

IMPROVED SERVER CONSOLIDATION ALGORITHMS IN DATA CENTERS

Project

Presented

to the Faculty of

California State University Dominguez Hills

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Shadi Shiri

Fall 2016

ii

IMPROVED SERVER CONSOLIDATION ALGORITHMS IN DATA CENTERS

AUTHOR: SHADI SHIRI

APPROVED:

Bin Tang, PhD

Faculty Adviser

Mohsen Beheshti, PhD

Committee Member

Jianchao “Jack” Han, PhD

Committee Member

iii

ACKNOWLEDGMENTS

First, I would like to thank my project adviser, Dr. Bin Tang, for his helpful

feedback and ideas. His comments and suggestions have really helped me with my

project.

I would also like to sincerely thank Dr. Mohsen Beheshti, professor and

department chair of computer science. I must express my very profound gratitude for his

wonderful support and encouragement.

Also, I would like to express my thanks to my committee member, Dr. Jianchao

“Jack” Han, professor of computer science, for all his guidance throughout my years of

study.

I would like to thank my family for supporting me throughout my studying years.

Finally, and the most importantly, I would like to thank my husband for his

unfailing support, understanding, and patience during these past years. I thank him for his

compatibility and compromise to provide me a proper environment for studying.

iv

TABLE OF CONTENTS

PAGE

APPROVAL PAGE…………………………………………………………………...…..ii

ACKNOWLEDGMENTS………………………………………………………………iii

TABLE OF CONTENTS………………………………………………………………iv

LIST OF TABLES……………………………………………………………………...vi

LIST OF CHARTS…………………………………………………..………………...ix

LIST OF FIGURES…………………………………………………..………………...xii

ABSTRACT……………………………………………………………...……………xiii

CHAPTER

1. INTRODUCTION AND BACKGROUND………………………………………1

2. VIRTUALIZATION AND DATA CENTER POWER CONSUMPTION........……….3

 What Is Virtualization? ..3

 Data Center Power Consumption...6

 Data Center Topology ..7

 The Architecture of Fat-Tree Topology ...8

3. VIRTUAL MACHINE REPLICATION AND THE PROPOSED SERVER

 CONSOLIDATION ALGORITHM ..…...10

 Virtual Machine Replication Algorithms ...10

 Replication Constraint of VMs ..10

 Effective Storage Capacity of a PM ...10

 Minimum-Cost Flow Algorithm ..11

 Transformation ...11

 First-Fit Algorithm ...12

 Greedy Algorithm ..13

 Server Consolidation Algorithm ..14

v

 Existing Consolidation Algorithm and Its Drawbacks16

 Proposed Consolidation Algorithms ..17

 Dynamic_Consolidaton Algorithm ...18

 OptimizedDynamic_Consolidation Algorithm ..18

 Sorted_Consolidation Algorithm ...18

 MostFilledPM_Consolidation Algorithm ..18

 SortedMostFilledPM_Consolidation Algorithm ..18

 Consolidation Algorithm Specifications ..19

 Detailed Explanation of the Proposed Algorithms ..20

 Dynamic_Consolidaton Specifications ..20

 OptimizedDynamic_Consolidation Specifications ..22

 Sorted_Consolidation Specifications ...24

 MostFilledPM_Consolidation Specifications ..26

 SortedMostFilledPM_Consolidation Specifications ..28

4. PERFORMANCE EVALUATION ..……………30

 Running the Program on Different Data Centers ...30

 Consolidation on MCF Replicated Data Center ...30

 Consolidation on First Fit Replicated Data Center ..41

 Consolidation on Greedy Replicated Data Center ...52

 Output Analysis ...62

 Number of Tuned-Off PMs ..62

 Cost Analysis ..63

5. CONCLUSION………………………………………………………………………..66

6. FUTURE WORKS.…..………………………………………………………………..69

REFERENCES…………………………………………………………………….70

APPENDIX: SOURCE CODE……….………………………………………………….74

vi

LIST OF TABLES

PAGE

1. Consolidation Results in MCF Replication (k=16, R=5, VM=100)……………..31

2. Consolidation Results in MCF Replication (k=16, R=5, VM=300) ……………31

3. Consolidation Results in MCF Replication (k=16, R=5, VM=400)……………..32

4. Consolidation Results in MCF Replication (k=16, R=5, VM=500)……………33

5. Consolidation Results in MCF Replication (k=16, R=5, VM=600)……… ..………..33

6. Consolidation Results in MCF Replication (k=16, R=5, VM=700)……………..34

7. Consolidation Results in MCF Replication (k=16, R=5, VM=800)……………..35

8. Consolidation Results in MCF Replication (k=16, R=5, VM=900)……..………..35

9. Consolidation Results in MCF Replication (k=16, R=5, VM=950)………….…..36

10. Consolidation Results in MCF Replication (k=16, R=5, VM=1000)…………37

11. Overall Turned-Off PM in MCF Replication (Variable VM) …………….. ..………38

12. Consolidation Results in MCF Replication (k=16, R=2, VM=950)………….....38

13. Consolidation Results in MCF Replication (k=16, R=3, VM=950)……………. ...…39

14. Consolidation Results in MCF Replication (k=16, R=4, VM=950)……………....40

15. Overall Turned-Off PM in MCF Replication (Variable R) …………..…….…40

16. Consolidation Results in First-Fit Replication (k=16, R=5, VM=100)…… .………..41

17. Consolidation Results in First-Fit Replication (k=16, R=5, VM=300) ..……………42

18. Consolidation Results in First-Fit Replication (k=16, R=5, VM=400)……… .……..43

19. Consolidation Results in First-Fit Replication (k=16, R=5, VM=500)…………… ...43

vii

20. Consolidation Results in First-Fit Replication (k=16, R=5, VM=600)…… .………..44

21. Consolidation Results in First-Fit Replication (k=16, R=5, VM=700)…… .………..45

22. Consolidation Results in First-Fit Replication (k=16, R=5, VM=800)………… .…..45

23. Consolidation Results in First-Fit Replication (k=16, R=5, VM=900)……. ...….…..46

24. Consolidation Results in First-Fit Replication (k=16, R=5, VM=950)…… ..…...…..47

25. Consolidation Results in First-Fit Replication (k=16, R=5, VM=1000)…………47

26. Overall Turned-Off PM in First-Fit Replication (Variable VM) …………… ………48

27. Consolidation Results in First-Fit Replication (k=16, R=2, VM=950)…… ..…….....49

28. Consolidation Results in First-Fit Replication (k=16, R=3, VM=950)…………. ..…50

29. Consolidation Results in First-Fit Replication (k=16, R=4, VM=950)………....50

30. Overall Turned-Off PM in First-Fit Replication (Variable R) …………..…….…51

31. Consolidation Results in Greedy Replication (k=16, R=5, VM=100)…52

32. Consolidation Results in Greedy Replication (k=16, R=5, VM=300)…53

33. Consolidation Results in Greedy Replication (k=16, R=5, VM=400)…53

34. Consolidation Results in Greedy Replication (k=16, R=5, VM=500)…54

35. Consolidation Results in Greedy Replication (k=16, R=5, VM=600)…55

36. Consolidation Results in Greedy Replication (k=16, R=5, VM=700)…55

37. Consolidation Results in Greedy Replication (k=16, R=5, VM=800)…56

38. Consolidation Results in Greedy Replication (k=16, R=5, VM=900)…57

39. Consolidation Results in Greedy Replication (k=16, R=5, VM=950)…57

40. Consolidation Results in Greedy Replication (k=16, R=5, VM=1000)58

41. Overall Turned-Off PM in Greedy Replication (Variable VM)…59

viii

42. Consolidation Results in Greedy Replication (k=16, R=2, VM=950)60

43. Consolidation Results in Greedy Replication (k=16, R=3, VM=950)60

44. Consolidation Results in Greedy Replication (k=16, R=4, VM=950)61

45. Average of Final Cost in First Fit (PM Cost =1) ...64

46. Average of Final Cost in Greedy (PM Cost =1) ..64

47. Average of Final Cost in Minimum Cost Flow (PM Cost =1)64

48. Average of Final Cost in First Fit (PM Cost =100) ...64

49. Average of Final Cost in Greedy (PM Cost =100) ..64

50. Average of Final Cost in Minimum Cost Flow (PM Cost =100)65

51. Average of Final Cost in First Fit (PM Cost =1000) ...65

52. Average of Final Cost in Greedy (PM Cost =1000) ..65

53. Average of Final Cost in Minimum Cost Flow (PM Cost =1000)65

ix

LIST OF CHARTS

PAGE

1. Trend of Average Turned-off PMs in MCF Replication (k=16, R=5, VM=100) ……31

2. Trend of Average Turned-off PMs in MCF Replication (k=16, R=5, VM=300) ……32

3. Trend of Average Turned-off PMs in MCF Replication (k=16, R=5, VM=400) ……32

4. Trend of Average Turned-off PMs in MCF Replication (k=16, R=5, VM=500) ……33

5. Trend of Average Turned-off PMs in MCF Replication (k=16, R=5, VM=600) ……34

6. Trend of Average Turned-off PMs in MCF Replication (k=16, R=5, VM=700) ……34

7. Trend of Average Turned-off PMs in MCF Replication (k=16, R=5, VM=800) ……35

8. Trend of Average Turned-off PMs in MCF Replication (k=16, R=5, VM=900) ……36

9. Trend of Average Turned-off PMs in MCF Replication (k=16, R=5, VM=950) ……36

10. Trend of Average Turned-off PMs in MCF Replication (k=16, R=5, VM=1000) ..…37

11. Trend of Overall Turned-off PMs in MCF Replication (Variable VM)……38

12. Trend of Average Turned-off PMs in MCF Replication (k=16, R=2, VM=950) ……39

13. Trend of Average Turned-off PMs in MCF Replication (k=16, R=3, VM=950) ……39

14. Trend of Average Turned-off PMs in MCF Replication (k=16, R=4, VM=950) ……40

15. Trend of Overall Turned-off PM in MCF Replication (Variable R)……41

16. Trend of Average Turned-off PMs in First-Fit Replication (k=16, R=5, VM=100)…42

17. Trend of Average Turned-off PMs in First-Fit Replication (k=16, R=5, VM=300)…42

18. Trend of Average Turned-off PMs in First-Fit Replication (k=16, R=5, VM=400)…43

19. Trend of Average Turned-off PMs in First-Fit Replication (k=16, R=5, VM=500)…44

x

20. Trend of Average Turned-off PMs in First-Fit Replication (k=16, R=5, VM=600)…44

21. Trend of Average Turned-off PMs in First-Fit Replication (k=16, R=5, VM=700)…45

22. Trend of Average Turned-off PMs in First-Fit Replication (k=16, R=5, VM=800)…46

23. Trend of Average Turned-off PMs in First-Fit Replication (k=16, R=5, VM=900)…46

24. Trend of Average Turned-off PMs in First-Fit Replication (k=16, R=5, VM=950)…47

25. Trend of Average Turned-off PMs in First-Fit Replication (k=16, R=5, VM=1000) .48

26. Trend of Overall Turned-off PM in First-Fit Replication (Variable VM)49

27. Trend of Average Turned-off PMs in First-Fit replication (k=16, R=2, VM=950)49

28. Trend of Average Turned-off PMs in First-Fit replication (k=16, R=3, VM=950) …50

29. Trend of Average Turned-off PMs in First-Fit replication (k=16, R=4, VM=950) …51

30. Trend of Overall Turned-off PM in First-Fit Replication (Variable R).......................51

31. Trend of Average Turned-off PMs in Greedy Replication (k=16, R=5, VM=100) …52

32. Trend of Average Turned-off PMs in Greedy Replication (k=16, R=5, VM=300) …53

33. Trend of Average Turned-off PMs in Greedy Replication (k=16, R=5, VM=400) …54

34. Trend of Average Turned-off PMs in Greedy Replication (k=16, R=5, VM=500) …54

35. Trend of Average Turned-off PMs in Greedy Replication (k=16, R=5, VM=600) …55

36. Trend of Average Turned-off PMs in Greedy Replication (k=16, R=5, VM=700) …56

37. Trend of Average Turned-off PMs in Greedy Replication (k=16, R=5, VM=800) …56

38. Trend of Average Turned-off PMs in Greedy Replication (k=16, R=5, VM=900) …57

39. Trend of Average Turned-off PMs in Greedy Replication (k=16, R=5, VM=950) …58

40. Trend of Average Turned-off PMs in Greedy Replication(k=16, R=5, VM=1000) ...58

41. Trend of Overall Turned-off PM in Greedy Replication (Variable VM) 59

xi

42. Trend of Average Turned-off PMs in Greedy Replication (k=16, R=2, VM=950) …60

43. Trend of Average Turned-off PMs in Greedy Replication (k=16, R=3, VM=950) …61

44. Trend of Average Turned-off PMs in Greedy Replication (k=16, R=4, VM=950) …61

xii

LIST OF FIGURES

PAGE

1. Data Center ..……2

2. Virtual Machine Replication ..……5

3. Virtual Architecture ...……6

4. Data Center Power Consumption...……7

5. Fat-Tree Topology ...……9

6. VM Replication and Transformation ...……11

7. First-Fit Algorithm ...……13

8. Greedy Algorithm ..……14

9. Server Consolidation ..……15

ABSTRACT

This project starts with an introduction to data center and its power

consumption and then moves to explaining virtual machine replication and

providing a detailed description of the three most famous replication algorithms,

which are minimum-cost flow, first-fit, and greedy.

The main part of this project is about server consolidation. In server

consolidation, we try to create more inactive physical machines from the left

active physical machines after virtual machine replication and turn them off to

save energy and have a more efficient data center. I explain an existing

consolidation algorithm and its drawback. And then I propose two consolidation

packages which improve the existing outputs and talk about their features.

In the next part, I run proposed consolidation algorithms on many different

data centers with different specifications and compare the final number of turned-

off PMs to find the highest number.

In the last part of the project, I talk about the final cost of different data

centers with different virtual machine replication algorithms and server

consolidation to find the most efficient virtual machine replication [20] and

consolidation algorithm.

1

CHAPTER 1

INTRODUCTION AND BACKGROUND

Through the boom of the microcomputer industry, which started around the

1980s, users began to use computer everywhere without enough consideration of its

operating requirements, although by expanding the complexity of the information

technology operations, organizations started to think about the need of controlling

information technology supplies. Around the 1970s, the development of OS UNIX

resulted in the increasing availability of Linux, which was adjustable to the Windows

operating system PC through the 1990s. This technology is named server with a Linux

operating system, which is a time-sharing operating system based on a client server

model to share resources among multiple users. A data center is an equipment that

centralizes appliances, tools, and IT operations; and an organization’s computer systems

and related components can be hosted by using a data center. This component includes

storage systems and telecommunications. It should have a backup for communication

connections and power supplies. In addition, it should include environmental controls

such as fire suppression and air-conditioning. Various security devices and tools are one

of the most necessary parts of a data center.

Large data centers are operating in the scale of an industrial environment, and the

electricity they use is very close to the usage of a small town. In most companies, a data

center is a place where the most critical processes are running, and it is the brain of a

company.

https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Telecommunication
https://en.wikipedia.org/wiki/Power_supply

2

There are thousands of server machines in data centers, and a large number of

Internet services such as search engines [20], social networks, and video streaming are

supported by them. Recently, to use resources and operations more effectively and reduce

costs, data centers use server virtualization technologies.

In computer science, virtualization is making a virtual version of anything, such

as a computer network, storage device, computer hardware, and operating system. It

started in the 1960s. It is a style of dividing system resources prepared by a mainframe

computer and used between different applications. Virtual machine replication (VM

replication) is a method of protecting a VM in addition to expanding the availability of a

data center [18]. This can be done by taking a VM and copying it into another VM. In

this topic, there is another concept that is named server consolidation. Moving VM copies

into a smaller number of PMs while still meeting constraints and preserving the initial

cost of the VM replication to reduce power consumption is named server consolidation.

Fig.1. Data Center [24]

3

CHAPTER 2

VIRTUALIZATION AND DATA CENTER POWER CONSUMPTION

What Is Virtualization?

Virtualized [15] data centers are being used more and more because of the fast

growth of cloud [17] service requests. This results in the establishment of large-scale

virtualized data centers. In data centers, virtual machines are used to handle the service

requests of the user. One problem is failure of a VM. If one needed VM fails, a user’s

request cannot be completed. To reduce the impact of a failure, replication mechanisms

can be a very good solution.

On the other hand, high operating costs are one of the parameters of large data

centers because they use a very large amount of energy. The infrastructure of a data

center is the place for processing user requests, and as a result, VM replication [8] is an

important factor during the time needed for job completion, and it means time

performance. In addition, it can affect energy consumption.

Recently, virtual machine replication [19] and placing them in data centers has

been the center of attention in the research community. One of the most common

parameters in data centers is failure. Human errors and rack failures because of hardware,

server, link, switch, software, and power outage problems can be a cause of failure.

Individual server and switch failures [12], [16] can become the norm rather than the

exception in data centers by growing the size of data centers. One solution to control fault

tolerance is to have redundancy in the hardware and software. User requests to the virtual

4

machines can be distributed in different physical machines by replicating virtual

machines (VMs) and placing their replication copies in data center networks, and this can

reduce server load. In addition, all fault tolerance can be achieved by having redundant

copies of a VM on different servers. On the other hand, the cost of implementing DR

(disaster recovery) can be reduced, and it can prepare increased flexibility and ensure the

protection of recovery time objectives (the time needed to restore a service after a disaster

or disruption to prevent consequences related to a break is named recovery time objective

[RTO]).

Virtual machine replication [14], [19] is important in the smooth operation of data

centers. Because physical devices and platforms are the factors of a data center for

functioning virtual machines, a small problem in the physical server can become a big

problem in virtualization-based cloud computing data centers.

Business continuity and disaster recovery are the main purposes of a virtual

machine replication technology design. You should make sure your data in disaster

situations are preserved. In virtual machine replication, a very simple level is one type of

VM protection, and it involves making a copy of the VM when there is no problem and

putting it in another VM for when the time disaster happens.

5

Fig.2. Virtual Machine Replication [25]

There are different famous virtualization technologies, such as Microsoft Virtual

Servers [2], VMware [3], and Xen [9]. By enabling and installing different OS

environments on the same physical server, it is possible to incorporate applications

running on multiple physical (PM) servers into a single physical server. One of the

desirable results is being able to turn off some servers and reducing power consumption

in a large data center, which is one of the concerns of people who are using large data

centers. Virtualization provides the environment for dividing the hardware sources of a

PM such as CPU cycles, memory, and bandwidth into several smaller separated

computing units, which are named virtual machines (VMs). They can be rented to

different tenants, and the customer has to pay in a pay-as-you-go manner. One of the

6

samples of a web service for preparing a computed capacity in a cloud that is resizable is

Amazon Elastic Compute Cloud (Amazon EC2).

Fig.3. Virtual Architecture [26]

Any failures in the system components can result in an interrupted/preempted job.

Execution of an interrupted job affects not only the results but also the energy

consumption and increases job completion time performance. As a result, power

consumption is a big concern in any data center.

Data Center Power Consumption

The truth about data centers is that they are growing unexpectedly regardless how

correctly and efficiently we run them. This results in the increase of the amounts of

power consumption. In fact, efficiency improvements contribute to the rapid growth of

data centers. Studies have proved that equipment, such as servers, storages, and network

devices, and cooling are the two largest parts of power consumption in any data center.

Each of them uses around 75% of the total power consumption in a data center. One-third

7

or half of the power consumption costs of the servers and storages are due to switches,

routers, and various links that are different network devices in data centers.

Another research [4] proves that network devices use almost 50% of the total power in a

data center [11] if the system is not used as expected, and the servers are fully energy

proportional, which means that servers are consuming nearly no power when idle and

gradually consume more power as the activity level increases.

Fig.4. Data Center Power Consumption [27]

Data Center Topology

There are different famous data center topologies [7]. In this project, we focus on

the fat-tree network, which is extensively used in data centers to interconnect different

parts of the environment, such as commodity Ethernet switches. It is a regular network

for unchangeable practical communication, which is a type of the three-stage Clos

network [10]. A Clos network is a type of a multistage network that has circuit switching,

which is rearrangeably nonblocking with an oversubscription ratio.

8

The Architecture of Fat-Tree Topology

A k-array fat tree is shown in Fig. 5. In a fat tree, k is the number of ports of each

switch, and in this sample k = 4. A fat tree has three layers of switches: (1) edge switch,

(2) aggregation switch, and (3) core switches from bottom to top. Core switches consume

a lot of energy power because they are used for handling a huge amount of traffic in the

whole data center. On the other hand, less amount of traffic is handled by aggregate and

edge switches, and as a result, they use less amount of energy.

There are k pods in aggregate and edge switches, which are the lower two layers.

In Fig. 5, a fat tree has three layers, and each layer has k/2=2 aggregation switches and

k/2=2 edge switches. They form a complete bipartite graph in between. In the

architecture of a fat tree, each edge switch is connected to both a physical machine and

aggregation switches, it is connected to k/2=2 physical machines, and the other k/2=2

ports are connected to each of the k/2=2 aggregation switches in the same pod. There are

(𝑘/2)2 k-port core switches; each of them is connected to each of the k pods. In general, a

fat tree that has k-port switches supports 𝑘3/4 physical machines. In the small data center

in Fig. 5, there are 16 physical machines.

All bandwidth is available to the end hosts, and it can always be saturated for any

request patterns. The worst scenario is the ratio of the accessible bandwidth of the

aggregate bandwidth among the end hosts to the total bisection bandwidth of a specific

communication topology.

An oversubscription can happen in a situation wherein all hosts may potentially

communicate with any other hosts in the full bandwidth usage of their network interface.

9

In fact, three pods are different units of network, computer, and storage, which

will be designed together as a unit in a data center. In general, the total number of

physical machines (PM) that can be supported by a fat tree with k-port switches is 𝑘3/4.

Fig.5. Fat-Tree Topology Architecture. A k-ary fat-tree topology with k = 4 and 16 physical machines

(PMs). There are p = 5 original virtual machines (VM): (v1, v2, ..., v5) from left to right, located at PM 3,

5, 9, 15, 16, respectively [23].

10

CHAPTER 3

VIRTUAL MACHINE REPLICATION AND THE PROPOSED SERVER

CONSOLIDATION ALGORITHM

Virtual Machine Replication Algorithms

There are many VM replication algorithms. In this project, we focus on (1)

minimum-cost flow [5], [21] algorithm, (2) first-fit algorithm, and (3) greedy algorithm.

These are the most famous algorithms in virtual machine replication methods.

Replication Constraint of VMs

There is one basic rule that should be protected during the replication all VMs

through the data center. Assume that there are R copies of each VM that should be copied

and placed in different physical machines in the data center network. It is not possible to

copy more than one of the same VM in the same PM. In this way, it is possible to provide

fault tolerance for the whole data center. This rule has two results: (1) The number of

replica copies of each VM cannot be more than the total number of all physical machines.

(2) Each PM (including the source PM) is able to store p separate VMs at max, although

the storage capacity of a PM can be larger than the total size of the p virtual machines. As

a result, we need to define an effective storage capacity.

Effective Storage Capacity of a PM

The effective storage capacity of PM i, denoted as mei, is the maximum storage

capacity of a PM(i) that can be used to store virtual machines in VM replication. As a

result, it is not possible to exceed the capacity of the PM by copying too much VM on

that PM.

11

Minimum-Cost Flow Algorithm

The cheapest possible way of sending a certain amount of flow through a network

can be found by using a minimum-cost flow problem (MCFP) [22]. It is an optimization

and decision problem. One of the best uses of the minimum-cost flow [1], [13] algorithm

is finding the best route for sending delivery from a factory to a warehouse. In this

problem, each road has a specific capacity and a special cost.

Since most other types of problems can be mapped to a minimum-cost flow

problem, it can be resolved very efficiently by using a network simplex algorithm.

Among all the flow and circulation problems, the minimum-cost flow problem is one of

the most substantial.

Fig.6 VM Replication and Transformation. The VM replication and transferring problem is equivalent to a
minimum-cost flow problem. In each parenthesis, the first value is the capacity of the edge and the second is
the cost of the edge. Note that it is not a complete graph between VM and Vp, with the following edges
missing: (VM1, S(vm1)), (VM2, S(vm2)), ..., (VMp, S(vmp)) [23].

Transformation

In the first step, the data center network in Fig. 5, G (V; E), should be transferred

to a flow network G0 (V 0; E0). The new graph has the following specifications [23]:

https://en.wikipedia.org/wiki/Flow_network
https://en.wikipedia.org/wiki/Optimization
https://en.wikipedia.org/wiki/Decision_problem

12

1. 𝑉
/

 = {s} ∪ {t} ∪ VM ∪ Vp, where s is the new source node, t is the new sink node, and

VM = {𝑣𝑚1, 𝑣𝑚2, ..., 𝑣𝑚𝑝}is a set of p new nodes. Like before, 𝑣𝑚𝑖 represents virtual machine i.

2. 𝐸
/

 = {(s, i) | i ∈ VM} ∪ {(j, t) | j ∈ Vp} ∪ {(i, j) | i ∈Vp, j ∈ VM} − {(𝑣𝑚1, S(𝑣𝑚1)),

(𝑣𝑚2, S(𝑣𝑚2)),...,(𝑣𝑚𝑝, S(𝑣𝑚𝑝))}. Here, an edge does not exist between node 𝑣𝑚𝑖 and S(𝑣𝑚𝑖),

the source node (PM) of 𝑣𝑚𝑖. This is because the original copy of each VM does not need to be

transferred, and only K – 1 copies are transferred for each VM.

3. For each edge (s, i), set its capacity as K − 1 and its cost 0. For each edge (j, t), set its

capacity as 𝑚𝑖
/
 and its cost 0.

4. For all other edges (i, j), i ∈ VM, j ∈ Vp, we set its capacity as 1 and its cost as Cij, the

minimum energy cost sending k-Byte information from physical machine i to physical

machine j. This minimum energy cost can be calculated using all pairs minimum cost

paths (Floyd algorithm). Together with 2, it guarantees that the K − 1 copies of each VM are

migrated to K − 1 different physical machines other than the source physical machine.

5. For simplicity, we consider the transferring cost between a PM and an edge

switch as 1. The transferring cost between an edge switch and an aggregation switch is 5.

The transferring cost between an aggregation switch and a core switch is 10.

First-Fit Algorithm

In the first-fit algorithm, all VMs are being copied in the first available place that

meets the condition of the VM and PMs. Assume that all the existing PMs are well

organized from left to right in the fat-tree data center topology. Until all the VMs have

their original replica copies located in the data center, it starts to duplicate each of the

original VM and put their R-1 replica copies on the first accessible PM, the second

13

available PM, and so on. Remember that for copying each VM on one specific PM, the

limitation of that PM should be met, which means that it is not possible to copy different

VMs on a PM more than its storage capacity. On the other hand, more than one copy of

one VM cannot be placed on the same PM. The time needed to check the available

capacity of one PM is a constant number.

Fig.7. First-Fit Algorithm [28]

Greedy Algorithm

 In the greedy algorithm, each replica copy of a VM is placed on the closest PM,

which results in less power consumption for copying and allocating VM on different

PMs. Again, here both constraints of VMs and PMs should be met. This allocation

continues until all copies of different VMs are placed in their appropriate PMs. Most of

the time, the greedy algorithm is not able to find the best solution for the whole problem

because at each point, it just focuses on finding the best answer for that situation, and it

does not care about finding the best overall answer.

14

 Fig.8. Greedy Algorithm [29]

Server Consolidation Algorithm

Remember that after all replications are done, all those physical machines are

empty, which means that they are inactive and will be turned off. In server consolidation

[6], we plan to create more inactive physical machines from the left active physical

machines and turn them off to save energy and have a more efficient data center. The key

factor for this movement is just looking at all PMs one by one and trying to find a new

active PM as the target for each VM of that PM. We continue this process until we can

move all VMs of a specific PM and turn it off.

There is one basic rule in this process, and it is protecting the first replication cost.

It means that during consolidation [23], the cost of moving that VM to a new target

should be the same as the original replication cost. On the other hand, storage and

replication constraint should be met too.

As an example, in Fig. 5, it is possible to move two replication copies that are

placed in physical machine numbers 13 and 14 to one of those PMs, such as PM# 13, and

turn off the other one. Remember that in this example, this movement is possible because

the replication cost is the same. In addition, these two are a replication copy of two

15

different VMs. On the other hand, PM #13 has enough space for both of these two VMs

while maintaining the same total replication cost and satisfying the replication constraint

of VMs (since they are replica copies of different original VMs). By turning off this

physical machine, saving more energy in the data center would be possible.

Moving original VMs is not allowed in server consolidation. In addition, note that

it is not possible to move VMs to any available PM because the main goal is to protect

the original replication cost.

There are some definitions in server consolidation: physical machine X can be a

potential target for replicating one VM if (1) the cost of moving is the same as the

original replication cost, (2) if that PM has enough space for storing this new VM , and

(3) if it does not store a copy or the original version of the same VM.

Consolidating physical machine (CPM). We can consider a physical machine a

CPM if it does not store a source VM and it is active, which means that it just has some

copies of different VMs. Such PM has the potential to be turned off and inactivated if we

can move all its VMs to different PMs by meeting all the limitations and constraints.

Fig.9. Server Consolidation [30]

16

Existing Consolidation Algorithm and Its Drawbacks

The existing consolidation algorithm that was presented in Payman Khani’s paper

works as follows:

It starts to check the situation of all PMs from the first one. If there are three or

fewer VMs, it tries to find another active PM for each VM. As soon as it can find at least

one potential PM that meets all the storage and replication constraints, it moves that VM

to the new target PM. After checking all the VMs of that specific PM, it checks whether

the algorithm was able to move all the VMs of the PM, and that physical machine will be

turned off and inactivated.

Note that in server consolidation, the ultimate location of the VM replica copies

will be determined after the server consolidation is done, which means that the VM

replicas are not actually located in the data center after VM replication. In fact, the server

consolidation algorithm will further try to find a new solution to consolidate some

physical machines and turn off those more inactive PMs. The duplicated copies of each

VM will be finally transferred from their source PMs to the ultimate destination PMs that

were determined as the new target for each VM after running the server consolidation

algorithm.

17

Fig.10. Existing server consolidation algorithm [23]

The current algorithm has the following drawbacks:

1. It just checks those PMs that have three or fewer VMs.

2. It moves any VM to another PM only if the cost remains the same regardless of

whether it is possible to turn off that PM or not.

3. It does not check the status of the target PM.

In our project, we propose the following set of improved PM consolidation

algorithms to resolve the problem of the existing solution and improve the result. In the

following, I will explain each of the five algorithms and their positive points.

Proposed Consolidation Algorithms

In this project, five algorithms are proposed.

 1. Dynamic_Consolidation

18

2. OptimizedDynamic_Consolidation

3. Sorted_Consolidation

4. MostFilledPM_Consolidation

5.SortedMostFilledPM_Consolidation

Dynamic_Consolidaton Algorithm

In the first algorithm, we check all PMs to see whether it is possible to move the

VMs to another PM regardless of the number of VMs that are copied in that PM.

OptimizedDynamic_Consolidation Algorithm

 This algorithm includes the first one too. It means that we check all PMs

regardless of their VM numbers. In the second algorithm, we check all VMs in one PM

and move its VMs only if it is possible to move all of them. Otherwise, we do not move

any of them.

Sorted_Consolidation Algorithm

In the third algorithm, we check PMs in an ascending order based on the number

of VMs on the PMs; that is, we start with those PMs that have just one VM, and then

those with two VMs, and so on. Again, this algorithm includes the first two algorithms.

MostFilledPM_Consolidation Algorithm

In the fourth algorithm, we move the VMs of a PM to a target PM that has the

most number of VMs. Sorted_Consolidation includes the first two algorithms as well.

SortedMostFilledPM_Consolidation

It is combination of Sorted_Consolidation and MostFilledPM_Consolidation. This

algorithm acts like a tuning part of the second one, which is

19

OptimizedDynamic_Consolidation. This is the final solution, and it includes all the other

four algorithms.

Consolidation Algorithm Specifications

In all these algorithms, we preserve the original replication cost and storage and

virtual machine constraints, which means that, during consolidation, we can move one

VM to a new PM if and only if the transition cost to the new target PM is the same as the

old location, which means that we will find the PM location of the original file of the VM

and the cost of moving from that PM to the first place. After that, we will check all PMs

that have the same cost of copying from the original location to those PMs.

The other consideration concerns VM replication and protecting fault tolerance,

which means that it is not possible to have more than one copy of a VM on a specific PM.

As a result, the total number of copies of a PM cannot be more than the number of PMs –

1. In addition, we cannot copy VMs on a PM more than its storage capacity.

For comparing different consolidation results, we run three replication

algorithms—minimum-cost flow, first-fit, and greedy—to scatter all the original virtual

machines; and then we run different PM consolidation algorithms under different data

center scenarios with different physical machines and virtual machine numbers, different

numbers of switch ports, and different numbers of copies of each virtual machine. We

will compare the result, which is the number of those PMs that can be turned off on each

algorithm, and compare them with the existing algorithm to see which of them works

better.

20

Detailed Explanation of the Proposed Algorithms

Dynamic_Consolidaton Specifications

In the first step, all VMs should be scattered through the data center, and we run

all the three VM allocation algorithms that were mentioned previously. The input of this

program is the number of VMs, the number of switch ports of each physical machine, and

the number of copies for each VM. By having this data, the total number of physical

machines is calculated. Note that R, which is the number of copies for each VM, cannot

be more than P, where P is the number of physical machines, which is calculated based

on the switch port by using the 𝑘3/4 formula. The result, which is the number of active

PMs after replicating all the VMs, is different in these three algorithms. After replicating

all the VM copies, the consolidation algorithm should run on the data center to turn off

all potential PMs.

As mentioned, the existing consolidation algorithm works on those physical

machines that have three or fewer virtual machines. The Dynamic_Consolidaton

algorithm checks all the PMs from the first to the last regardless the number of VMs that

are copies on it.

For each PM, first, it makes sure that there is no original copy of any VM on this

machine because if it has even just one original VM, we do not need to try to move the

VMs of this PM since we cannot turn off one PM that has at least one original copy.

Then, it starts with the first VM, which is copied on that. In the beginning, it finds the

original location of this VM to calculate the original cost of the replication of that VM on

the first PM. And then it checks all the PMs from the beginning to the end to find a new

21

location for that VM. Moving the VM replication to this new location should meet all the

storage and VM constraints. This limitation includes the following rules:

1. It is not possible to have more than one copy of a VM on one physical

machine, which means that any target PM should be checked to make sure there is not

already a copy of the same VM on that PM.

2. It is not possible to copy different VMs on one PM more that its capacity,

which means that before moving, the free space of the PM should be checked to make

sure that it has enough free space.

3. The cost of moving to this new location should be the same as the cost of

moving to the original PM.

4. The new place should not be already turned off. Otherwise, there is no

point moving one VM to a PM that was already turned off.

If this new location can be found and meets all the limitations, this VM is moved

to this new place and a free space of the current PM and the new PM will be updated. The

same process continues for all the VMs on this PM, and in the end, it checks whether it

was possible to move all the VMs of this PM, and it inactivates this PM and turns it off.

In the following, you can see the pseudocode of the program.

Input: VM replica placement from VM replication algorithm

Output: Number of IPMs.

0. Notations:

m: Last number of PM

Nipm = 0: number of IPMs

22

1. for (PM number i = 1 to m)

2. for each of VM on PM number i

3. flag = true;

4. if it can find a TPM

5. move the replica VM to the TPM

6. else

7. flag=false;

8. break;

9. end if;

10. end for;

11. if (flag = true)

12. Nipm + +; /*This CPM can be turned off */

13. end if;

14. end for;

15. RETURN Nipm. /*Return number of inactive PMs */

OptimizedDynamic_Consolidation Specifications

 This algorithm includes the first one, which means that we try to consolidate all

PMs regardless the number of VMs on them. And we follow the same process steps

mentioned in the Dynamic_Consolidation algorithm, which means that, first, all VM

replications should be scattered throughout the whole data center by using the minimum-

cost flow algorithm, and then run the optimized consolidation to turn off potential PMs.

The difference between this algorithm and the previous one is in checking the number of

23

moved VMs on each PM at the end of the PM consolidation, which means that after

checking the situation of all VMs on one PM and moving those that have a potential

target, we check whether the number of moved VMs is the same as all VMs on that PM.

If yes, it will be turned off; otherwise, it will return all the previously moved PMs to their

original locations and then check the situation of the next PM. At the end, it will check

how many PMs were turned off. If we do not return those moved VMs without the

possibility of turning off that PM, basically, we have changed the specification of the data

center without the possibility of turning off that PM. In the following, you will see the

pseudocode of the program.

Input: VM replica placement from VM replication algorithm

Output: Number of IPMs.

0. Notations:

m: Last number of PM

Nipm = 0: number of IPMs

1. for (PM number i = 1 to m)

2. for each of VM on PM number i

3. flag = true;

4. if it can find a TPM

5. move the replica VM to the TPM

6. else

7. flag=false;

8. break;

24

9. end if;

10. end for;

11. if (flag = true)

12. Nipm + +; /*This CPM can be turned off */

13. else

14. Return back all the moved VMs to their original locations.

15. end if;

16. end for;

17. RETURN Nipm. /*Return number of inactive PMs */

Sorted_Consolidation Specifications

This algorithm includes the first two algorithms, which means that we try to

consolidate all the PMs regardless the number of VMs on that PM. In addition, if it was

not possible to move all the VMs of one PM, we return all the moved VMs to their

original place to avoid changing the data center specification for no reason. But in

Sorted_Consolidation, we check the PMs in a sorted way based on the number of VMs on

them; that is, we start with those PMs that have just one VM, and then those with two

VMs, and so on. After moving all the VMs of one PM and turning off the PM, we resort

the order of the servers based on their VM numbers to have the updated situation of the

whole data center. In this algorithm, we consider the situation of the source server. In the

following, you can see the pseudocode of the program.

Input: VM replica placement from VM replication algorithm

25

Output: Number of IPMs.

0. Notations:

m: Last number of PM

SortedPM Array: this array stores the PM in a sorted way based on their VM

 numbers

Nipm = 0: number of turned off PMs

1. for each of the SortedPM Array cell

2. for replication in SortedPM Array

3. flag = true;

4. if it can find a TPM

5. move the replica VM to the TPM

6. Change SortedPM data based on this new movement

7. Resort SortedPM array

8. else

9. flag=false;

10. break;

11. end if;

12. end for;

13. if (flag = true)

14. Nipm + +; /*This CPM can be turned off */

15. else

14. Return back all the moved VMs to their original locations.

26

16. end if;

17. end for;

18. RETURN Nipm. /*Return number of inactive PMs */

MostFilledPM_Consolidation Specifications

This algorithm includes the first two algorithms. Again, we check all PMs

regardless their VM numbers and do not move any VM of one PM if we cannot move all

of them. The part that has been added to the previous ones concerns checking all potential

target PMs and then comparing the number of their VMs. In the existing algorithms, as

soon as we find a potential target that meets all the requirements, the VM is moved to that

PM. But in this algorithm, first, we find all of them and then compare their VM numbers

to find the one with more VMs. The reason for this is that the probability of turning off

the PM with more VMs is less than the probability of turning off one PM with fewer

VMs. As a result, we move VMs to the PM that is less likely to be turned off. In this

algorithm, we consider the situation of the target server despite the previous one where

we considered the situation of the source PM. In the following, you can see the

pseudocode of the program.

Input: VM replica placement from VM replication algorithm

Output: Number of IPMs.

0. Notations:

m: Last number of PM

n: Maximum of VM number in one PM

27

K: Best target which is the PM with the most VM.

TargetVMs array[][] : A two dimensional array which stores PM number and its

associated VM numbers of all capable targets

Nipm = 0: number of IPMs

1. for (PM number i = 1 to m)

2. for VM number j = 1 to n)

3. flag = true;

4. if it can find a TPM

5. TargetVMs[Target][0] = The index of Target PM.

6. TargetVMs[Target][1] = The VM number of that Target

7. flag=false;

8. break;

9. end if;

10. k= The index of Target PM with more VMs

11. Move the replica VM to the TPM number k

12. end for;

13. if (flag = true)

14. Nipm + +; /*This CPM can be turned off */

15. else

16. Return back all the moved VMs to their original locations.

17. end if;

18. end for;

28

19. RETURN Nipm. /*Return number of inactive PMs */

SortedMostFilledPM_Consolidation Specifications

In this algorithm, we combine algorithm numbers 4 and 4 to get the best result,

which means that not only we start to check the situation of the source PM in a sorted

way based on the number of VMs on one PM but also we check the situation of the target

PMs and move the VM to the target PM that has the most number of VMs. In the

following, you can see the pseudocode of the program.

Input: VM replica placement from VM replication algorithm

Output: Number of IPMs.

0. Notations:

m: Last number of PM

n: Maximum of VM number in one PM

K: Best target which is the PM with the most VM.

TargetVMs array[][] : A two dimensional array which stores PM number and its

associated VM numbers of all capable targets

SortedPM Array: this array stores the PM in a sorted way based on their VM

numbers

Nipm = 0: number of IPMs

1. for each of the SortedPM cells

2. for each of the cell of SortedPM array that has i replica VMs

29

3. flag = true;

4. if it can find a TPM

5. TargetVMs[Target][0] = The index of Target PM.

6. TargetVMs[Target][1] = The VM number of that Target

7. else

8. flag=false;

9. break;

10. end if;

11. k= the index of the maximum number of cells in array TargetVMs

12. move the replica VM to the TPM number k

13. Change SortedPM data based on this new movement

14. Resort SortedPM array

15. end for;

16. if (flag = true)

17. Nipm + +; /*This CPM can be turned off */

18. else

19. Return back all the moved VMs to their original locations.

20. end for;

21. end for;

22. RETURN Nipm. /*Return number of inactive PMs */

30

CHAPTER 4

PERFORMANCE EVALUATION

Running the Program on Different Data Centers

To test the program extensively with a different data center specification, all the VMs

were scattered through the data centers by using the minimum-cost flow, first-fit, and

greedy algorithms; and in the next step, I ran a server consolidation program to turn off

more PMs. To have a more accurate output, I ran it five times for each data center

specification and calculated the average.

Consolidation on MCF Replicated Data Center

In this sample first Vms are replicated by MCF and then consolidation is running.

As an example of a data center with 200 virtual machines, 16 switch ports, and 5 copies

for each virtual machine, I ran the program five times and calculated the average output.

In the following, you can see the output for thirteen different data centers. AMP refers to

the active number of PMs after running the replication algorithm. Existing refers to the

number of turned-off PMs after running the existing consolidation algorithm. OD is the

number of turned-off PMs after running OptimizedDynamic_Consolidation. SMFT refers

to the number of turned-off PMs after running SortedMostFilledPM_Consolidation. Cost

is the original cost of the virtual machine replication, FNP is the final number of active

PMs after running the consolidation, and FC is the final cost after the consolidation,

which is the sum of the replication cost and the final number of active PMs because we

considered one unit for keeping one PM on.

31

Table 1

Consolidation Results in MCF Replication (k=16, R=5, VM=100)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 564 20 20 20 400 544 944

SecondOutput 570 18 18 18 400 552 952

ThirdOutput 524 19 19 19 400 505 905

FourthOutput 592 21 21 21 400 571 971

FifthOutput 554 17 17 18 400 536 936

Average 560 19 19 19.2 400 541 941

PercentImprovement 0.00 1.05

Chart 1

Trend of Average Turned-off PMs in MCF Replication (k=16, R=5, VM=100)

Table 2

Consolidation Results in MCF Replication (k=16, R=5, VM=300)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 699 79 94 95 1200 604 1804

SecondOutput 700 80 95 97 1280 603 1883

ThirdOutput 650 75 99 101 1240 549 1789

FourthOutput 660 74 90 91 1290 569 1859

FifthOutput 680 81 92 92 1250 588 1838

Average 678 78 94 95 1252 583 1835

PercentImprovement 20.82 1.28

0

20

40

60

80

100

120

Existing OD SMFP

FirstOutput

SecondOutput

ThirdOutput

FourthOutput

FifthOutput

Average

Log. (Average)

32

Chart 2

 Trend of Average Turned-off PMs in MCF Replication (k=16, R=5, VM=300)

Table 3

Consolidation Results in MCF Replication (k=16, R=5, VM=400)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 749 86 126 129 1600 620 2220

SecondOutput 714 75 112 113 1620 601 2221

ThirdOutput 745 86 115 118 1668 627 2295

FourthOutput 736 80 110 111 1676 625 2301

FifthOutput 737 88 122 127 1679 610 2289

Average 736 83 117 120 1649 617 2265

PercentImprovement 40.96 2.22

Chart 3

Trend of Average Turned-off PMs in MCF Replication (k=16, R=5, VM=400)

0

20

40

60

80

100

120

Existing OD SMFP

FirstOutput

SecondOutput

ThirdOutput

FourthOutput

FifthOutput

Average

Log. (Average)

0

50

100

150

200

Existing OD SMFP

First Output

SecondOutput

Third Output

FourthOutput

FifthOutput

Average

Log. (Average)

33

Table 4

Consolidation Results in MCF Replication (k=16, R=5, VM=500)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 787 85 146 150 2292 637 2929

SecondOutput 787 73 143 149 2340 638 2978

ThirdOutput 772 83 145 147 2260 625 2885

FourthOutput 781 83 138 140 2350 641 2991

FifthOutput 762 74 135 138 2308 624 2932

Average 778 80 141 145 2310 633 2943

PercentImprovement 77.64 2.40

Chart 4

Trend of Average Turned-off PMs in MCF Replication (k=16, R=5, VM=500)

Table 5

Consolidation Results in MCF Replication (k=16, R=5, VM=600)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 826 68 165 170 3012 656 3668

SecondOutput 833 82 164 170 3044 663 3707

ThirdOutput 819 74 154 158 2860 661 3521

FourthOutput 823 87 166 172 2964 651 3615

FifthOutput 805 71 151 154 3052 651 3703

Average 821 76 160 165 2986 656 3643

PercentImprovement 109.42 3.00

0

50

100

150

200

Existing OD SMFP

FirstOutput

SecondOutput

ThirdOutput

FourthOutput

FifthOutput

Average

Log. (Average)

34

Chart 5

Trend of Average Turned-off PMs in MCF Replication (k=16, R=5, VM=600)

Table 6

Consolidation Results in MCF Replication (k=16, R=5, VM=700)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 840 63 176 181 3772 659 4431

SecondOutput 834 80 159 164 3852 670 4522

ThirdOutput 837 85 166 174 3756 663 4419

FourthOutput 838 69 162 171 3700 667 4367

FifthOutput 842 81 172 178 3796 664 4460

Average 838 76 167 174 3775 665 4440

PercentImprovement 120.90 3.95

Chart 6

Trend of Average Turned-off PMs in MCF Replication (k=16, R=5, VM=700)

0

50

100

150

200

Existing OD SMFP

FirstOutput

SecondOutput

ThirdOutput

FourthOutput

FifthOutput

Average

Log. (Average)

0

50

100

150

200

Existing OD SMFP

FirstOutput

SecondOutput

ThirdOutput

FourthOutput

FifthOutput

Average

Log. (Average)

35

Table 7

Consolidation Results in MCF Replication (k=16, R=5, VM=800)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 844 91 200 207 4540 637 5177

SecondOutput 882 82 195 207 4644 675 5319

ThirdOutput 885 85 193 204 4356 681 5037

FourthOutput 882 90 194 204 4436 678 5114

FifthOutput 874 91 188 200 4431 674 5105

Average 873 88 194 204 4481 669 5150

PercentImprovement 120.96 5.36

Chart 7

Trend of Average Turned-off PMs in MCF Replication (k=16, R=5, VM=800)

Table 8

Consolidation Results in MCF Replication (k=16, R=5, VM=900)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 897 83 190 200 3516 697 4213

SecondOutput 904 83 197 210 5332 694 6026

ThirdOutput 908 99 211 217 5412 691 6103

FourthOutput 901 82 193 205 5292 696 5988

FifthOutput 917 98 200 215 5244 702 5946

Average 905 89 198 209 4959 696 5655

PercentImprovement 122.70 5.65

0

50

100

150

200

250

Existing OD SMFP

First Output

SecondOutput

Third Output

FourthOutput

FifthOutput

Average

Log. (Average)

36

Chart 8

Trend of Average Turned-off PMs in MCF Replication (k=16, R=5, VM=900)

Table 9

Consolidation Results in MCF Replication (k=16, R=5, VM=950)

 APM Existing OD SMFP Cost FNP FC

FirstOutput 917 82 210 216 5788 701 6489

SecondOutput 899 75 185 193 5780 706 6486

ThirdOutput 897 77 184 195 5716 702 6418

FourthOutput 914 89 200 214 5800 700 6500

FifthOutput 903 84 204 215 6044 688 6732

Average 906 81 197 207 5826 699 6525

PercentImprovement 141.52 5.09

Chart 9

 Trend of Average Turned-off PMs in MCF Replication (k=16, R=5, VM=950)

0

50

100

150

200

250

Existing OD SMFP

First Output

SecondOutput

Third Output

FourthOutput

FifthOutput

Average

Log. (Average)

0

50

100

150

200

250

Existing OD SMFP

First Output

SecondOutput

Third Output

FourthOutput

FifthOutput

Average

Log. (Average)

37

Table 10

Consolidation Results in MCF Replication (k=16, R=5, VM=1000)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 901 79 180 189 6124 712 6836

SecondOutput 921 76 205 213 6122 708 6830

ThirdOutput 909 78 194 199 6123 710 6833

FourthOutput 911 82 192 205 6120 706 6826

FifthOutput 913 66 185 198 6122 715 6837

Average 911 76 191 201 6122 710 6832

PercentImprovement 150.92 5.02

Chart 10

Trend of Average Turned-off PMs in MCF Replication (k=16, R=5, VM=1000)

 If you compare the different outputs in the different data centers, you will see that

when the data center is pretty empty, the algorithm cannot turn off too many PMs. In

addition, when the data center is becoming more and more crowded, the number of PMs

can be turned off using the second algorithm, which acts like a tuning part that does not

follow an increasing order, and it becomes almost constant. For example, when the data

center has 900 virtual machines, number of PMs it can turn off is 209; however, for a

data center with 950 virtual machines this number is 207, which means that in a very

crowded data center, the tuning part does not play a specific role in the consolidation.

0

50

100

150

200

250

Existing OD SMFP

First Output

SecondOutput

Third Output

FourthOutput

FifthOutput

Average

Log. (Average)

38

Table 11

Overall Turned-Off PM in MCF Replication (Variable VM)
VMs 100 300 400 500 600 700 800 900 950 1000

Final

Turned

Off PMs

20 95 129 150 170 181 207 200 216 189

18 97 113 149 170 164 207 210 193 213

19 101 118 147 158 174 204 217 195 199

21 91 111 140 172 171 204 205 214 205

18 92 127 138 154 178 200 215 215 198

Average 33 129 120 145 165 174 204 209 207 201

Chart 11

Trend of Overall Turned-off PM in MCF Replication (Variable VM)

 To make the results clearer, I ran the program for a constant number of VMs and

switch ports and changed the number of copies for each virtual machine.

Table 12

Consolidation Results in MCF Replication (k=16, R=2, VM=950)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 714 49 87 87 1120 627 1747

SecondOutput 714 49 87 87 1120 627 1747

ThirdOutput 714 49 87 87 1120 627 1747

Average 714 49 87 87 1120 627 1747

PercentImprovement 77.55 0

0

50

100

150

200

250

100 300 400 500 600 700 800 900 950 1000

FirstOutput

SecondOutput

ThirdOutput

FourthOutput

FifthOutput

Average

AverageTurne

dOffPMs

39

Chart 12

 Trend of Average Turned-off PMs in MCF Replication (k=16, R=2, VM=950)

Table 13

Consolidation Results in MCF Replication (k=16, R=3, VM=950)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 803 84 162 165 2636 638 3274

SecondOutput 784 73 140 145 2648 639 3287

ThirdOutput 782 80 158 160 2684 622 3306

Average 790 79 153 157 2656 633 3289

PercentImprovement 94.09 2.17

Chart 13

 Trend of Average Turned-off PMs in MCF Replication (k=16, R=3, VM=950)

0

20

40

60

80

100

Existing OD SMFP

First Output

SecondOutput

Third Output

Average

Log. (Average)

0

50

100

150

200

Existing OD SMFP

First Output

SecondOutput

Third Output

Log. ()

40

Table 14

Consolidation Results in MCF Replication (k=16, R=4, VM=950)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 862 88 199 205 4104 657 4761

SecondOutput 845 78 189 193 4242 652 4894

ThirdOutput 837 76 182 185 4218 652 4870

Average 848 81 190 194 4188 654 4842

PercentImprovement 135.54 2.28

Chart 14

Trend of Average Turned-off PMs in MCF Replication (k=16, R=4, VM=950)

 In the following table, you will find a comparison all turned-off VM numbers on

different data centers.

Table 15

Overall Turned-Off PM in MCF Replication (Variable R)
Copy Number

2 3 4

Final Turned-Off PMs

87 165 205

68 145 193

91 160 185
Average

82 157 194

0

50

100

150

200

250

Existing OD SMFP

First Output

SecondOutput

Third Output

Average

Log. (Average)

41

Chart 15

Trend of Overal Turned-off PMs in MCF Replication (Variable R)

Consolidation on First Fit Replicated Data Center

 In this part, we use the first-fit algorithm to scatter all VMs on the data center

instead of the minimum-cost algorithm and then running the consolidation program on

them to see what the result will be and find the best solution for VM replication and PM

consolidation. In the following, you will see some samples of the output result for

different algorithms on a data center in which its VMs have been replicated by the first-fit

algorithm.

Table 16

Consolidation Results in First-Fit Replication (k=16, R=5, VM=100)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 115 0 15 15 1994 100 2094

SecondOutput 113 0 15 15 1990 98 2088

ThirdOutput 114 0 14 14 1989 100 2089

FourthOutput 115 0 14 14 1990 101 2091

Average 114 0 15 15 1991 100 2091

PercentImprovement 1450 0

0

50

100

150

200

250

2 3 4

FisrtOutput

SecondOutput

ThirdOutput

Average

Log. (Average)

42

Chart 16

 Trend of Average Turned-off PMs in First Fit Replication (k=16, R=5, VM=100)

Table 17

Consolidation Results in First-Fit Replication (k=16, R=5, VM=300)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 285 0 31 31 5336 254 5590

SecondOutput 286 0 30 30 5340 256 5596

ThirdOutput 283 0 29 29 5342 254 5596

FourthOutput 286 0 31 31 5338 255 5593

Average 285 0 30 30 5339 255 5594

PercentImprovement 3025 0

Chart 17

 Trend of Average Turned-off PMs in First Fit Replication (k=16, R=5, VM=300)

0

10

20

30

40

Existing OD SMFP

FirstOutput

SecondOutput

ThirdOutput

FourthOutput

Average

Log. (Average)

0

10

20

30

40

Existing OD SMFP

FirstOutput

SecondOutput

ThirdOutput

FourthOutput

Average

Log. (Average)

43

Table 18

Consolidation Results in First-Fit Replication (k=16, R=5, VM=400)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 372 0 40 40 7214 332 7546

SecondOutput 371 0 40 40 7180 331 7511

ThirdOutput 372 0 36 36 7212 336 7548

FourthOutput 336 0 37 37 7148 299 7447

Average 363 0 38 38 7189 325 7513

PercentImprovement 3825 0

Chart 18

 Trend of Average Turned-off PMs in First Fit Replication (k=16, R=5, VM=400)

Table 19

Consolidation Results in First-Fit Replication (k=16, R=5, VM=500)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 426 0 35 35 8670 391 9061

SecondOutput 430 0 45 45 8708 385 9093

ThirdOutput 445 0 42 42 8972 403 9375

FourthOutput 431 0 38 38 8840 393 9233

Average 433 0 40 40 8798 393 9191

PercentImprovement 4000 0

0

10

20

30

40

50

Existing OD SMFP

FirstOutput

SecondOutput

ThirdOutput

FourthOutput

Average

Log. (Average)

44

Chart 19

Trend of Average Turned-off PMs in First Fit Replication (k=16, R=5, VM=500)

Table 20

Consolidation Results in First-Fit Replication (k=16, R=5, VM=600)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 504 0 46 46 10544 458 11002

SecondOutput 515 0 50 50 10588 465 11053

ThirdOutput 484 0 42 42 10300 442 10742

FourthOutput 526 0 49 49 10720 477 11197

Average 507 0 47 47 10538 461 10999

PercentImprovement 4675 0

Chart 20

 Trend of Average Turned-off PMs in First Fit Replication (k=16, R=5, VM=600)

0

10

20

30

40

50

Existing OD SMFP

FirstOutput

SecondOutput

ThirdOutput

FourthOutput

Average

Log. (Average)

0

10

20

30

40

50

60

Existing OD SMFP

FirstOutput

SecondOutput

ThirdOutput

FourthOutput

Average

Log. (Average)

45

Table 21

Consolidation Results in First-Fit Replication (k=16, R=5, VM=700)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 565 0 50 50 12228 515 12743

SecondOutput 552 0 49 49 12150 503 12653

ThirdOutput 566 0 48 48 12266 518 12784

FourthOutput 549 0 46 46 12168 503 12671

Average 558 0 48 48 12203 510 12713

PercentImprovement 4825 0

Chart 21

Trend of Average Turned-off PMs in First Fit Replication (k=16, R=5, VM=700)

Table 22

Consolidation Results in First-Fit Replication (k=16, R=5, VM=800)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 619 0 52 52 14014 567 14581

SecondOutput 609 0 52 52 13942 557 14499

ThirdOutput 619 0 50 50 13920 569 14489

FourthOutput 590 0 53 53 13908 537 14445

Average 609 0 52 52 13946 558 14504

PercentImprovement 5175 0

0

10

20

30

40

50

60

Existing OD SMFP

FirstOutput

SecondOutput

ThirdOutput

FourthOutput

Average

Log. (Average)

46

Chart 22

Trend of Average Turned-off PMs in First Fit Replication (k=16, R=5, VM=800)

Table 23

Consolidation Results in First-Fit Replication (k=16, R=5, VM=900)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 643 0 53 53 15770 590 16360

SecondOutput 651 0 56 56 15800 595 16395

ThirdOutput 643 0 54 54 15860 589 16449

FourthOutput 650 0 52 52 15708 598 16306

Average 647 0 54 54 15785 593 16378

PercentImprovement 5375 0

Chart 23

 Trend of Average Turned-off PMs in First Fit Replication (k=16, R=5, VM=900)

0

10

20

30

40

50

60

70

Existing OD SMFP

FirstOutput

SecondOutput

ThirdOutput

FourthOutput

Average

Log. (FourthOutput)

0

10

20

30

40

50

60

70

Existing OD SMFP

FirstOutput

SecondOutput

ThirdOutput

FourthOutput

Average

Log. (Average)

47

Table 24

Consolidation Results in First-Fit Replication (k=16, R=5, VM=950)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 673 0 54 54 16562 619 17181

SecondOutput 672 0 55 55 16518 617 17135

ThirdOutput 671 0 53 53 16500 618 17118

FourthOutput 681 0 53 53 16584 628 17212

Average 674.3 0.0 53.8 53.8 16541.0 620.5 17161.5

PercentImprovement 5375.00 0.00

Chart 24

Trend of Average Turned-off PMs in First Fit Replication (k=16, R=5, VM=950)

Table 25

Consolidation Results in First-Fit Replication (k=16, R=5, VM=1000)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 696 0 54 54 17628 642 18270

SecondOutput 692 0 52 52 17698 640 18338

ThirdOutput 688 0 55 55 17521 633 18154

FourthOutput 693 0 52 52 17532 641 18173

Average 692.3 0.0 53.3 53.3 17594.8 639.0 18233.8

PercentImprovement 5325.00 0.00

0

10

20

30

40

50

60

70

Existing OD SMFP

FirstOutput

SecondOutput

ThirdOutput

FourthOutput

Average

Log. (Average)

48

Chart 25

Trend of Average Turned-off PMs in First Fit Replication (k=16, R=5, VM=1000)

By using the first-fit algorithm to scatter original VMs and then running the

consolidation algorithm, the trend of turning off PMs by using the first algorithm is again

increasing. But the second algorithm, which is a tuning program, does not turn off any

PMs. The reason is the first-fit method, which was used in the beginning for replication.

Since it fills all PMs from the beginning and copies VMs in the first available place, there

is no room for that tuning algorithm.

Table 26

Overall Turned-Off PM in First-Fit Replication (Variable VM)
VMs 100 300 400 500 600 700 800 900 950 1000

Final

Turned-

Off PMs

15 31 40 35 46 50 52 53 54 54

15 30 40 45 50 49 52 56 55 52

14 29 36 42 42 48 50 54 53 55

14 31 37 38 49 46 53 52 53 52

Average 15 30 38 40 47 48 52 54 53 53

0

10

20

30

40

50

60

70

Existing OD SMFP

FirstOutput

SecondOutput

ThirdOutput

FourthOutput

Average

Log. (Average)

49

Chart 26

 Trend of Overall Turned-off PM in First Fit Replication (Variable VM)

To make the results clearer, I ran the program for the constant number of VMs

and switch ports and changed the number of copies for each VM.

Table 27

Consolidation Results in First-Fit Replication (k=16, R=2, VM=950)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 633 0 12 12 3798 621 4419

SecondOutput 631 0 12 12 3748 619 4367

ThirdOutput 610 0 9 9 3738 601 4339

Average 625 0 11 11 3761 614 4375

PercentImprovement 1100 0

Chart 27

Trend of Average Turned-off PMs in First Fit Replication (k=16, R=2, VM=950)

0

10

20

30

40

50

60

70

100 300 400 500 600 700 800 900 950 1000

FirstOutput

SecondOutput

ThirdOutput

FourthOutput

Average

AverageTurne

dOffPMs

0

2

4

6

8

10

12

14

Existing OD SMFP

FirstOutput

SecondOutput

ThirdOutput

Average

Log. (Average)

50

Table 28

Consolidation Results in First-Fit Replication (k=16, R=3, VM=950)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 646 0 26 26 7828 620 8448

SecondOutput 642 0 24 24 7796 618 8414

ThirdOutput 640 0 25 25 7818 615 8433

Average 643 0 25 25 7814 618 8432

PercentImprovement 2500 0

Chart 28

Trend of Average Turned-off PMs in First Fit Replication (k=16, R=3, VM=950)

Table 29

Consolidation Results in First-Fit Replication (k=16, R=4, VM=950)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 671 0 42 42 12168 629 12797

SecondOutput 657 0 38 38 11948 619 12567

ThirdOutput 656 0 43 43 12054 613 12667

Average 661 0 41 41 12057 620 12677

PercentImprovement 4100 0

0

10

20

30

40

50

Existing OD SMFP

FirstOutput

SecondOutput

ThirdOutput

Average

Log. (Average)

51

Chart 29

Trend of Average Turned-off PMs in First Fit Replication (k=16, R=4, VM=950)

In the following table, you will find a comparison of all turned-off VM numbers

on different data centers.

Table 30

Overall Turned-Off PM in First-Fit Replication (Variable R)
Copy Number

100 300 400

Final Turned-Off PMs
12 26 42

12 24 38

9 25 43

Average 11 25 32

Chart 30:

Trend of Overall Turned-off PM in First Fit Replication (Variable R)

0

10

20

30

40

50

Existing OD SMFP

FirstOutput

SecondOutput

ThirdOutput

Average

Log. (Average)

0

50

100

150

200

250

2 3 4

FisrtOutput

SecondOutput

ThirdOutput

Average

Log. (Average)

52

Consolidation on Greedy Replicated Data Center

In this part, we use the greedy algorithm to scatter all VMs on the data center

instead of the minimum-cost flow algorithm and then run the consolidation program on

them to see what the result will be and find the best solution for VM replication and PM

consolidation. In the following, you will see some samples of the output result for

different data centers that have been replicated using the first-fit algorithm.

Table 31

Consolidation Results in Greedy Replication (k=16, R=5, VM=100)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 352 10 12 12 400 340 740

SecondOutput 369 19 19 19 400 350 750

ThirdOutput 350 15 15 15 400 335 735

FourthOutput 363 18 18 18 400 345 745

FifthOutput 354 20 20 20 400 334 734

Average 358 16 17 17 400 341 741

PercentImprovement 2.44 0.00

Chart 31

 Trend of Average Turned-off PMs in Greedy Replication (k=16, R=5, VM=100)

0

20

40

60

80

100

Existing OD SMFP

First Output

SecondOutput

Third Output

FourthOutput

FifthOutput

Average

Log. (Average)

53

Table 32

Consolidation Results in Greedy Replication (k=16, R=5, VM=300)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 651 66 85 86 1214 565 1779

SecondOutput 648 65 84 86 1250 562 1812

ThirdOutput 640 62 80 82 1220 558 1778

FourthOutput 655 65 83 83 1230 572 1802

FifthOutput 660 68 86 86 1260 574 1834

Average 651 65 84 85 1235 566 1801

PercentImprovement 28.22 1.20

Chart 31

 Trend of Average Turned-off PMs in Greedy Replication (k=16, R=5, VM=300)

Table 33

Consolidation Results in Greedy Replication (k=16, R=5, VM=400)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 696 73 103 104 1656 592 2248

SecondOutput 747 76 118 120 1716 627 2343

ThirdOutput 729 69 108 109 1684 620 2304

FourthOutput 740 71 112 113 1700 627 2327

FifthOutput 742 64 104 104 1716 638 2354

Average 731 71 109 110 1694 621 2315

PercentImprovement 54.39 0.92

0

20

40

60

80

100

Existing OD SMFP

First Output

SecondOutput

Third Output

FourthOutput

FifthOutput

Average

Log. (Average)

54

Chart 33

Trend of Average Turned-off PMs in Greedy Replication (k=16, R=5, VM=400)

Table 34

Consolidation Results in Greedy Replication (k=16, R=5, VM=500)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 782 83 142 142 2332 640 2972

SecondOutput 765 72 139 141 2332 624 2956

ThirdOutput 767 76 127 128 2316 639 2955

FourthOutput 770 72 129 131 2322 639 2961

FifthOutput 779 75 147 149 2364 630 2994

Average 773 76 137 138 2333 634 2968

PercentImprovement 80.95 1.02

Chart 34

 Trend of Average Turned-off PMs in Greedy Replication (k=16, R=5, VM=500)

0

20

40

60

80

100

120

140

Existing OD SMFP

First Output

SecondOutput

Third Output

FourthOutput

FifthOutput

Average

Log. (Average)

0

50

100

150

200

Existing OD SMFP

First Output

SecondOutput

Third Output

FourthOutput

FifthOutput

Average

Log. (Average)

55

Table 35

Consolidation Results in Greedy Replication (k=16, R=5, VM=600)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 799 70 149 152 2988 647 3635

SecondOutput 805 77 151 155 3104 650 3754

ThirdOutput 786 66 135 138 3114 648 3762

FourthOutput 793 66 152 154 3080 639 3719

FifthOutput 805 80 153 158 3076 647 3723

Average 798 72 148 151 3072 646 3719

PercentImprovement 106.13 2.30

Chart 35

Trend of Average Turned-off PMs in Greedy Replication (k=16, R=5, VM=600)

Table 36

Consolidation Results in Greedy Replication (k=16, R=5, VM=700)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 829 65 161 164 3672 665 4337

SecondOutput 834 69 171 171 3876 663 4539

ThirdOutput 829 59 162 164 3842 665 4507

FourthOutput 826 68 158 159 3718 667 4385

FifthOutput 831 63 160 161 3860 670 4530

Average 830 65 162 164 3794 666 4460

PercentImprovement 150.62 0.86

0

50

100

150

200

Existing OD SMFP

First Output

SecondOutput

Third Output

FourthOutput

FifthOutput

Average

Log. (Average)

56

Chart 36

Trend of Average Turned-off PMs in Greedy Replication (k=16, R=5, VM=700)

Table 37

Consolidation Results in Greedy Replication (k=16, R=5, VM=800)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 875 60 184 186 4436 689 5125

SecondOutput 851 60 166 169 4674 682 5356

ThirdOutput 859 59 176 181 4510 678 5188

FourthOutput 852 55 167 170 4580 682 5262

FifthOutput 851 54 179 181 4644 670 5314

Average 858 58 174 177 4569 680 5249

PercentImprovement 202.78 1.72

Chart 37

Trend of Average Turned-off PMs in Greedy Replication (k=16, R=5, VM=800)

0

50

100

150

200

Existing OD SMFP

First Output

SecondOutput

Third Output

FourthOutput

FifthOutput

Average

Log. (Average)

0

50

100

150

200

250

Existing OD SMFP

First Output

SecondOutput

Third Output

FourthOutput

FifthOutput

Average

Log. (Average)

57

Table 38

Consolidation Results in Greedy Replication (k=16, R=5, VM=900)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 864 55 170 179 5526 685 6211

SecondOutput 874 47 176 181 5294 693 5987

ThirdOutput 861 46 158 160 5522 701 6223

FourthOutput 867 47 164 166 5386 701 6087

FifthOutput 885 59 179 185 5442 700 6142

Average 870 51 169 174 5434 696 6130

PercentImprovement 233.46 2.83

Chart 38

Trend of Average Turned-off PMs in Greedy Replication (k=16, R=5, VM=900)

Table 39

Consolidation Results in Greedy Replication (k=16, R=5, VM=950)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 869 41 162 164 6016 705 6721

SecondOutput 867 46 160 163 5984 704 6688

ThirdOutput 888 44 177 182 5830 706 6536

FourthOutput 896 46 172 176 5734 720 6454

FifthOutput 877 43 161 163 6026 714 6740

Average 879 44 166 170 5918 710 6628

PercentImprovement 278.18 1.92

0

50

100

150

200

250

Existing OD SMFP

First Output

SecondOutput

Third Output

FourthOutput

FifthOutput

Average

Log. (Average)

58

Chart 39

Trend of Average Turned-off PMs in Greedy Replication (k=16, R=5, VM=950)

Table 40

Consolidation Results in Greedy Replication (k=16, R=5, VM=1000)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 887 40 172 176 6288 711 6999

SecondOutput 883 42 165 170 6244 713 6957

ThirdOutput 883 44 166 172 6412 711 7123

FourthOutput 886 32 158 161 6216 725 6941

FifthOutput 868 39 147 149 6274 719 6993

Average 881 39 162 166 6287 716 7003

PercentImprovement 310.15 2.48

Chart 40

Trend of Average Turned-off PMs in Greedy Replication (k=16, R=5, VM=1000)

0

50

100

150

200

Existing OD SMFP

First Output

SecondOutput

Third Output

FourthOutput

FifthOutput

Average

Log. (Average)

0

50

100

150

200

Existing OD SMFP

First Output

SecondOutput

Third Output

FourthOutput

FifthOutput

Average

Log. (Average)

59

By using the greedy algorithm to scatter original VMs and then running

consolidation algorithms, the first algorithm, which is OptimizedDynamic_Consolidation,

turns off PMs in an ascending trend, but there is no specific trend in the second

algorithm, which is SortedMostFilledPM_Consolidation. Although it increases the

number of turned-off PMs in a specific data center, if you compare the percent

improvement, it does not follow a certain trend in different data centers. The reason is

obvious: the scattering algorithm is not too smart, and the consolidation tuning algorithm

does not follow a trend for turning off PMs.

Table 41

Overall Turned-Off PM Trend in Greedy Replication (Variable VM)
VMs 100 300 400 500 600 700 800 900 950 1000

Final

Turned-

Off PMs

12 86 104 142 152 164 186 179 164 176

19 86 120 141 155 171 169 181 163 170

15 82 109 128 138 164 181 160 182 172

18 83 113 131 154 159 170 166 176 161

20 86 104 149 158 161 181 185 163 149

Average 17 85 110 138 151 164 177 174 170 166

Chart 41

Trend of Overall Turned-off PM in Greedy Replication (Variable VM)

0

50

100

150

200

250

100 300 400 500 600 700 800 900 950 1000

FirstOutput

SecondOutput

ThirdOutput

FourthOutput

FifthOutput

Average

AverageTurne

dOffPMs

60

To make the results clearer, I ran the program for the constant number of VMs

and switch ports and changed the number of copies for each virtual machine:

Table 42

Consolidation Results in Greedy Replication (k=16, R=2, VM=950)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 708 39 80 81 1096 627 1723

SecondOutput 706 45 80 81 1112 625 1737

ThirdOutput 673 37 73 74 1174 599 1773

Average 696 40 78 79 1127 617 1744

PercentImprovement 92.56 1.29

Chart 42

Trend of Average Turned-off PMs in Greedy Replication (k=16, R=2, VM=950)

Table 43

Consolidation Results in Greedy Replication (k=16, R=3, VM=950)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 761 58 140 143 2752 618 3370

SecondOutput 765 66 142 148 2676 617 3293

ThirdOutput 763 62 139 140 2680 623 3303

Average 763 62 140 144 2703 619 3322

PercentImprovement 126.34 2.38

0

20

40

60

80

100

Existing OD SMFP

First Output

SecondOutput

Third Output

Average

Log. (Average)

61

Chart 43

Trend of Average Turned-off PMs in Greedy Replication (k=16, R=3, VM=950)

Table 44

Consolidation Results in Greedy Replication (k=16, R=4, VM=950)
 APM Existing OD SMFP Cost FNP FC

FirstOutput 836 55 170 175 4158 661 4819

SecondOutput 836 45 167 172 4182 664 4846

ThirdOutput 829 52 176 178 4140 651 4791

Average 834 51 171 175 4160 659 4819

PercentImprovement 70.37 2.29

Chart 44

Trend of Average Turned-off PMs in Greedy Replication (k=16, R=4, VM=950)

0

50

100

150

200

Existing OD SMFP

First Output

SecondOutput

Third Output

Average

Log. (Average)

0

50

100

150

200

250

Existing OD SMFP

First Output

SecondOutput

Third Output

Average

Log. (Average)

62

Output Analysis

Number of Tuned-Off PMs

 As you saw in the different tables, the output includes the results of running three

replication programs (minimum-cost flow, first-fit, and greedy) to scatter VMs and then

running two consolidation programs (OptimizedDynamic_Consolidation and

SortedMostFilledPM_Consolidation), which actually involves five proposed

consolidation algorithms. In the first series of the output, the number of VMs is changing

and the other variables, which are K (switch port) and R (number of copy), are constant.

In the next samples, the number of VMs is constant, which is 950, and the number of

switch ports is 16, and we change the number of copies from 2 to 4. Results show an

increasing number of turned-off PMs after running both consolidation algorithms.

1. By using the MCF algorithm to scatter original VMs in the data center and

running the consolidation algorithm, we are able to turn off PMs in an increasing trend by

using the first consolidation algorithm, which is OptimizedDynamic_Consolidation. The

number of turned-off PMs increases by increasing the number of copies of each virtual

machine. But the second algorithm turns off in an increasing order when the data center is

not too crowded. As you can see, when the VM number is more than 950, the second

algorithm, which is SortedMostFilledPM_Consolidation, cannot add a bigger turned-off

PM number to the result. On the other hand, when the data center is almost empty, the

number of PMs that can be turned off is not too big, but when we have a large data center

with many VMs, the proposed algorithms work better.

63

2. By using the greedy algorithm to scatter original VMs and then running

consolidation algorithms, the first algorithm, which is OptimizedDynamic_Consolidation,

turns off PMs in an ascending trend, but there is no specific trend with the second

algorithm, which is SortedMostFilledPM_Consolidation. Although it increases the

number of turned-off PMs in a specific data center, if you compare the percent

improvement in different data centers, it does not follow a certain trend. The reason is

obvious: the scattering algorithm is not too smart, and the consolidation tuning algorithm

does not follow a trend for turning-off the PMs.

3. By using the first-fit algorithm to scatter original VMs and then running the

consolidation algorithm, the trend of turning off PMs by using the first algorithm is again

increasing. But the second algorithm does not turn off any PMs. The reason is the first-fit

method, which was used in the beginning to scatter original VMs. Since it fills all PMs

from the beginning and copies VMs in the first available place, there is no room for the

tuning algorithm.

Cost Analysis

In the last column, we calculate the total cost. In the beginning, a cost was

calculated for virtual machine replication. After running the consolidation algorithm,

some PMs are turned off. As mentioned before, we consider one unit cost for keeping one

PM turned on. As a result, the last column, which is the final cost, is calculated for

adding the final turned-on PMs to the replication cost. If we consider this column, it is

clear that MCF is still the best algorithm for virtual machine replication and

consolidation. For example, consider a data center with 800 VMs, 16 switch ports, and 5

64

copies for each virtual machine. By paying attention to the last column, you see that the

average final cost in first-fit is 14504, in greedy 5249, and in MCF 5150. In the following

you will see the chart of cost comparison with three assumption of the cost; in the first

one we considered the cost of keeping one PM up equal to 1. In the second one it is 100

and in the third one it is 1000.

Table45

Average of Final Cost in First Fit (PM Cost =1)
VMs 100 300 400 500 600 700 800 900 950 1000

Final Cost 2090 5593 7513 9190 10998 12712 14503 16377 17161 18233

Table46

Average of Final Cost in Greedy (PM Cost =1)
VMs 100 300 400 500 600 700 800 900 950 1000

Final Cost 740 1801 2315 2967 3718 4459 5249 6130 6627 7002

Table47

Average of Final Cost in Minimum Cist Flow (PM Cost =1)
VMs 100 300 400 500 600 700 800 900 950 1000

Final Cost 941 1834 2265 2943 3642 4439. 5150 5655 6525 6832

Table48

Average of Final Cost in First Fit (PM Cost =100)
VMs 100 300 400 500 600 700 800 900 950 1000

Final Cost 11965 30814 39638 48097 56588 63178 69696 75074 78951 81494

Table49

Average of Final Cost in Greedy (PM Cost =100)
VMs 100 300 400 500 600 700 800 900 950 1000

Final Cost 34480 57854 63774 65773 67692 70393 72588 75034 76898 77866

65

Table50

Average of Final Cost in Minimum Cost Flow (PM Cost =100)
VMs 100 300 400 500 600 700 800 900 950 1000

Final Cost 54560 59512 63308 65610 68626 70235 71381 74559 75765 77142

Table51

Average of Final Cost in First Fit (PM Cost =1000)
VMs 100 300 400 500 600 700 800 900 950 1000

Final Cost 101740 260089 331688 401797 471038 521953 571446 608784 637041 656594

Table52

Average of Final Cost in Greedy (PM Cost =1000)
VMs 100 300 400 500 600 700 800 900 950 1000

Final Cost 341200 567434 622494 636733 649272 669793 684768 701434 715718 722086

Table53

Average of Final Cost in Minimum Cost Flow (PM Cost =1000)
VMs 100 300 400 500 600 700 800 900 950 1000

Final Cost 542000 583852 618248 635310 659386 668375 673481 700959 705225 716322

As you see here when the cost for each PM is 1000 the best result which is the

minimum cost is generated by First Fit algorithm. But if cost is 1 or 100 still the best

algorithm for virtual machine replication and then consolidation is still Minimum cost

flow.

66

CHAPTER 5

CONCLUSION

Virtualized data centers are being used more and more because of the fast growth

in cloud service requests. This results in the establishment of large-scale virtualized data

centers. In data centers, virtual machines are used to handle the service requests of the

user. One problem is failure of a VM. If one needed VM fails, a user’s request cannot be

completed. To reduce the impact of such failure, replication mechanisms can be a very

good solution. The fact is data centers are growing unexpectedly regardless how correctly

and efficiently we run the data center. This results in increasing amounts of power

consumption.

There are many VM replication algorithms. In this project, we focus on the (1)

minimum-cost flow algorithm, (2) first-fit algorithm, and (3) greedy algorithm. These are

the most famous algorithms in virtual machine replication.

After all replications are done, all those physical machines that are empty—which

means that they are inactive will be turned off. In server consolidation, we plan to create

more inactive physical machines from the left active physical machines and turn them off

to save energy and have a more efficient data center. The key to this movement is just

looking at all PMs one by one and trying to find a new active PM as the target for each

VM of that PM. We continue this process until we can move all VMs of a specific PM

and turn it off.

67

In this project, I proposed five algorithms for server consolidation: (1)

Dynamic_Consolidation, (2) OptimizedDynamic_Consolidation, (3)

Sorted_Consolidation, (4) MostFilledPM_Consolidation, and (5)

SortedMostFilledPM_Consolidation.

Optimized_Consolidation includes Dynamic_Consolidation and

SortedMostFilledPM_Consolidation, which is a combination of Sorted_Consolidation

and MostFilledPM_Consolidation. This algorithm acts like a tuning part for the first one,

which is OptimizedDynamic_Consolidation. In all output tables presented in this project,

we calculate the number of turned-off PMs in OptimizedDynamic_Consolidation and

SortedMostFilledPM_Consolidation.

By using the MCF algorithm to scatter original VMs in the data center and

running consolidation algorithms, we are able to turn off PMs in an increasing trend by

using the first consolidation algorithm, which is OptimizedDynamic_Consolidation. The

number of turned-off PMs increases by increasing the number of copies of each virtual

machine. But the second algorithm turns off in an increasing order if the data center is not

too crowded. As you can see, when the VM number is more than 950, the second

algorithm, which is SortedMostFilledPM_Consolidation, cannot have a bigger turned-off

PM number to the result. On the other hand, when the data center is almost empty, the

number of PMs that can be turned off is not too big, but when we have a large data center

with many VMs, the proposed algorithms work better.

68

By considering one unit cost for keeping one PM on and calculating the number

of active PMs after consolidation, it would be clear that MCF is still the best algorithm

for virtual machine replication and consolidation.

When the cost for each PM is 1000 the best result which is the minimum cost is

generated by First Fit algorithm. But if cost is 1 or 100 still the best algorithm for virtual

machine replication and then consolidation is Minimum cost flow.

69

CHAPETR 6

FUTURE WORKS

 I am going to work on finding a more real number for the cost of keeping one

physical machine on to have a more accurate number for the cost of replication and

consolidation, which results in the finding of the best algorithm for virtual machine

replication in big data centers. Basically the goal is using multi-objective optimization

[31] to solve the combined VM replication and server consolidation problem. Multi-

objective optimization (also known as multi-objective programming, vector optimization,

multi criteria optimization, multi attribute optimization or Pareto optimization) is an area

of multiple criteria decision making, that is concerned with mathematical optimization

problems involving more than one objective function to be optimized simultaneously

70

REFRENCES

71

REFERENCES

[1] Andrew Goldberg’s network optimization library. http://www.avglab.com/andrew/soft.html.

[2] Microsoft virtual server. http://www.microsoft.com/windowsserversystem/virtualserver/.

[3] Vmware Inc. http://www.vmware.com.

[4] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu. Energy

 proportional datacenter networks. In Proceedings of ISCA, 2010.

[5] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: Theory, algorithms, and

applications. Prentice-Hall, Inc., 1993.

[6] Y. Ajiro and A. Tanaka. Improving packing algorithms for server consolidation. In

Proceedings of the 33rd International Computer. Measurement Group Conference, 2007.

[7] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network

architecture. SIGCOMM Comput. Commun. Rev., 38(4):63–74, 2008.

M. Alicherry and T.V. Lakshman. Optimizing data access latencies in cloud systems by

intelligent virtual machine placement. In Proceedings of IEEE INFOCOM, 2013.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A.

Warfield. Xen and the art of virtualization. In Proceedings of ACM SOSP, 2003.

[10] C. Clos. A study of non-blocking switching networks. Bell System Technical Journal,

32(2):406–424, 1953.

[11] S. Fang, R. Kanagavelu, B. Lee, C. H. Foh, and K. M. M. Aung. Power-efficient virtual

machine placement and migration in data centers. In Proceedings of the 2013 IEEE

http://www.microsoft.com/windowsserversystem/virtualserver/

72

International Conference on Green Computing and Communications and IEEE Internet

of Things and IEEE Cyber, Physical and Social Computing, 2013.

[12] P. Gill, N. Jain, and N. Nagappan. Understanding network failures in data centers:

Measurement, analysis, and implications. SIGCOMM Comput. Commun. Rev.,

41(4):350–361, 2011.

[13] A. V. Goldberg. An efficient implementation of a scaling minimum-cost flow algorithm. J.

Algorithms, 22:1–29, 1997.

[14] H. Goudarzi and M. Pedram. Energy-efficient virtual machine replication and placement in

a cloud computing system. In Proceedings of IEEE Cloud, 2012.

[15] C. Guo, G. Lu, H. J. Wang., S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang. Secondnet: A

data center network virtualization architecture with bandwidth guarantees. In

Proceedings of CoNEXT, 2010.

[16] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: A scalable and fault-tolerant

network structure for data centers. In Proceedings of the ACM SIGCOMM 2008.

[17] M. Li, D. Subhraveti, A. R. Butt, A. Khasymski, and P. Sarkar. Cam: A topology aware

minimum-cost flow based resource manager for mapreduce applications in the cloud. In

Proceedings of HPDC.

[18] X. Li, J. Wu, S. Tang, and S. Lu. Let’s stay together: Towards traffic aware virtual machine

placement in data centers. In Proceedings of IEEE INFOCOM, 2014.

[19] F. Machida, M. Kawato, and Y. Maeno. Redundant virtual machine placement for fault-

tolerant consolidated server clusters. In Proceedings of the 12th IEEE/IFIP NOMS 2010,

miniconference.

73

[20] J. Mudigonda and P. Yalagandula. Spain: Cots data-center Ethernet for multipathing over

arbitrary topologies. In Proceedings of USENIX NSDI, 2010.

[21] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: Algorithms and

complexities. Prentice Hall, 1982.

[22] B. Tang, N. Jaggi, and M. Takahashi. Achieving data k-availability in intermittently

connected sensor networks. In Proceedings of the IEEE ICCCN, 2014.

[23] P. Khani, B. Tang, J. Han, and M. Beheshti. Power-efficient virtual machine replication in

data centers, Department of Computer Science, California State University Dominguez

Hills, 2009, pp. 1–5.

[24] Data Center. http://www.centralcolo.com/5-core-elements-to-look-for-in-a-data-center/.

[25] Virtual Machine. http://mobilevirtualmachin.blogspot.com/.

[26] Virtualization Technology. http://www.mat.co.th/en/products/si_consulting/virtual/.

[27] Data Center Power Consumption. http://www.blackmonservice.com/article-display/1167.

[28] First Fit Algorithm. http://slideplayer.com/slide/2328482/.

[29] Greedy Algorithm. https://www.devarticles.com/c/a/Development-Cycles/Greedy-Strategy-

as-an-Algorithm-Technique/1/.

[30] Server Consolidation. http://www.lynxnetworks.co.uk/Server%20consolidation.aspx.

[31] Multi Objective Optimization. https://en.wikipedia.org/wiki/Multi-objective_optimization

http://mobilevirtualmachin.blogspot.com/
http://www.blackmonservice.com/article-display/1167
http://slideplayer.com/slide/2328482/
https://www.devarticles.com/c/a/Development-Cycles/Greedy-Strategy-as-an-Algorithm-Technique/1/
https://www.devarticles.com/c/a/Development-Cycles/Greedy-Strategy-as-an-Algorithm-Technique/1/
http://www.lynxnetworks.co.uk/Server%20consolidation.aspx
https://en.wikipedia.org/wiki/Multi-objective_optimization

74

APPENDIX

SOURCE CODE

75

First Package:

/*

 * To change this license header, choose License Headers in Project Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package fat.tree;

/**

 *

 * @author Shadi Shiri

 */

import java.io.*;

import java.util.Scanner;

public class OptimizedDynamicConsolidation {

 public static int [] capable = new int [2000];

 public DynamicOptimizedConsolidation(int h,int k){

 capable[h]=k;

 }

 public static void main(String[] args) throws IOException

 {

 PrintWriter myfile = null;

 myfile = new PrintWriter("turnedOFF.txt", "UTF-8");

 FileReader file = new FileReader("textFile.txt");

 FileReader file2 = new FileReader("sample2.txt");

 FileReader file3 = new FileReader("sample3.txt");

 FileReader file4 = new FileReader("sample4.txt");

 int K;

 double A;

 int maxPMsize;

 int minVMsize;

 int VMnumbers;

 int returnedback=0;

 int notreturnedback=0;

 Scanner input2 = new Scanner(file2);

 Scanner input3 = new Scanner(file3);

 Scanner input4 = new Scanner(file4);

 K = input2.nextInt();

 A = input2.nextInt();

 maxPMsize = input2.nextInt();

 minVMsize = input2.nextInt();

 VMnumbers = input2.nextInt();

 int [] FinalMovedPM = new int [(int)A];

 int FinalMovedPMIndex=-1;

 int [] integers = new int [3];

 int [] movedPM = new int [(int)A];

 for (int i = 0; i < (int)A; i++){

 movedPM[i]=-1;}

76

 Integer PM[][] = new Integer[(int)A][(maxPMsize/minVMsize)]; // VMs copies locations

 Integer InitialPM[][]= new Integer[(int)A][(maxPMsize/minVMsize)];// Original VMs location plus

 copies

 Integer FixedInitialPM[][]= new Integer[(int)A][(maxPMsize/minVMsize)];// Original VMs location

 int [] PMsize = new int [(int)A];

 int [] VMsize = new int [VMnumbers];

 for (int b = 0; b < (int)A; b++){

 FinalMovedPM[b]= -1;

 }

 int index ;

 try {

 Scanner input = new Scanner(file);

 while(input.hasNext()){

 int i=0;

 while(i!=3){

 integers[i] = input.nextInt();

 i++;

 }

 if(integers[2]==1){

 index = FatTreeGreedy.search3(PM,((integers[1])-VMnumbers));

 PM[(integers[1])-VMnumbers][index] = integers[0];

 }

 }

 input.close();

 int j =0;

 int index2=0;

 int check;

 while(input2.hasNext()){

 check = input2.nextInt();

 while(check!=1000){

 // here we are entering the original VMs

 FixedInitialPM[j][index2]=InitialPM[j][index2] = check;

 index2++;

 check = input2.nextInt();

 }

 j++;

 index2=0;

 }

 input2.close();

 // PMs size

 for (int i = 0; i < A; i++){

 PMsize[i] = input3.nextInt();

 }

 // VMs size

 for (int i = 0; i < VMnumbers; i++){

 VMsize[i] = input3.nextInt();

 }

 input3.close();

77

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 for (int i = 0; i < (int)A; i++){

 System.out.print("VMs on PM with ID number "+i+": ");

 for (int j = 0; j < (maxPMsize/minVMsize); j++){

 if(PM[i][j]!= null){

 System.out.print(PM[i][j]+" ");

 }

 }

 System.out.println();

 }

 System.out.println();

 for (int i = 0; i < (int)A; i++){

 System.out.print("Original VMs on PM with ID number "+i+": ");

 for (int j = 0; j < (maxPMsize/minVMsize); j++){

 if(FixedInitialPM[i][j]!= null){

 System.out.print(FixedInitialPM[i][j]+" ");

 }

 }

 System.out.println();

 }

 System.out.println("VMs' size respectively:");

 for (int i = 0; i < VMnumbers; i++){

 System.out.print(VMsize[i]+" ");

 }

 System.out.println();

 System.out.println("PMs' size respectively:");

 for (int i = 0; i < A; i++){

 System.out.print(PMsize[i]+" ");

 }

 System.out.println();

 // combining originals and copies VMs arrays

 int vacant;

 for (int i = 0; i < A; i++){

 vacant=FatTreeGreedy.search3(InitialPM,i);

 int j=0;

 while(j<30 && PM[i][j]!=null){

 if (vacant < 30){

 // System.out.println("value of i && j && vacant "+i+" " + j+ " " + vacant);

 InitialPM[i][vacant] = PM[i][j];

 vacant++;

78

 }

 j++;

 }

 }

 // Calculating the free space of each PM

 System.out.println();

 int [] freeSpace = new int [(int)A];

 for (int i = 0; i < (int)A; i++){

 System.out.print("Free space of PM with ID number "+i+": ");

 int assignedSpace = 0;

 for (int j = 0; j < (maxPMsize/minVMsize); j++){

 if(InitialPM[i][j]!= null){

 assignedSpace = assignedSpace + VMsize[InitialPM[i][j]];

 }

 }

 freeSpace[i] = PMsize[i] - assignedSpace;

 System.out.println(freeSpace[i]);

 }

 System.out.println();

 System.out.print("1111All VMs on PM with ID number : ");

 for (int i = 0; i < (int)A; i++){

 if(InitialPM[i][0]!= null){

 System.out.println(" "+i+": ");

 }

 }

 // All VMs on PMs

 for (int i = 0; i < (int)A; i++){

 System.out.print("these are on PMs "+i+": ");

 System.out.print("All VMs on PM with ID number "+i+": ");

 for (int j = 0; j < (maxPMsize/minVMsize); j++){

 if(InitialPM[i][j]!= null){

 System.out.print(InitialPM[i][j]+" ");

 }

 }

 System.out.println();

 }

 for (int i = 0; i < (int)A; i++){

 if(InitialPM[i][0]!= null){

 System.out.print("these are on PMs "+i+": ");

79

 }

 System.out.println();

 }

 //Getting the cost array from FatTree class

 Integer cost[][] = new Integer[(int)A][(int)A];

 for (int i = 0; i < A; i++){

 for (int j = 0; j < A; j++){

 cost[i][j]= input4.nextInt();

 }

 }

 input4.close();

 // check how many active PM we have

 int activePM = 0;

 for (int i = 0; i < (int)A; i++){

 if(InitialPM[i][0]!= null){

 activePM ++;

 }

 }

 int OriginalVMlocation;

 int tryCost ;// Cost betwwen Original VM and its alone copy on a PM

 int i;

 int totalcostreduced =0;

 int costreduced; // number of VMs that we moved on each PM that had less than 4 VMs

 int x; int w;

 Integer [][] replaced = new Integer [6][30];

 int VMNumbr;

 int z ;

 int jprim, iprim, wprim, Initialindexprim, Pmindexprim;// variables for status of move PMs

outer: for (i = 0; i < (int)A ; i++){

 for (int ss = 0; ss < 6; ss++){

 for (int pp = 0; pp < 30; pp++){

 replaced[ss][pp]= -1;

 }

 }

 w=0;

 costreduced =0;

 x=0;

 VMNumbr = 0;

 jprim=iprim=wprim=Initialindexprim =Pmindexprim= 0;

 if(FixedInitialPM[i][0]== null && PM[i][0]!= null){ // if we had one or more VM copy on a PM

 firstline: while(w<30 && PM[i][w]!= null){

 x++;

 // search to find the location(PM) of original VM of that VM copy

 OriginalVMlocation = FatTreeGreedy.search4(FixedInitialPM,PM[i][w]);

 tryCost = cost[i][OriginalVMlocation];

80

 for(int j = 0; j < (int)A; j++){

 if(cost[OriginalVMlocation][j]== tryCost){// finding other PMs with same cost

 // System.out.println("Selected Physycal machine with the same cost..... "+j);

 if(InitialPM[j][0]!= null){

 // System.out.println("Selected Physycal which is not off..... "+j);//check if it's not off

 if(VMsize[PM[i][w]] <= freeSpace[j]){ // Check if there is enough space

 // System.out.println("Selected Physycal has free space..... "+j);

 if(!(FatTreeGreedy.search2(InitialPM,PM[i][w],j))){

 // Check to make sure we don't already have the selected VM on that PM

 // System.out.println("Selected Physycal doesnt have this VM..... "+j);

 index = FatTreeGreedy.search3(InitialPM,j);

 if (index < 30){

 freeSpace[j]= freeSpace[j]-VMsize[PM[i][w]] ;

 freeSpace[i]= freeSpace[i]+VMsize[PM[i][w]] ;

 replaced[0][VMNumbr]= i;

 replaced[1][VMNumbr]= w;

 replaced[2][VMNumbr]= j;

 replaced[3][VMNumbr]= index;

 InitialPM[j][index] = PM[i][w];

 index = FatTreeGreedy.search3(PM,j);

 replaced[4][VMNumbr]= index;

 replaced[5][VMNumbr]= PM[i][w];

 PM[j][index] = PM[i][w];

 PM[i][w]=InitialPM[i][w] = null; // Removing from its old location

 VMNumbr++;

 costreduced ++;

 System.out.println("Final Selected Physycal machine for moving is..... "+j);

 break;

 }

 }

 }

 }

 }

 }

 w++;

 }

 if (costreduced==x){

 totalcostreduced++;

 notreturnedback++;

 movedPM[i]=i;

 myfile.println(i);

 FinalMovedPMIndex++;

 FinalMovedPM[FinalMovedPMIndex]=i;

 }

 else{

 returnedback++;

 z=0;

 while(z<30 && replaced[0][z]!=-1){

 iprim = replaced[0][z];

 wprim = replaced[1][z];

 jprim = replaced[2][z];

81

 Initialindexprim = replaced[3][z];

 Pmindexprim = replaced[4][z];

 PM[iprim][wprim]=replaced[5][z];

 InitialPM[iprim][wprim]= replaced[5][z];

 InitialPM[jprim][Initialindexprim]= null;

 PM[jprim][Pmindexprim]= null;

 freeSpace[jprim]++;

 freeSpace[iprim]--;

 z++;

 }

 }

 }

 }

 System.out.println();

 for (i = 0; i < (int)A; i++){

 if(InitialPM[i][0]!= null){

 System.out.println(i) ;

 }

 }

 for (i = 0; i < (int)A; i++){

 System.out.print("All VMs (after consolidation) on PM with ID number "+i+": ");

 if(InitialPM[i][0]!= null){

 System.out.println("this is value"+InitialPM[i][0]) ;

 }

 System.out.println("capable value "+capable[i]);

 for (int j = 0; j < (maxPMsize/minVMsize); j++){

 if(InitialPM[i][j]!= null){

 System.out.print(InitialPM[i][j]+" ");

 }

 }

 System.out.println();

 }

 myfile.close();

 System.out.print("Number of active PMs :");

 System.out.println(activePM);

 System.out.print("Number of PMs that we turned off after consolidation :");

 System.out.println(totalcostreduced);

 System.out.println();

 }

}

82

Second Package

/*

 * To change this license header, choose License Headers in Project Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package fat.tree;

/**

 *

 * @author Shadi Shiri

 */

import java.io.*;

import java.util.Scanner;

import java.util.Arrays;

public class SortedMostFilledPMConsolidation{

 public static void main(String[] args) throws IOException

 {

 FileReader file = new FileReader("textFile.txt");

 FileReader file2 = new FileReader("sample2.txt");

 FileReader file3 = new FileReader("sample3.txt");

 FileReader file4 = new FileReader("sample4.txt");

 int K;

 double A;

 int maxPMsize;

 int minVMsize;

 int VMnumbers;

 int SelectedTargerPM=-1;

 Scanner input2 = new Scanner(file2);

 Scanner input3 = new Scanner(file3);

 Scanner input4 = new Scanner(file4);

 K = input2.nextInt();

 A = input2.nextInt();

 maxPMsize = input2.nextInt();

 minVMsize = input2.nextInt();

 VMnumbers = input2.nextInt();

 int [] FinalMovedPM = new int [(int)A];

 int FinalMovedPMIndex=-1;

 for (int b = 0; b < (int)A; b++){

 FinalMovedPM[b]= -1;

 }

// System.out.print(K + " "+A + " "+ maxPMsize+" "+minVMsize+" "+VMnumbers);

// System.out.println();

 int [] integers = new int [3];

83

 int [] movedPM = new int [(int)A];

 Integer SortedUsedArray[][] = new Integer[2][(int)A];

 for (int ff = 0; ff < A; ff++){

 SortedUsedArray[0][ff]= ff;

 SortedUsedArray[1][ff]= -1;

 movedPM[ff]=-1;

 }

 Integer PM[][] = new Integer[(int)A][(maxPMsize/minVMsize)]; // VMs copies locations

 // Original VMs location plus copies

 Integer InitialPM[][]= new Integer[(int)A][(maxPMsize/minVMsize)];

 Integer FixedInitialPM[][]= new Integer[(int)A][(maxPMsize/minVMsize)];// Original VMs location

 Integer [][] SelectedPM = new Integer[2][(int)A];

 for (int y = 0; y<A; y++){

 SelectedPM[0][y]= -1;

 SelectedPM[1][y]= -1;

 }

 int [] PMsize = new int [(int)A];

 int [] VMsize = new int [VMnumbers];

 Integer SortedPM[] = new Integer[(int)A]; // Sorted VMs copies locations

 int index ;

 try {

 Scanner input = new Scanner(file);

 while(input.hasNext()){

 int i=0;

 while(i!=3){

 integers[i] = input.nextInt();

 i++;

 }

 if(integers[2]==1){

 index = FatTreeGreedy.search3(PM,((integers[1])-VMnumbers));

 PM[(integers[1])-VMnumbers][index] = integers[0];

 }

 }

 input.close();

 for(int s=0; s<A; s++){

 }

 int j =0;

 int index2=0;

 int check;

 while(input2.hasNext()){

 check = input2.nextInt();

 while(check!=1000){

 // here we are entering the original VMs

 FixedInitialPM[j][index2]=InitialPM[j][index2] = check;

 index2++;

 check = input2.nextInt();

 }

 j++;

 index2=0;

 }

 input2.close();

84

 // PMs size

 for (int i = 0; i < A; i++){

 PMsize[i] = input3.nextInt();

 }

 // VMs size

 for (int i = 0; i < VMnumbers; i++){

 VMsize[i] = input3.nextInt();

 }

 input3.close();

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 for (int i = 0; i < (int)A; i++){

 System.out.print("VMs on PM with ID number "+i+": ");

 for (int j = 0; j < (maxPMsize/minVMsize); j++){

 if(PM[i][j]!= null){

 System.out.print(PM[i][j]+" ");

 }

 }

 System.out.println();

 }

 System.out.println();

 for (int i = 0; i < (int)A; i++){

 System.out.print("Original VMs on PM with ID number "+i+": ");

 for (int j = 0; j < (maxPMsize/minVMsize); j++){

 if(FixedInitialPM[i][j]!= null){

 System.out.print(FixedInitialPM[i][j]+" ");

 }

 }

 System.out.println();

 }

 System.out.println("VMs' size respectively:");

 for (int i = 0; i < VMnumbers; i++){

 System.out.print(VMsize[i]+" ");

 }

 System.out.println();

 System.out.println("PMs' size respectively:");

 for (int i = 0; i < A; i++){

 System.out.print(PMsize[i]+" ");

 }

 System.out.println();

 // combining originals and copies VMs arrays

 int vacant;

 for (int i = 0; i < A; i++){

 vacant=FatTreeGreedy.search3(InitialPM,i);

 int j=0;

 while(j<(maxPMsize/minVMsize)&&PM[i][j]!=null){

85

 if (vacant < 30){

 InitialPM [i][vacant] = PM[i][j];

 vacant++;

 }

 j++;

 }

 }

 // Calculating the free space of each PM

 System.out.println();

 int [] freeSpace = new int [(int)A];

 for (int i = 0; i < (int)A; i++){

 System.out.print("Free space of PM with ID number "+i+": ");

 int assignedSpace = 0;

 for (int j = 0; j < (maxPMsize/minVMsize); j++){

 if(InitialPM[i][j]!= null){

 assignedSpace = assignedSpace + VMsize[InitialPM[i][j]];

 }

 }

 freeSpace[i] = PMsize[i] - assignedSpace;

 System.out.println(freeSpace[i]);

 }

 System.out.println();

 System.out.print("1111All VMs on PM with ID number : ");

 for (int i = 0; i < (int)A; i++){

 if(InitialPM[i][0]!= null){

 System.out.println(" "+i+": ");

 }

 }

 // All VMs on PMs

 for (int i = 0; i < (int)A; i++){

 System.out.print("All VMs on PM with ID number "+i+": ");

 for (int j = 0; j < (maxPMsize/minVMsize); j++){

 if(InitialPM[i][j]!= null){

 System.out.print(InitialPM[i][j]+" ");

 }

 }

 System.out.println();

 }

 //Getting the cost array from FatTree class

 Integer cost[][] = new Integer[(int)A][(int)A];

 for (int i = 0; i < A; i++){

 for (int j = 0; j < A; j++){

 cost[i][j]= input4.nextInt();

 }

 }

 input4.close();

 // check how many active PM we have

 int activePM = 0;

 for (int i = 0; i < (int)A; i++){

86

 if(InitialPM[i][0]!= null){

 activePM ++;

 }

 }

 // Check where we have just one VM copy

 int OriginalVMlocation;

 int tryCost ;// Cost betwwen Original VM and its alone copy on a PM

 int i;

 int totalcostreduced =0;

 int costreduced; // number of VMs that we moved on each PM that had less than 4 VMs

 int x; // to check how many VMs we had on those PMs with less than 4 VMs

 int w;

 SortedUsedArray = FatTreeGreedy.SneakySort(PM,(int)A);

 for(int ll=0; ll<(int)A; ll++){

 System.out.println("sorted elements are "+SortedUsedArray[0][ll]+": ");

 System.out.println("VM numbers is "+SortedUsedArray[1][ll]+": ");

 }

 Integer [][] replaced = new Integer [6][30];

 Integer [] TargetPM = new Integer [(int)A];

 int VMNumbr,TargetNum;

 int z,hh ;

 int MovedVM=-1;

 int workingPM=-1;

 int jprim, iprim, wprim, Initialindexprim, Pmindexprim;

 int Q;

 for (i = 0; i < (int)A ; i++){

 System.out.println("this is the value of I "+ i);

 System.out.println("this is the value PM "+ SortedUsedArray[0][i]+"...");

 System.out.println("this is the value VM# "+ SortedUsedArray[1][i]);

 for (int ss = 0; ss < 6; ss++){

 for (int pp = 0; pp < 30; pp++){

 replaced[ss][pp]= -1;

 }

 }

 for (int cc = 0; cc < A; cc++){

 TargetPM[cc]=-1;

 }

 Q = SortedUsedArray[0][i];

 TargetNum = 0;

 w=0;

 costreduced =0;

 x=0;

 VMNumbr = 0;

 jprim=iprim=wprim=Initialindexprim =Pmindexprim= -1; // variables for status of moveD VMs

 int E = 0;

 int TargetinSortedaary=-1;

 int SourcetinSortedaary=-1;

 if(FixedInitialPM[Q][0]== null && PM[Q][0]!= null){ // if we had one or more VM copy on a PM

 System.out.println("the first PM we start to work on is "+Q+"...");

 System.out.println("this pm has "+SortedUsedArray[1][i]+"VMMMM");

 while(w<30 && PM[Q][w]!= null){

 System.out.println("this is VM we are working on it"+w);

87

 MovedVM=-1;

 E=-1;

 for (int y = 0; y<A; y++){

 SelectedPM[0][y]= -1;

 SelectedPM[1][y]= -1;

 }

 SelectedTargerPM=-1;

 x++;

 OriginalVMlocation = FatTreeGreedy.search4(FixedInitialPM,PM[Q][w]);

 // search to find the location(PM) of original VM of that VM copy

 tryCost = cost[Q][OriginalVMlocation];

 for(int j = 0; j < (int)A; j++){

 if(cost[OriginalVMlocation][j]== tryCost){ // finding other PMs with same cost

 // System.out.println("Selected Physycal machine with the same cost..... "+j);

 if(InitialPM[j][0]!= null){

 // System.out.println("Selected Physycal which is not off..... "+j);//check if it's not off

 if(VMsize[PM[Q][w]] <= freeSpace[j]){ // Check if there is enough space

 // System.out.println("Selected PhyfreeSpace[j]sycal has free space..... "+j);

 if(!(FatTreeGreedy.search2(InitialPM,PM[Q][w],j))){

 // Check to make sure we don't already have the selected VM on that PM

 // System.out.println("Selected Physycal doesnt have this VM..... "+j);

 index = FatTreeGreedy.search3(InitialPM,j);

 if (index < 30){

 System.out.println("this is final selected PM"+j);

 E++;

 SelectedPM[0][E]= j;

 SelectedPM[1][E]=FatTreeGreedy.search3(InitialPM, j);

 }

 }

 }

 }

 }

 }

 if (E>-1){

 int QQ = 0;

 int numberodVMS;

 SelectedTargerPM = SelectedPM[0][QQ];

 numberodVMS=SelectedPM[1][QQ];

 while (QQ < A && SelectedPM[0][QQ]!=-1) {

 if (SelectedPM[1][QQ]>numberodVMS){

 SelectedTargerPM = SelectedPM[0][QQ];

 numberodVMS= SelectedPM[1][QQ];

 }

 QQ++;

 }

 freeSpace[SelectedTargerPM]= freeSpace[SelectedTargerPM]-VMsize[PM[Q][w]];

 freeSpace[Q]= freeSpace[Q]+VMsize[PM[Q][w]];

 index = FatTreeGreedy.search3(InitialPM,SelectedTargerPM);

 replaced[0][VMNumbr]= Q;

 replaced[1][VMNumbr]= w;

 replaced[2][VMNumbr]= SelectedTargerPM;

 replaced[3][VMNumbr]= index;

88

 // repalcing the alone VM copy to the new PM of finalized PM

 InitialPM[SelectedTargerPM][index] = PM[Q][w];

 index = FatTreeGreedy.search3(PM,SelectedTargerPM);

 replaced[4][VMNumbr]= index;

 replaced[5][VMNumbr]= PM[Q][w];

 PM[SelectedTargerPM][index] = PM[Q][w];

 PM[Q][w]=InitialPM[Q][w] = null;

 System.out.println("decreasing vm numbers "+Q+" which

 hasssss"+SortedUsedArray[1][i]);

 for(int xx = 0; xx < (int)A; xx++){

 if(SortedUsedArray[0][xx]==Q){

 workingPM=xx;

 SortedUsedArray[1][i]=SortedUsedArray[1][i]-1;

 System.out.println("now it has # vms "+SortedUsedArray[1][xx]);

 if (SortedUsedArray[1][xx]<0){

 System.out.println("This is PM number which is negative "+xx+" which

 hasssss"+SortedUsedArray[1][xx]);

 }

 break;

 }

 }

 for(int xx = 0; xx < (int)A; xx++){

 if(SortedUsedArray[0][xx]==SelectedTargerPM){

 System.out.println("target pm is "+SortedUsedArray[0][xx]);

 SortedUsedArray[1][xx]=SortedUsedArray[1][xx]+1;

 System.out.println("after moving it has vm # "+SortedUsedArray[1][xx]);

 if (SortedUsedArray[1][xx]>30){

 }

 break;

 }

 }

 TargetPM[TargetNum]=SelectedTargerPM;

 VMNumbr++;

 costreduced ++;

 TargetNum++;

 break;

 }

 w++;

 }

 // System.out.println("the number ov VM of the " + Q + "th physycal machine is "+x);

 System.out.println(" costreduced= "+ costreduced);

 System.out.println(" x= "+ x);

 if (costreduced==x){

 System.out.println(" finally we could move pm numbwer"+ Q);

 totalcostreduced++;

 movedPM[i]=Q;

 FinalMovedPMIndex++;

 FinalMovedPM[FinalMovedPMIndex]=Q;

 SortedUsedArray = FatTreeGreedy.SneakySort1(SortedUsedArray,(int)A,i);

 if (SortedUsedArray[0][i]==9){

 for (int ff = 0; ff < A; ff++){

 if(SortedUsedArray[0][i]==SortedUsedArray[0][ff] && i!=ff)

89

 System.out.println("NOw we are opn index# " +i);

 System.out.println("9 index is# " +ff);

 }

 }

 }

 else{

 System.out.println("not moved Q valuee is " +Q);

 for (int sd = 0; sd < A; sd++){

 if(TargetPM[sd]!=-1){

 System.out.println("which hasss " +SortedUsedArray[1][TargetPM[sd]]);

 }

 }

 for(hh=0; hh<A;hh++){

 if(TargetPM[hh]!=-1){

 freeSpace[TargetPM[hh]]++;

 freeSpace[Q]--;

 for(int xx = 0; xx < (int)A; xx++){

 if(SortedUsedArray[0][xx]==Q){

 SortedUsedArray[1][xx]++;

 }

 }

 for(int xx = 0; xx < (int)A; xx++){

 if(SortedUsedArray[0][xx]==TargetPM[hh]){

 SortedUsedArray[1][xx]--;

 }

 }

 }

 }

 z=0;

 while(z<30 && replaced[0][z]!=-1){

 iprim = replaced[0][z];

 wprim = replaced[1][z];

 jprim = replaced[2][z];

 Initialindexprim = replaced[3][z];

 Pmindexprim = replaced[4][z];

 PM[iprim][wprim]=replaced[5][z];

 InitialPM[iprim][wprim]= replaced[5][z];

 InitialPM[jprim][Initialindexprim]= null;

 PM[jprim][Pmindexprim]= null;

 z++;

 }

 }

 }

 }

 System.out.println();

 System.out.print("2222All VMs (after consolidation) on PM with ID number ");

 for (i = 0; i < (int)A; i++){

 if(InitialPM[i][0]!= null){

 System.out.println(i);

 }

90

 }

 System.out.println();

 for (i = 0; i < (int)A; i++){

 // System.out.print("All VMs (after consolidation) on PM with ID number "+i+": ");

 for (int j = 0; j < (maxPMsize/minVMsize); j++){

 if(InitialPM[i][j]!= null){

 System.out.print(InitialPM[i][j]+" ");

 }

 }

 System.out.println();

 }

 for (int pp = 0; pp < (int)A; pp++){

 System.out.print("VMs on PM with ID number "+pp+": ");

 for (int j = 0; j < (maxPMsize/minVMsize); j++){

 if(PM[pp][j]!= null){

 System.out.print(PM[pp][j]+" ");

 }

 }

 System.out.println();

 }

 System.out.print("Number of active PMs :");

 System.out.println(activePM);

 System.out.print("Number of PMs that we turned off after consolidation :");

 System.out.println(totalcostreduced);

 }

}

