() < hostListg.get(i).m &&   

!hostListg.get(i).localDataBase.contains(j) ) 

          hostListg.get(i).localDataBase.add(FileListg.get(j).id); 



          } 

         } 

           

         return totalAccessTime(FileListg,rates,hostListg); 

          } 

      
 

 A.4 Pod-Based Algorithm  
 
public int 

podBasedAlgo(ArrayList<org.cloudbus.cloudsim.checkpoint.centralexample.File> 

FileList,double [][] accessrates, ArrayList<NetworkHost> 

hosts,ArrayList<filesData> files ){ 

      

      boolean done = true; 

      int count =1; 

      Collections.sort(files, new Comparator<filesData>(){ 

         public int compare(filesData o1, filesData o2){ 

            return  Double.compare(o2.sumPerPod , o1.sumPerPod); 

         } 

      }); // sort the files array to have the hot files  

       

      // sort highest servers for each file 

     for (int i = 0 ; i< files.size() ; i++){ 

      Collections.sort(files.get(i).rest, new Comparator<PointZ>(){ 

          public int compare(PointZ o1, PointZ o2){ 

             return Double.compare(o2.y , o1.y); 

          } 

       }); 

     } 

       

      Collections.sort(files, new Comparator<filesData>(){ 

       public int compare(filesData o1, filesData o2){ 

          return Double.compare(o2.sumPerPod , o1.sumPerPod); 

       } 

    }); 

       

     

      for ( int i = 0 ; i < files.size() ; i ++){  

       

       if (hosts.get(files.get(i).MaxID).localDataBase.size() < 

hosts.get(files.get(i).MaxID).m && 

!hosts.get(files.get(i).MaxID).localDataBase.contains(FileList.get(files.get(

i).column).getName())){//check if the local database if full 

        

hosts.get(files.get(i).MaxID).localDataBase.add(Integer.parseInt(FileList.get

(files.get(i).column).getName()));//add the file in the local database of the 

host with the highest accessrate 

       } else { // if the host is full put the file in the second 

server with the highest rate ( for example if the host with 10 is full then 

put it in the host with 9...) 

         

 for(int j= 0 ; j < files.get(i).rest.size() ; j++){ 

 if (hosts.get(files.get(i).rest.get(j).x).localDataBase.size() < 

hosts.get(files.get(i).rest.get(j).x).m && 



!hosts.get(files.get(i).rest.get(j).x).localDataBase.contains(Integer.parseIn

t(FileList.get(files.get(i).column).getName())) ){ 

          

hosts.get(files.get(i).rest.get(j).x).localDataBase.add(Integer.parseInt(File

List.get(files.get(i).column).getName())); 

        break; 

         } 

          

        

         

          

        } 

         

        

        

       } 

       } 

       

       

         

        

       

     return 0;  

     } 

      

 

To decide what are the hot files for each pod I used a helper function: 
 
public ArrayList<filesData> podBasedC2(double [][] accessrates , int k){ 

       

      int min= k; 

        

      ArrayList<filesData> files = new ArrayList<filesData>(); 

      for ( int j = 0 ; j < accessrates[0].length; j ++) 

    { 

       filesData file = new filesData(); 

       double aggregatedSum = 0 ; 

       double temp= Double.MIN_VALUE; 

       file.MaxID=0; 

      

      for(int i= min ; i < (min + ((Config.portNum/2)*(Config.portNum/2))); i++){  

       PointZ p = new PointZ(); 

 

       aggregatedSum+= accessrates[i][j];  

       temp = accessrates[i][j]; 

       p.x = i; 

       p.y = temp; 

       file.row =i; 

       if(temp > file.maxValue){ file.maxValue = temp; 

                           file.MaxID= i; 

         ;} 

             file.rest.add(p); 

      } 

      file.column= j; 

      file.sumPerPod= aggregatedSum; 

      files.add(file); 

      

       

      } 



      

      

       

     return files;  

     } 

 

 

 
 
Also, to represent each file as a competitive file for being hot I used a helper class 

 

 

 

public class filesData { 

  

  

 public int row = -1; //which row 

 public int column = -1; // which column 

 public int MaxID = -1; //the Host Where this file should be stored (has 

the max access rate); 

 public double sumPerPod = -1; // the total accessRate for this file in 

a pod 

 public double maxValue= -1; 

 public ArrayList<PointZ> rest = new ArrayList<PointZ>(); // the rest of 

hosts that can hold this file 

  
 
} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


