

	

Spring	 2016	 	

Master’s	 Project	 	

Computer	 Science	 Department	 	
California	 State	 University,	 Dominguez	 Hills	 	

MACSEISAPP: AN EARLY EARTHQUAKE

WARNING SYSTEM

A Project

Presented

to the Faculty of

California State University Dominguez Hills

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Shayan Mehrazarin

Spring 2016

	

PROJECT: MACSEISAPP: AN EARLY EARTHQUAKE
 WARNING SYSTEM

AUTHOR: SHAYAN MEHRAZARIN

APPROVED:

Bin Tang, Ph.D
Project Committee Chair

Mohsen Beheshti, Ph.D
Committee Member

Jianchao (Jack) Han, Ph.D
Committee Member

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

This project is dedicated to my parents, Mohammad Reza Mehrazarin and Gilda
Moshrefi, my brother, Dr. Shebli Mehrazarin, and my sister-in-law, Saman Karimi-

Mehrazarin, who have supported me throughout my educational career.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
iv	

ACKNOWLEDGEMENT

I would like to acknowledge and give special thanks to the distinguished faculty members

who served on my committee: Dr. Bin Tang (chair), Dr. Mohsen Beheshti, and Dr.

Jianchao (Jack) Han. As my advisor, Dr. Tang provided detailed guidance and

encouragement throughout the development of this project. Additionally, I am thankful to

have been supported financially throughout the development of this project in part by Dr.

Tang’s National Science Foundation Grant CNS – 1419952.

v

TABLE OF CONTENTS

PAGE

APPROVAL SHEET . iii

DEDICATION . iv

ACKNOWLEDGEMENT . v

TABLE OF CONTENTS . vi

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . x

CHAPTER

1. INTRODUCTION . 11

2. BACKGROUND . 13

 2.1. Background on Apple’s Sudden Motion Sensor (SMS) 13

 2.2. Background on Apple’s Push Notification Service (APNS) 14

3. METHODOLOGY . 16

 3.1. Development Model and Software Architecture . 16

 3.2. The Role of Sudden Motion Sensor in MacSeisApp 18

 3.3. Calculating the Magnitude of Seismic Activity From Data 19

4. DESIGN & IMPLEMENTATION . 22

 4.1. An Inside Look at MacSeisApp . 22

 4.2. Designing the Seismograph Interface . 24

 4.3. The Use of Notifications in MacSeisApp . 26

vi

CHAPTER PAGE

5. CONCLUSION & FUTURE WORK . 29

 5.1. Conclusion . 29

 5.2. Future Work and Vision . 30

REFERENCES . 32

APPENDIX: SOURCE CODE . 34

vii

LIST OF TABLES

PAGE

1. Table 3.3.1: Relationship Between Gravity/Acceleration and Magnitude [5] 20

viii

LIST OF FIGURES

PAGE

1. Figure 1.1: The General Structure and Idea of MacSeisApp . 12

2. Figure 2.2.1: Structure and Flow of Apple’s Push Notification Service [4] 15

3. Figure 3.1.1: The Waterfall Model for MacSeisApp . 16

3. Figure 3.1.2: The Software Architecture of MacSeisApp . 17

3. Figure 3.2.1: Inserting and Shifting Data Collected from SMS in Array 19

4. Figure 4.1.1: The General Structure of an AppDelegate . 22

5. Figure 4.1.2: The Combined Use of Objective-C and C Code in a Function 23

6. Figure 4.2.1: Seismograph Interface for SeisMac [2] . 24

7. Figure 4.2.2: Seismograph Interface for MacSeisApp . 25

8. Figure 4.3.1: A Typical Push Notification from MacSeisApp 27

9. Figure 4.3.2: The Placement of the Push Notification on the Screen 28

ix

ABSTRACT

Most MacBook and MacBook Pro notebook computers manufactured since 2006

are equipped with a device called the Sudden Motion Sensor, or SMS. The purpose of

this sensor is to help protect the MacBook’s Hard Disk Drive (HDD) in the event that the

MacBook is accidentally dropped or experiences heavy shaking and vibration. Aside

from protecting the MacBook, the Sudden Motion Sensor has been used for various

purposes, especially as a seismograph. In this project, I design and implement

MacSeisApp, an earthquake early warning system that utilizes the MacBook’s Sudden

Motion Sensor. MacSeisApp, inspired by both the Quake Catcher [1] and an existing

seismograph application called SeisMac [2], is an application that not only displays a

basic seismograph, but also aims to notify other users of earthquake activity in nearby

cities using Apple’s Push Notifications (APN) via a dedicated server. Written in both the

C and Objective-C programming languages using the XCode Integrated Developer

Environment (IDE), MacSeisApp utilizes the same open-source library, smslib [3], used

in SeisMac in order to detect the vibrations via the Sudden Motion Sensor and translate it

into points to be plotted as a seismograph. If there is shaking detected, it will draw some

spikes, and once a spike is detected, MacSeisApp will communicate with a dedicated

server. The dedicated server then executes a script to communicate with Apple’s Push

Notification Service server, which then processes the request and sends an alert via Push

Notification to other MacBooks nearby. Additionally, a sound plays as the notification is

displayed.

11

CHAPTER 1

INTRODUCTION

Most MacBook and MacBook Pro notebook computers manufactured since 2006

are equipped with a device called the Sudden Motion Sensor, or SMS. The purpose of

this sensor is to help protect the MacBook’s Hard Disk Drive (HDD) in the event that the

MacBook is accidentally dropped or experiences heavy shaking and vibration. Since

Solid State Drives (SSD) do not spin like the traditional HDD, MacBook models that

feature a SSD do not come with the Sudden Motion Sensor equipped. Aside from

protecting the MacBook, the Sudden Motion Sensor has been used for various purposes,

especially as a seismograph. An application called SeisMac [2] uses the sensor to

transform the user’s MacBook into a seismograph by displaying real-time, three-axis

acceleration graphs. SeisMac uses smslib [3], an open-source library that is written using

both the C and Objective-C programming languages.

SeisMac along with the Quake Catcher [1] inspired the development of a new

application called MacSeisApp, which not only displays a basic seismograph, but also

aims to notify other users in nearby cities of earthquake activity using Apple’s Push

Notifications (APN) via a dedicated server. Written in both the C and Objective-C

programming languages using the XCode Integrated Developer Environment (IDE),

MacSeisApp utilizes the same open-source library used in SeisMac in order to detect the

vibrations via the Sudden Motion Sensor and translate it into points to be plotted as a

seismograph. If there is shaking detected, the program will draw some spikes, and once a

12

spike is detected, MacSeisApp will then communicate with a dedicated server based at

California State University, Dominguez Hills. The server at California State University,

Dominguez Hills then communicates with Apple’s server through the successful

execution of a script written in the PHP scripting language. This script will first check if

two different users executed this script within a four-second period. If this condition is

true, then this script continues to send the request to Apple’s server; otherwise, the script

will abort if this condition is not met and it will not send the request. Apple’s server then

processes the request if received and then sends an alert via Push Notification to other

MacBooks nearby. Additionally, a sound will play along with the notification as it is

being displayed. The general idea and flow of events in MacSeisApp is illustrated in

Figure 1.1.

Figure 1.1: The General Structure and Idea of MacSeisApp

13

CHAPTER 2

BACKGROUND

2.1. Background on Apple’s Sudden Motion

Sensor (SMS)

Apple had first introduced the Sudden Motion Sensor, or SMS, to their MacBook

and MacBook Pro lines of notebook computers starting in 2006. The Sudden Motion

Sensor is Apple’s proprietary gyroscopic sensor and the main purpose of its presence in

the MacBook and MacBook Pro is to protect the MacBook’s spinning hard disk drive

(HDD) and to minimize damage just before it hits a hard surface when falling off of a

table or other elevated surface. The Sudden Motion Sensor does this by sending a signal

to the hard disk drive as soon as the sensor starts detecting a lot of unusual or violent

motion, which is measured along the x, y, and z axes in gravities (g). In response to this

signal, the hard disk drive stops spinning temporarily.

In recent years, however, Apple has introduced solid-state drives, or SSDs, into

more of their MacBook models. Unlike the traditional spinning hard disk drives, solid

state drives do not consist of any spinning or moving parts internally, just like in USB

flash drives or SD cards. Due to the lack of hard disk drives in these newer MacBook

models, these newer models are consequently not equipped with sudden motion sensors.

14

2.2. Background on Apple’s Push Notification

Service (APNS)

Apple’s Push Notification Service (APNS) was first introduced in iOS version 3.0

in 2009 and later introduced in Mac OS X “Lion” version 10.7 in 2011 as a means to

provide an alternative to the existing local notification functionality built into the

respective operating systems. According to Apple’s developer program documentation

[4], push notifications are commonly referred to as remote notifications.

Push notifications are significant in that they give developers the capability to

send notifications to end-users, even when the application is not active or running. Over

the years, push notifications have been used to notify users in various scenarios, such as:

• New or unread messages

• Weapon unlocks or invitations in games

• Severe weather alerts (i.e. tornado warnings, flash flood warnings), and

• Friend requests in social media applications.

The way Apple’s Push Notification Service works is as follows. First, the

developer has to set up his own server that supports scripting protocols, such as the PHP

scripting language. The script will then have instructions to communicate with Apple’s

own dedicated server for push notifications using a secure connection via a secure layer

protocol, which in the case of MacSeisApp is the Secure Sockets Layer (SSL) protocol.

Finally, Apple’s push notification server will then verify the authenticity of the

15

developer’s server security certificates, and if the certificates are valid, then Apple’s

server will push the notification to the user’s device. The general idea and flow of the

push notification is demonstrated in Figure 2.2.1 [4].

Figure 2.2.1: Structure and Flow of Apple’s Push Notification Service [4]

SSL is a commonly used security protocol that creates an encrypted link between

a web server and the end-user’s web browser and ensures transmitted data remains

private. SSL was widely used by developers and endorsed by Apple up until October

2014, which was when the Padding Oracle On Downgraded Legacy Encryption

(POODLE) exploit on SSL version 3.0 was discovered by a group of security researchers

from Google. As a result of this discovery, Apple forbids developers from using the SSL

protocol for push notifications when publishing it to the Mac App Store. As an

alternative security protocol, Apple recommends that developers use the Transport Layer

Security (TLS) protocol for push notifications, which is a protocol that ensures privacy

between communicating applications and their end-users on the Internet. However, there

is an exception to this restriction, where developers are still permitted to use SSL

certificates for testing and debugging purposes while in development or sandbox mode.

16

CHAPTER 3

METHODOLOGY

3.1. Development Model and Software

Architecture

 The development of MacSeisApp closely follows the waterfall model. The

waterfall model is a developmental approach where a series of key events are performed

sequentially in various phases. The waterfall model that is used in the development of

MacSeisApp is illustrated in Figure 3.1.1

Figure 3.1.1: The Waterfall Model for MacSeisApp

The first phase in the development of MacSeisApp is requirements analysis,

where the requirements for the project is provided and developed. The next phase in the

development of MacSeisApp is software design, where the design for the project is

developed, which involved studying the design of SeisMac. The third phase in the

development of MacSeisApp is implementation, which involves programming and

17

writing source code for the project. The fourth phase in the development of MacSeisApp

is verification, where the application is tested to ensure it works as intended with minimal

bugs or glitches. The final phases in the development of MacSeisApp are deployment and

maintenance. Deployment involves the distribution of the software to end-users, and

maintenance involves resolving bugs in the software that are discovered or reported along

with keeping the application up to date.

 The software design phase in the waterfall model is one of the most significant

phases in the development of MacSeisApp. In particular, it involves drafting a layout of

the software’s structure, commonly in the form of software architecture design. Software

architecture lays out the high level structures of a software and is typically broken down

into the front-end and back-end. The front-end is the interface that clients and end-users

are presented with, and the back-end is the server interface that is visible to developers.

Figure 3.1.2 illustrates the software architecture of MacSeisApp.

Figure 3.1.2: The Software Architecture of MacSeisApp

18

 The software architecture for MacSeisApp consists of the client function and the

web server function. The client is simply the interface that is presented to the user, which

performs network communication and rendering. The network communication is used to

link the client interface with the web server interface, while the rendering is used to

display the seismograph interface and update it once every 0.1 seconds. The web server,

on the other hand, consists of the server at California State University, Dominguez Hills

and Apple’s Push Notification Service server. The architecture in Figure 3.1.2 shows that

the client first communicates with CSUDH Server; CSUDH Server then communicates

with APNS Server through script execution; and finally APNS Server communicates with

the client using notification delivery as long as security verification is successful. Security

verification is the functionality that checks the authenticity and validity of the CSUDH

Server’s security certificates.

3.2. The Role of the Sudden Motion Sensor

in MacSeisApp

The Sudden Motion Sensor is responsible for collecting motion data once every

0.1 seconds while the MacSeisApp application is running, even if the user’s MacBook is

stationary. The motion data that is collected is then translated by the open-source library

smslib into values of type float or double. The collected motion data can then be accessed

by using the various provided accessor functions that are written in the C programming

language, and the data for each of the three individual axes, x, y, and z, can be used in

both code written in C and code written in Objective-C.

19

Figure 3.2.1: Inserting and Shifting Data Collected from SMS in Array

MacSeisApp then takes this data and stores it in three separate arrays of type

double with a size of one hundred elements. The data is then plotted by MacSeisApp to

the application window with each axis on its own separate line with a black background

to depict a seismograph. The seismograph is then updated every time a new piece of data

is collected from the Sudden Motion Sensor, which once every interval of 0.1 seconds. A

total of one hundred plots of data are displayed at a time on each axis with the points

interconnected with standard lines. The code for this scenario is shown in Figure 3.2.1.

3.3. Calculating the Magnitude of Seismic

Activity From Data

Earthquakes are commonly measured based on the Richter scale. The data that is

collected from the SMS for each of the three axes, however, is measured in gravities (g),

where the x, y, and z axes range from -1.0g to 1.0g. As gravity is a form of acceleration,

20

gravities can easily be converted to meters per square second (m/s2), where 1g is equal to

9.81 m/s2.

Table 3.3.1: Relationship Between Gravity/Acceleration and Magnitude [5]

Richter Scale
Value

Approximate
Gravity (g)

Approximate
Acceleration

(m/s2)

Approximate
Mercalli Scale

Value
5.0 ± 0.03 ± 0.29 V
5.4 ± 0.05 ± 0.49 VI
6.1 ± 0.1 ± 0.98 VII
6.6 ± 0.25 ± 2.45 VIII
7.3 ± 0.5 ± 4.91 X
8.0 ± 0.75 ± 7.36 XI
≥ 8.2 ±1 ± 9.81 XII

The severity of an earthquake is also assessed by the Mercalli scale. The

magnitude of an earthquake can be approximated on the Richter scale using a

combination of a rating on the Mercalli scale and acceleration or gravity values (shown in

Table 3.3.1) [5].

The seismograph interface for MacSeisApp displays the data in the form of

gravities (g). By using the conversions from Table 3.3.1, MacSeisApp can determine the

approximate Richter scale value for magnitude 5.0 and above as long as the value of

gravities (g) from both the x-axis and y-axis are greater than 0.03g. The Richter scale

value is later used in the notification message in MacSeisApp in the event that an

earthquake of magnitude 5.0 and above is detected.

21

Additionally, MacSeisApp calculates the average gravities value for the last one

hundred values collected from each axis and takes the absolute value of the difference

between the newest value and the average. The purpose of this calculation is to reduce the

likelihood of “false alarms” and to account for cases where the MacBook is placed on an

uneven surface.

22

CHAPTER 4

DESIGN & IMPLEMENTATION

4.1. An Inside Look at MacSeisApp

The MacSeisApp application has been developed with various programming

languages and tools. Specifically, it has been developed using a combination of

Objective-C and C code and utilizes the Xcode Integrated Development Environment

(IDE). This is actually possible due to the fact that the Objective-C programming

language is derived from the C programming language. Additionally, it is very simple to

distinguish between the code that is written in Objective-C versus the code that is written

in C. One major difference in Objective-C that is immediately noticeable is that every

project written in Objective-C contains a class called the Application Delegate, or

commonly abbreviated as AppDelegate. The AppDelegate essentially handles the tasks

that need to be done “behind-the-scenes” or “under the hood”, commonly by the

operating system.

Figure 4.1.1: The General Structure of an AppDelegate

23

The AppDelegate will always have two functions with a return type of void:

applicationDidFinishLaunching and applicationWillTerminate. Inside these two

functions, one would find some code similar to what is shown in Figure 4.1.1. The

applicationDidFinishLaunching function will consist of any code that the developer

wants to be executed as an application is starting up. The applicationWillTerminate

function, on the other hand, will consist of any code that the developer wants to be

executed right before the application fully shuts down.

Figure 4.1.2: The Combined Use of Objective-C and C Code in a Function

Aside from the code written in Objective-C, there is a need to utilize the C

programming language in order to take advantage of the OpenGL framework [6].

OpenGL is a widely used graphics library first introduced in 1992 that allows developers

to incorporate custom graphics into their applications, such as colored lines and shapes.

The OpenGL library is needed in MacSeisApp in order to display the seismograph

interface in real time. For example, the function that handles rendering new data on the

seismograph interface once every 0.1 seconds has a mixture of Objective-C code and

OpenGL code written in C, which is demonstrated in Figure 4.1.2.

24

4.2. Designing the Seismograph Interface

 The seismograph interface for MacSeisApp was made possible thanks to the

OpenGL library. Although written in C, OpenGL works seamlessly with code written in

the Objective-C programming language. This is especially beneficial in the sense that it

allows the developer to use various functions that come built in with the Mac OS X

Software Development Kit (SDK).

In order to ensure that the data and the seismograph interface is updated once

every 0.1 seconds, an object of type NSTimer from Objective-C is used. The timer, in

particular, is used for the following three functions:

• Shifting existing content in array to the previous index, and data at index 0 is

overwritten

• Adding new data to the end of the array at index 99

• Redrawing the interface each time with the new contents of the array

Figure 4.2.1: Seismograph Interface for SeisMac [2]

25

The seismograph interface of MacSeisApp was primarily influenced by the

seismograph interface of SeisMac. A comparison of the seismograph interfaces between

the two applications can be seen in both Figure 4.2.1 for SeisMac [2] and in Figure 4.2.2

for MacSeisApp. One can immediately notice when running on a newer MacBook Pro

equipped with an Intel Core i5 processor that the seismograph interface for MacSeisApp

looks a lot smoother with regards to the lines as opposed to SeisMac, where the lines look

a bit clunky. This is likely because SeisMac was originally designed and optimized to

work with the PowerPC and Intel Core 2 Duo processors that were common in older

MacBook and MacBook Pro models. Additionally, SeisMac has not been updated in

many years to include optimizations for newer Intel processors such as the Intel Core i5

and Intel Core i7.

Figure 4.2.2: Seismograph Interface for MacSeisApp

26

4.3. The Use of Notifications in MacSeisApp

When it comes to grabbing an end-user’s immediate attention, there are several

options that the developer can take advantage of. Some options that were previously

considered for MacSeisApp include email and Apple’s iMessage messaging service. Due

to the nature of MacSeisApp, neither one of those two options were able to be utilized as

they require the end-user to click on a button to send the email or iMessage, which would

not be practical in this case. Instead, MacSeisApp utilizes Apple’s Push Notification

Service (APNS) as it requires no interaction by the end-user to initiate the sending or

receiving of notifications.

Furthermore, push notifications are especially used to grab the end-user’s

immediate attention, as they are delivered instantly. Push notifications are very effective

in that there is at most one second of latency or “lag”, even in the worst-case scenario

where the end-user has a poor Internet connection. With MacSeisApp, a push notification

would be generated and delivered to users in nearby areas and communities if the

seismograph interface shows a “spike” on either the x, y, or z axes for two or more users

within a four-second interval. This is handled by a smart seismic activity detection

algorithm in the PHP script on the server at California State University, Dominguez Hills.

If at least two users in one city detect some shaking activity within a four-second

interval that has similar data across the x, y, and z axes, then this smart seismic activity

detection algorithm would send a push notification request to Apple’s Push Notification

27

Server. This way, if at least two end-users detect “spikes” on their seismograph interface

with a similar pattern, then very likely some legitimate seismic activity has occurred and

a push notification will be received by all end-users within that area. Otherwise, if only

one out of two or more end-users detects some activity, then very likely this activity was

artificial, resulting from a slamming door or other artificial movement.

A push notification for MacSeisApp contains a message composed of the

magnitude of the earthquake (based on the Richter scale), the location, the date, and the

time of the earthquake.

Figure 4.3.1: A Typical Push Notification from MacSeisApp

For example, there are two users running MacSeisApp located in the city of

Carson, California; one user is located at California State University, Dominguez Hills

and a second user is located at an apartment complex near the South Bay Pavilion

shopping center. Both users detect a “spike” on the seismograph interface when running

the application within a four-second interval, and the PHP script on the California State

University, Dominguez Hills verifies that it has been executed by two different users.

This script then proceeds to send a push notification request to Apple’s push notification

server, which generates and sends a push notification similar to the one shown in the

28

image in Figure 4.3.1 to other users in nearby cities, such as Torrance, Long Beach, Los

Angeles, Irvine, and Riverside. The users in the nearby cities will then receive the push

notification immediately within one second and have it show up on the top-right hand

corner of their screen, similar to what is shown in Figure 4.3.2. Those users are

guaranteed to receive the push notifications just seconds before the seismic wave reaches

them. This is because data and network speeds are much faster than the speeds at which

seismic waves travel through the ground.

Figure 4.3.2: The Placement of the Push Notification on the Screen

29

CHAPTER 5

CONCLUSION & FUTURE WORK

5.1. Conclusion

The development of the MacSeisApp application has been a very promising

experience in the sense that an existing concept has been refined and further expanded for

novel applications with the potential to someday save the lives and property of the

general public. Combining this novel concept with the various technologies and third-

party libraries available today makes it possible to make this application a reality.

This is especially the case with MacSeisApp, where its development was first

inspired by the SeisMac application that can be downloaded free of charge. Thanks to the

introduction of Apple’s Sudden Motion Sensor in 2006, Apple’s Push Notification

Service in 2009, and the smslib and OpenGL libraries, MacSeisApp has evolved from a

new, refined idea to become real product. The original goal of MacSeisApp was to refine

and expand upon the seismograph interface found in SeisMac by utilizing the real-time

notification system via push notifications. Although the original vision of the project has

been realized, it is important to note that the development of MacSeisApp is an ongoing

process, as there are several more features that can be integrated at a later date, which is

discussed further in the next section.

30

5.2. Future Work and Vision

MacSeisApp is an ongoing project that is full of potential, with several features

that can be integrated into the MacSeisApp application in the future. One such feature

includes having a counterpart application for iOS where end-users can also receive push

notifications on their iPhone or iPad devices as well. Additionally, this counterpart

application would also be able to display the latest five to ten earthquake events to the

end-users. This could become a very effective way to instantly notify a large population

of users over multiple platforms.

Another feature that may be added in the future is an options or settings panel

where the end-user can enable or disable the push notifications functionality. This can

also include the option to enable push notifications within a certain radius from the end-

user’s current location, such as within a 50 or 100-mile radius. This way, an end-user

located in the San Francisco Bay Area, for example, can essentially opt-out of receiving

push notifications for earthquake activity that is reported by end-users in the Los Angeles

area.

Finally, a third feature that can be integrated to the MacSeisApp application in the

future is an improved version of the smart seismic activity detection algorithm that

differentiates between artificial or man-made shaking and legitimate seismic activity.

One way that the existing version of this feature can be improved is to have the script

running on the dedicated server at California State University, Dominguez Hills run an

31

additional algorithm that is able to obtain all shaking activity data from all users and

compare it. Although MacSeisApp is able to require reports from two different users

within a four-second interval before a push notification is triggered, the current algorithm

does collect any seismic data from the user. This can be problematic with regards to

accuracy in that one user may report a spike on the x-axis while the other user reports a

spike on the y-axis, which would not necessarily be considered related seismic activity.

Additionally, if the data collected from each user has a similar pattern on each axis within

this four-second interval, then the dedicated server will proceed with sending the push

notification to all users of MacSeisApp. This feature would greatly help protect the

integrity of the MacSeisApp application and to significantly reduce, if not, eliminate

“false alarms.”

REFERENCES

33

REFERENCES

[1] E. Cochran, J. Lawrence, C. Christensen, and R. Jakka. The quake catcher

 network: Citizen science expanding seismic horizons. Seismological Research

 Letters, 80(1):26–30, 2009.

[2] Griscom, Daniel. "SeisMac 3.0." Suitable Systems - SeisMac 3.0. Suitable

 Systems, 2012. Web. <http://www.suitable.com/tools/seismac.html>.

[3] Griscom, Daniel. "SMSLib." Suitable Systems - SMSLib. Suitable Systems, 2012.

 Web. <http://www.suitable.com/tools/smslib.html>.

[4] "Local and Remote Notification Programming Guide." Apple Push Notification

 Service. Apple, Inc. Web.

 <https://developer.apple.com/library/mac/documentation/NetworkingInternet/Con

 ceptual/RemoteNotificationsPG/Chapters/ApplePushService.html>.

[5] "The Richter and Mercalli Scales." The Geography Site. National Grid For

 Learning, 26 March 2013. Web. <http://www.geography-

 site.co.uk/pages/physical/earth/richt.html>.

[6] "OpenGL Overview." OpenGL - The Industry's Foundation for High

Performance Graphics. The Khronos Group. Web.

<https://www.opengl.org/about/>.

APPENDIX

SOURCE CODE

35

//
// AppDelegate.h
// MacSeisApp
//
// The header file for the AppDelegate
//
//

#import <Cocoa/Cocoa.h>

@interface AppDelegate : NSObject <NSApplicationDelegate>

@end

	
	
	

36

//
// AppDelegate.m
// MacSeisApp
//
// The AppDelegate executes any code needed at startup and shutdown of application
//
//

#import "AppDelegate.h"
#import "smslib.h"

@interface AppDelegate ()

@end

@implementation AppDelegate

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification {
 // Insert code here to initialize your application

 // Used to tell OS that this app wants to receive push notifications
 [NSApp registerForRemoteNotificationTypes:(NSRemoteNotificationTypeBadge |
 NSRemoteNotificationTypeSound | NSRemoteNotificationTypeAlert)];

 smsStartup(nil, nil); // Used to start access to Sudden Motion Sensor (SMS)
 smsLoadCalibration(); // Used to load any stored calibration values
}

- (void)application:(NSApplication *)application
didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken
{
 NSLog(@"My token is: %@", deviceToken);
}

- (void)application:(NSApplication *)application
didFailToRegisterForRemoteNotificationsWithError:(NSError *)error
{
 NSLog(@"Failed to get token, error: %@", error);
}

- (void)applicationWillTerminate:(NSNotification *)aNotification {
 // Insert code here to tear down your application
 smsShutdown(); // Shut down SMSLib once application is killed
}

@end
	

37

//
// ViewController.h
// MacSeisApp
//
// The header file for the ViewController
//
//

#import <Cocoa/Cocoa.h>
#import "smslib.h"
#import "Seismograph.h"

@interface ViewController : NSViewController
{
 sms_acceleration accel;
 Seismograph* glView;
}

@end

	
	
	

38

//
// ViewController.m
// MacSeisApp
//
// The ViewController handles displaying the application window and its contents
//
//

#import "ViewController.h"

@implementation ViewController

- (void)viewDidLoad {
 [super viewDidLoad];

 // Do any additional setup after loading the view.

 glView = [[Seismograph alloc] init];

 // Fire collectSMSData every 0.1 seconds
 [NSTimer scheduledTimerWithTimeInterval:0.1f
 target:self selector:@selector(collectSMSData:) userInfo:nil repeats:YES];
}

- (void) collectSMSData:(NSTimer*)timer // Collect data from Sudden Motion Sensor
{
 smsGetData(&accel);
 insert_data(accel.x, accel.y, accel.z); // Call method to insert data into arrays
}

- (void)setRepresentedObject:(id)representedObject {
 [super setRepresentedObject:representedObject];

 // Update the view, if already loaded.
}

@end

	
	
	

39

//
// Seismograph.h
// MacSeisApp
//
// The header file for the Seismograph
//
//

#import <Cocoa/Cocoa.h>

@interface Seismograph : NSOpenGLView
{
 @public
 NSOpenGLPixelFormat* pixelFormat;
 NSOpenGLContext* glContext;
}

- (void) drawRect: (NSRect) bounds;

void insert_data(double x, double y, double z);

void plotSeismicData();

@end
	

40

//
// Seismograph.m
// MacSeisApp
//
// The Seismograph class handles the algorithm of collecting data and plotting
// the collected data as a seismograph, updating once every 0.1 seconds
//

#import "Seismograph.h"
#include <OpenGL/gl.h>
#include <GLUT/glut.h>

@implementation Seismograph

 // Global variables needed
double x_axis[100];
double y_axis[100];
double z_axis[100];
NSRect theBounds;
bool timerSet = NO;
bool spikeDetected = NO;
int spikeCount = 100;
int onlyOnce = 1;

void insert_data(double x, double y, double z) // Inserts data into each axis array
{
 double avg_x = 0;
 double avg_y = 0;
 double avg_z = 0;

 for(int i = 0; i < 99; i++)
 { // Shift all values back one index space
 x_axis[i] = x_axis[i + 1];
 y_axis[i] = y_axis[i + 1];
 z_axis[i] = z_axis[i + 1];

 avg_x += x_axis[i];
 avg_y += y_axis[i];
 avg_z += z_axis[i];
 }

 avg_x /= 99.0;
 avg_y /= 99.0;
 avg_z /= 99.0;

 if(fabs(x - avg_x) > 0.03 && fabs(y - avg_y) > 0.03) // Earthquake above M5.0
 { // detected
 NSString* magnitude = @"";

 if(fabs(x - avg_x) >= 1 || fabs(y - avg_y) >= 1)
 {
 // Above Magnitude 8.2
 magnitude = @"8.2%2B"; // %2B is used to represent a + for a URL
 }

41

 else if(fabs(x - avg_x) >= 0.75 || fabs(y - avg_y) >= 0.75)
 {
 // Magnitude 8.0
 magnitude = @"8.0";
 }
 else if(fabs(x - avg_x) >= 0.5 || fabs(y - avg_y) >= 0.5)
 {
 // Magnitude 7.3
 magnitude = @"7.3";
 }
 else if(fabs(x - avg_x) >= 0.25 || fabs(y - avg_y) >= 0.25)
 {
 // Magnitude 6.6
 magnitude = @"6.6";
 }
 else if(fabs(x - avg_x) >= 0.1 || fabs(y - avg_y) >= 0.1)
 {
 // Magnitude 6.1
 magnitude = @"6.1";
 }
 else if(fabs(x - avg_x) >= 0.05 || fabs(y - avg_y) >= 0.05)
 {
 // Magnitude 5.4
 magnitude = @"5.4";
 }
 else
 {
 // Magnitude 5.0
 magnitude = @"5.0";
 }

 spikeDetected = YES;

 if(onlyOnce == 1)
 {
 onlyOnce = 0;

 // Create the request that is to be sent to the server
 NSMutableURLRequest *request =
 [[NSMutableURLRequest alloc] initWithURL:
 [NSURL URLWithString:
 [@"http://apns.csudh.edu/~apns/simplepush.php?mag="
 stringByAppendingString:magnitude]]];

 [request setHTTPMethod:@"GET"];
 [request addValue:@"getValues" forHTTPHeaderField:@"METHOD"];
 // Selects the task the server will perform

 // Start an NSURLConnection with the request
 NSURLConnection *connection = [[NSURLConnection alloc]
 initWithRequest:request delegate:nil];
 if(!connection)
 {

42

 NSLog(@"Connection Failed");
 }
 }
 }

 x_axis[99] = x; // Insert new data at the end of array
 y_axis[99] = y;
 z_axis[99] = z;
}

void plotSeismicData() // Plots data collected from SMS for each
{ // index of respective arrays for the
 double pos = -1.0; // x, y, and z axes

 glColor3f(1.0f, 1.0f, 1.0f);
 glBegin(GL_LINES);
 {
 for(int i = 0; i < 99; i++)
 {
 glVertex2d(pos, x_axis[i] + 0.67);
 pos += 0.02;
 glVertex2d(pos, x_axis[i + 1] + 0.67);
 }
 }
 glEnd();

 pos = -1.0;

 glBegin(GL_LINES);
 {
 for(int i = 0; i < 99; i++)
 {
 glVertex2d(pos, y_axis[i]);
 pos += 0.02;
 glVertex2d(pos, y_axis[i + 1]);
 }
 }
 glEnd();

 pos = -1.0;

 glBegin(GL_LINES);
 {
 for(int i = 0; i < 99; i++)
 {
 glVertex2d(pos, (z_axis[i] - 1) - 0.67);
 pos += 0.02;
 glVertex2d(pos, (z_axis[i + 1] - 1) - 0.67);
 }
 }
 glEnd();
}

43

void xAxisLine() // Draws a horizontal line for the x-axis
{ // towards the top of the window
 glColor3f(0.0f, 1.0f, 0.0f);
 glBegin(GL_LINES);
 {
 glVertex2d(-1.0, 0.67);
 glVertex2d(1.0, 0.67);
 }
 glEnd();
}

void yAxisLine() // Draws a horizontal line for the y-axis
{ // in the middle of the window
 glColor3f(0.0f, 1.0f, 0.0f);
 glBegin(GL_LINES);
 {
 glVertex2d(-1.0, 0.0);
 glVertex2d(1.0, 0.0);
 }
 glEnd();
}

void zAxisLine() // Draws a horizontal line for the z-axis
{ // towards the bottom of the window
 glColor3f(1.0f, 0.0f, 0.0f);
 glBegin(GL_LINES);
 {
 glVertex2d(-1.0, -0.67);
 glVertex2d(1.0, -0.67);
 }
 glEnd();
}

void drawAxisLines() // Container function that calls each of the
{ // functions to draw the horizonal lines for
 xAxisLine(); // the x, y, and z axes
 yAxisLine();
 zAxisLine();
}

-(void)render:(NSTimer*)timer // Uses timer to refresh the window and
{ // render current data available
 [self setNeedsDisplay:YES];
}

-(void) drawRect: (NSRect) bounds // Handles drawing the window for seismograph
{
 if(timerSet == NO)
 {
 [NSTimer scheduledTimerWithTimeInterval:0.1f target:self
 selector:@selector(render:) userInfo:nil repeats:YES];
 timerSet = YES;
 }

44

 if(spikeDetected) // Spike has been detected, makes background
 { // red color for limited amount of time
 glClearColor(1, 0, 0, 0.3);
 spikeCount--;

 if(spikeCount == 0)
 {
 spikeDetected = NO;
 spikeCount = 100;
 onlyOnce = 1;
 }
 }
 else // Normal conditions, display default
 { // black background until spike is detected
 glClearColor(0, 0, 0, 1.0);
 }

 glClear(GL_COLOR_BUFFER_BIT);
 drawAxisLines();
 plotSeismicData();
 glFlush();
}

@end	

45

//
// simplepush.php
// MacSeisApp
//
// The PHP script for the server, which includes the smart seismic activity
// detection algorithm
// Note: Asterisks (‘*’) are used in place of sensitive information
//

<?php

// First, keep track of how many times this script is run
$counterFile = ("ctr.txt");
$count = file($counterFile);
$count[0] += 1;
$fp1 = fopen($counterFile, "w");
fputs($fp1, "$count[0]");
fclose($fp1);
$isEarthquake = False;

$tmpVal = $count[0];
if($tmpVal == 1) // This instance is the only one,
{ // wait to see if there is another instance
 sleep(4);
 $count = file($counterFile);

 if($count[0] == $tmpVal) // No other instance, reset count
 { // back to 0, do not send APNS
 $fp1 = fopen($counterFile, "w");
 fputs($fp1, "0");
 fclose($fp1);
 }
 // Otherwise, there is another instance, APNS triggered
}
elseif($tmpVal == 2) // This is the second instance, APNS
{ // can be triggered
 $isEarthquake = True;
 $fp1 = fopen($counterFile, "w");
 fputs($fp1, "0");
 fclose($fp1);
}

if($isEarthquake)
{
 // Put device tokens here (without spaces):
 // [NOTE: Actual tokens are not displayed for Appendix]
 $deviceToken = array('**********************************',
 '**********************************');

 // Put your private key's passphrase here:
 // [NOTE: Actual passphrase is not displayed for Appendix]
 $passphrase = '*******';

46

 // Get server date and time
 date_default_timezone_set('America/Los_Angeles');
 $date = date_create();

 // Put your alert message here:
 $message = '(M' . htmlspecialchars($_GET["mag"]) .
 ') An Earthquake just occurred in Carson, CA on ' .
 $date->format('m/d/Y H:i:s') .
 '. Take shelter now!';

//

 $ctx = stream_context_create();
 stream_context_set_option($ctx, 'ssl', 'local_cert', 'ck.pem');
 stream_context_set_option($ctx, 'ssl', 'passphrase', $passphrase);

 // Open a connection to the APNS server
 $fp = stream_socket_client(
 'ssl://gateway.sandbox.push.apple.com:2195', $err,
 $errstr, 60, STREAM_CLIENT_CONNECT|STREAM_CLIENT_PERSISTENT, $ctx);

 if (!$fp)
 exit("Failed to connect: $err $errstr" . PHP_EOL);

 echo 'Connected to APNS' . PHP_EOL;

 // Create the payload body
 $body['aps'] = array(
 'alert' => $message,
 'sound' => "warning.caf",
 'badge' => 1
);

 // Encode the payload as JSON
 $payload = json_encode($body);

 // Build the binary notification
 foreach ($deviceToken as $dt) {
 $msg = chr(0) . pack('n', 32) . pack('H*', $dt) .
 pack('n', strlen($payload)) . $payload;

 // Send it to the server
 $result = fwrite($fp, $msg, strlen($msg));

 if (!$result)
 echo 'Message not delivered' . PHP_EOL;
 else
 echo 'Message successfully delivered' . PHP_EOL;
 }

 // Close the connection to the server
 fclose($fp);
}
	

