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ABSTRACT 

 

 

This report centers on robotic sensor networks (RSNs), where mobile data collectors, or 

robots, are deployed in sensor fields to gather data from sensor nodes and return to a 

base/charging station. We investigate a novel algorithmic problem termed DCR (data collection 

in RSNs). The objective of DCR is to dispatch a robot into the sensor field to gather the 

maximum number of data packets before exhausting its battery and returning for recharging. 

Despite extensive research on enhancing data collection in RSNs, little attention has been given 

to the limited battery power of data-collecting robots. We demonstrate that the DCR framework 

revolves around new graph-theoretical problems, termed the Budget-Constrained Traveling 

Salesman Problem (BC-TSP) and Budget Constrained Covering Salesman Problem (BC-CSP). 

To address the BC-TSP, we develop a set of algorithms including an Integer Linear 

Programming (ILP)–based optimal solution, three iterative greedy algorithms, and a multi-agent 

reinforcement learning (MARL) algorithm. Further we apply these algorithms to solve Budget 

Constraint Covering Salesman Problem Approach to show that it can collect more data packets 

than BC-TSP approach but depletes the network longevity. Through comprehensive simulations 

employing real measurements of battery power and robot mobility, for the BC-TSP our results 

indicate that: a) our algorithms outperform existing approaches by collecting 25% more data 

packets with the same battery power, and b) MARL performs competitively compared to 

handcrafted greedy algorithms. In the BC-CSP approach, our greedy algorithms demonstrate the 

capacity to gather 40% more data packets compared to the BC-TSP approach greedy algorithms. 

Keywords – Data collection, robotic sensor networks, integer linear programming, prize-

collecting covering salesman problem, multi-agent reinforcement learning. 
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CHAPTER 1  

INTRODUCTION 

Background and Motivation. Since its inception in the early 1990s, wireless sensor network 

(WSN) research has transitioned from laboratory settings to practical applications across various 

domains such as military, health, environmental monitoring, industrial processes, and urban 

infrastructure, facilitating diverse data collection from the physical world (Rawat et al., 2014; 

Rahmati & Pompili, 2019). Recent advancements in artificial intelligence (AI) and machine 

learning (ML), particularly in deep reinforcement learning, have propelled significant progress in 

robotic research, leading to the emergence of various robotic applications (Garaffa et al., 2023; 

Kober et al., 2013). Notably, considerable efforts have been directed towards leveraging mobile 

robots to enhance the performance and efficiency of wireless sensor networks, particularly in 

environment monitoring, intrusion detection, and search and rescue operations. This integration 

of mobile robots with wireless sensor networks is termed robotic sensor networks (RSNs). The 

two main tasks that mobile robots execute to improve the performance and functions of RSNs 

are data collection and network maintenance (e.g., wirelessly recharging sensor nodes). Figure 1 

shows the basic sensor network entities. By dispatching the battery-rechargeable robots into the 

sensor field to collect the data and bring it back to the base station, the energy bottleneck of the 

sensor networks is migrated from the sensor nodes to the mobile robots. Consequently, the 

lifetime of RSN is greatly improved compared to the traditional sensor networks, wherein 

sensory data is transmitted back to the base station in an energy-consuming multi-hop manner.  

In multi-hop wireless communications, as sensor nodes close to the base station are responsible 

for forwarding data to the base station from nodes that are farther away which is depicted in 

Figure 2, they could quickly deplete their battery power. Thus, the closer a sensor node is to a 
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sink, the faster its battery runs out. Besides, the precious battery powers should be utilized for 

sensing, computing, and actuation activities, which are the purposes of sensor network design 

and deployment, instead of routing. 

Figure 1 

Sensor Network Diagram 

 

Additionally, many challenging and inaccessible environments, such as those found in 

seismic activity monitoring (McNulty et al., 2022) or deep-water exploration (Coutinho et al., 

2019; Phillips et al., 2017), necessitate the deployment of autonomous underwater vehicles 

(AUVs) or robots for data collection. Hence, data collection remains a crucial task for mobile 

robots in modern RSNs. Considerable research efforts have been dedicated to addressing various 

objectives related to data collection within RSNs, which can be broadly classified into two 
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categories. The first category aims to optimize resource provisioning objectives of data 

collection. This includes minimizing the length of data-collecting tours for robots (Ma et al., 

2013; Yang & Wang, 2016), reducing energy consumption of wheeled mobile robots (Liu & 

Sun, 2014), or minimizing latency in drones during search-and-reconnaissance operations (Kim 

et al., 2017; Xue et al., 2014). Additionally, efforts have focused on maximizing network lifetime 

and implementing path planning strategies to achieve full connectivity for disconnected sensor 

networks. The second category aims to achieve admission control objectives, where not all 

sensor nodes can be visited to collect all sensory data. This involves maximizing network utility, 

measured in terms of collected data packets, through joint wireless energy replenishment and 

mobile data gathering (Guo et al., 2014; Wang et al., 2016). Other objectives in this category 

include collecting as much data as possible within a specified time duration or retrieving all 

sensed data within a given deadline using rendezvous points (Salarian et al., 2014; Wang & 

Chen, 2019). 

However, most of the existing research assumes that robots possess sufficient battery 

power, if needed, to traverse the entire RSN field and collect all sensory packets before returning 

to the depot for recharging. However, given that robots have limited yet rechargeable battery 

power, there exists a possibility that they can only travel a finite distance before battery 

depletion. For instance, Xiao et al. illustrate that the propulsion energy, responsible for driving 

robots forward, for various robotic rovers typically ranges from tens to hundreds of watt-hours 

(Wh), limiting their traversal distance to tens of kilometers. In large-scale RSNs, when robots 

cannot collect all sensory data before returning to the charging station, it becomes crucial to 

efficiently schedule battery-constrained robots to gather as much valuable sensory information as 

possible. This optimization is necessary to enhance the performance of RSN applications. 
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Figure 2 

Multi-Hop Data Transmission 

 

To address this challenge, we introduce a novel algorithmic framework named DCR: 

Data Collection in RSNs. The objective of DCR is to dispatch a robot, equipped with limited 

battery power, into the sensor field of an RSN composed of sensor nodes, each generating 

varying numbers of data packets. Figure 3 shows the Robotic Sensor Network. The aim is to 

maximize the collection of data packets by the robot before its battery power is depleted, 

necessitating its return to the depot for recharging. In the process of solving DCR, we identify a 

new graph-theoretical problem termed the Budget-Constrained Covering Salesman Problem 

(BC-CSP), which represents a variation of the Covering Salesman Problem. In this problem the 

only difference is that the robot will be having a transmission range. Once it goes to a specific 

sensor node it can collect data from all other nodes that fall within the transmission range as 

shown in Figure 4. To address the BC-CSP, we develop a suite of algorithms, an iterative greedy 
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algorithm, and a multi-agent reinforcement learning (MARL) algorithm. Through extensive 

simulations utilizing real-world measurements of battery power and robot mobility, our findings 

demonstrate that: a) our algorithms surpass existing approaches by collecting 25% more data 

packets with equivalent robot battery power, b) MARL performs way better compared to 

manually crafted greedy algorithms. In contrast, existing approaches to data collection, such as 

the covering salesman approach, risk depleting the battery power of certain sensor nodes within 

approximately 100 rounds of robot tours in RSNs but can collect more data packets. 

Figure 3 

Robotic Sensor Network  
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Paper Organization. The rest of the paper is organized as follows. Chapter 2 reviews all the 

related work. Chapter 3 formulates the BC-TSP. Chapters 4 and 5 propose a suite of 

combinatorial algorithms, including an ILP optimal solution, three greedy heuristic algorithms 

and our MARL algorithm for the DCR. Chapter 6 compares our algorithms with the existing 

research and discusses the results. Chapter 7 concludes the paper with a discussion of future 

works. 

Figure 4 

Robotic Sensor Network BC-CSP Approach 
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CHAPTER 2 

RELATED WORK 

Robotic Sensor Networks (RSNs) (Gu et al., 2016; Huang et al., 2019) have garnered 

significant attention in recent years, with mobile robots being employed to enhance the 

performance of wireless sensor networks (Kim et al., 2017; Liu et al., 2020; Guo et al., 2014; 

Salarian et al., 2014; Wang & Chen, 2019; Kim et al., 2014; Liu et al., 2021; Xue et al., 2019). 

Luo et al. (2005) identified a common issue in wireless sensor networks, where nodes 

near a base station bear the brunt of relaying data for a substantial portion of the network, leading 

to rapid battery depletion. They were among the pioneers in introducing robot mobility to 

mitigate this issue. Their proposed data-gathering scheme aims to minimize the maximum 

average load of sensor nodes by addressing both robot movement planning and data-gathering 

routing. Their approach assumes a circular sensor field and predominantly utilizes geometric 

calculations and techniques to minimize the maximum load on sensor nodes. 

Ma et al. (2013) approached data-gathering in sensor networks from a graph-theoretical 

perspective, framing it as a covering salesman problem (CSP). The objective of the CSP is to 

minimize the length of the data-gathering tour undertaken by polling points visited by the robot. 

These polling points cover all sensor nodes within the network. Essentially, sensor nodes within 

the transmission range of a polling point directly transmit their data packets to that polling point, 

which are then collected by the robot. In scenarios involving multiple robots, the aim is to 

minimize the number of mobile robots while ensuring that each CSP subtour adheres to a 

specified time constraint. Ma et al. formulated these problems as mixed-integer programs and 

devised heuristic data-gathering algorithms. Building upon this work, Guo et al. (2014) extended 

the approach by incorporating wireless energy-charging into mobile data collection. They 
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formulated a network utility maximization problem that accounts for energy balance and the 

limited time each mobile collector can spend at a particular location. Additionally, they devised a 

distributed algorithm to address these challenges.  

Salarian et al. (2014) expanded on the concept of polling points (PPs) by introducing 

rendezvous points (RPs) into the data-collection process. In this framework, a hybrid moving 

pattern is formed where a mobile-sink node exclusively visits RPs, while sensor nodes that are 

not RPs relay their sensed data via multi-hop communication to the nearest RP. Unlike PPs, 

which facilitate one-hop communication between sensor nodes and RPs, RPs serve as central 

points for data aggregation. Salarian et al. devised a weighted rendezvous planning heuristic 

algorithm to enable a mobile sink to retrieve all sensed data within a specified deadline while 

minimizing the energy expenditure of sensor nodes. In a related study, Wang et al. (2016) noted 

that the sensors produce data at the same rate and do not face limitations on buffer size in the 

approach. To address these assumptions, they relaxed these constraints and developed efficient 

path planning for a reliable data-gathering algorithm. 

The problems discussed above assume active participation of sensor nodes in the data 

collection process, typically by transmitting their data packets to polling points or rendezvous 

points, as seen in the covering salesman problem. However, this approach can rapidly deplete 

sensor node battery power due to the energy-intensive nature of wireless communication, 

potentially rendering the entire RSN inoperable. In contrast, we propose a budget-constrained 

traveling salesman problem, where the robot (representing the traveling salesman) directly visits 

each sensor node to collect its data packet. In this scenario, since the robot interacts directly with 

sensor nodes, the distance between them can be assumed to be zero, effectively minimizing 
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transmission energy consumption. We demonstrate that compared to the existing covering 

salesman approach, our method significantly prolongs the lifetime of the RSN. 

In a related context, Kim et al. (2017, 2014) explored multiple-drone-assisted search-and-

reconnaissance scenarios, framing them as the Travelling Salesman Problem with Neighborhood 

(TSPN). In TSPN, a node is considered visited once its distance from the traveler falls below a 

certain threshold value. The authors devised approximation algorithms to minimize task 

completion time and the largest time gap between consecutive observations of the same point of 

interest. Meanwhile, Liu et al. (2020) concentrated on mobile data collection in disconnected 

sensor networks, proposing a path-planning strategy to achieve full connectivity for partitioned 

WSNs and construct shorter paths. 

All the aforementioned works assume that the mobile robots in the RSN possess 

sufficient battery power to accomplish the objectives outlined in those studies. However, in a 

large-scale sensor field, it's plausible that the robot lacks the necessary battery power to visit all 

sensor nodes. In scenarios where sensor nodes generate sensory data with varying priorities and 

values (i.e., prizes), a critical question arises: how to schedule the robot to visit and collect data 

from nodes with maximum prizes before returning to the charging station for recharging. 

Other groups of research consider the existence of physical resource constraints in the 

RSN or impose time constraints on data packet collection. Guo et al. (2014, 2016) proposed a 

framework for joint wireless energy replenishment and mobile data gathering, presenting a 

network utility maximization problem constrained by flow, energy balance, link and battery 

capacity, and the limited sojourn time of the mobile collector. They introduced a suite of sub 

algorithms to achieve cross-layer data control, scheduling, and routing for sensor nodes, along 

with sojourn time allocation for the mobile collector at different anchor points. However, this 
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framework still adopts a CSP approach, which may not be energy-preserving for the sensor 

nodes. 

Chen et al. (2016) identified scenarios in data harvesting where certain data are time-

sensitive and may become outdated after a period. Consequently, they introduced a time-

constrained data harvesting problem aimed at determining an optimal data collection path within 

an RSN to maximize data collection within a specified time frame, offering a constant-factor 

approximation algorithm. Their consideration of time constraints in data collection aligns with 

the battery power constraint addressed in this paper. However, their robot mobility model differs 

fundamentally from ours. They assume the robot can collect data from any nodes within a 

constant distance along its travel path, while our model necessitates the robot to reach each 

sensor node to collect its packets directly. Additionally, they assume each sensor node contains 

one unit of data message, aiming to cover as many sensors as possible. In contrast, our model 

accounts for varying numbers of data packets per sensor, focusing on maximizing the collection 

of data packets. 
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CHAPTER 3 

PROBLEM FORMULATION 

Network Model. We model the RSN as a rectangular area of l meters by m meters, in which n 

sensor nodes and one robot is located. Let Vs  = {1, 2, ..., n} denote the set of sensor nodes 

randomly located in the RSN, with i ∈ Vs  located at the location (xi, yi)  where 0 ≤ xi ≤ l and 0 ≤ 

yi ≤ m. Each sensor node i ∈ Vs   has di ≥ 0 number of data packets; each having a size of k bits. 

Let r = (0, 0) denote the depot of the RSN, where the robot and a base station are located. The 

robot is dispatched from the depot to collect data from the RSN and then returns to the depot to 

upload its collected data to a base station. The depot is also a charging station where the battery 

of the robot can be recharged. 

Let  𝑉 =  𝑉𝑠 ∪ {𝑟}  and ∀𝑖, 𝑗 ∈ 𝑉 , let 𝑑(𝑖, 𝑗) = √(𝑥𝑖 − 𝑥𝑗)2 +  (𝑦𝑖 − 𝑦𝑗2 denote the distance 

between any pair of sensor nodes i and j or a sensor node i and the depot r = j. We assume both 

robot and sensor nodes have the same transmission range Tr; i.e., when the distance between a 

sensor node and the robot is within Tr, the robot can collect the sensor node’s data packet 

wirelessly. We leave the more general case that the robot can adjust its transmission range for a 

more energy-efficient data collection as a future work. 

Energy Model for Data Collection. We use the well-known first-order radio wireless model 

(Heinzelman et al., 2000) to quantify the energy consumption when collecting data from sensors 

by robots. When sensor node i sends a k-bit data packet to the robot r over their distance li, r ≤ Tr 

meters, the transmission energy spent by i is 𝐸𝑖
𝑡(𝑟) =  𝜖𝑒𝑙𝑒𝑐 ∗ 𝑘 +  𝜖𝑎𝑚𝑝 ∗ 𝑘 ∗  𝑙𝑖,𝑟

2  , the receiving 

energy spent by r is 𝐸𝑣
𝑟𝑒 =  𝜖𝑒𝑙𝑒𝑐 ∗ 𝑘. Here 𝜖𝑒𝑙𝑒𝑐 = 100𝑛𝐽/𝑏𝑖𝑡 is the energy consumption per bit 

on the transmitter circuit and receiver circuit, and 𝑒𝑎𝑚𝑝 =
100𝑝𝐽

𝑏𝑖𝑡
/𝑚2 is the energy consumption 

per bit on the transmit amplifier. 
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Mobility Model of the Robot. Next, we present the mobility model for the robot; i.e., how it 

moves around the RSN and collects data packets from the sensor nodes. Gu et al. divides the 

mobility management and control of mobile sinks (i.e., robots) in the RSN into four categories: 

uncontrollable mobility (UMM), path-restricted mobility (PRM), location-restricted mobility 

(LRM), and unrestricted mobility (URM). UMM characterizes the uncontrollable behavior of 

mobile sinks (e.g., sinks are attached to wild animals moving randomly). PRM models the 

geographic constraints of sinks on pre-defined paths (e.g., freeways and railways). LRM 

characterizes some scenarios wherein mobile sinks can only stop at certain locations to collect 

data due to geographic and structural constraints (e.g., structural health monitoring). URM 

models that the mobile sink has total freedom of mobility. Simpler than PRM, where the 

trajectory of the mobile sink is pre-determined, or LRM, where the stops are fixed, URM is 

widely used in the existing literature to study both data routing and robot motion control in the 

RSN. 

 We thus adopt the URM model and assume the robot can stop at any location in the RSN 

to collect data packets in this paper. In particular, to collect data from sensor node i, the robot 

moves from its current location to sensor node i’s location (xi , yi) following the straight line 

between them. At (xi , yi), the robot collects the data packets from sensor node i as well as all the 

sensor nodes j where d(i, j) ≤ Tr. That is, when the robot is located at (xi , yi), the maximum 

amount of data packet it can collect is sum of all data packets in the range. And denote it as pi. 

The goal of the robot is to find a sequence of sensor nodes to stop and collect data packets such 

that it can collect a maximum number of data packets before it runs out of battery power and 

returns to the depot, where it uploads the collected data to the base station and recharge its 

battery. 
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Table 1 

Notation Summary 

 

Energy Model of the Robot. Xiao et al. (2014) analyzed energy utilization in mobile robot 

traverse and estimates the maximum range achievable by wheeled mobile robots operating on a 

single battery discharge. It shows that a robot’s energy consumption mainly includes two parts, 

viz., robotics and mobility. Robotics energy consumption is for computing, sensing, and 

communication while mobility consumption includes all the energy needed to keep the robot in 

motion, such as the drive motor, steering motor, and their related energy losses. In our case, 

according to our data collection model, the robot must arrive at the location of sensor nodes to 

collect data packets; thus, the distance between the robot and sensor nodes is considered zero. 

Thus, we assume that robotics energy is negligible and only focus on the energy consumption for 

robot mobility. We leave the integrated study of both robotics and mobility energy as a future 
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work. The energy required for mobility depends on the terrain type, traverse distance, and the 

robot’s weight. Xiao et al. (2014) shows the ideally achievable distance d (in meters) of battery 

powered wheeled mobile robots on one single charge is  

𝑑 =
𝐸

𝑤 ∗  𝐶𝑐𝑟𝑟
 

where E (in joules) is the battery power of the robot, w (in Kg) is the weight of the robot, and 

Ccrr represents the coefficient of rolling friction, which depends on the terrain type. Note that as 

with the increase of robot velocity, the robot mobility power increases while the robot traveling 

time decreases. Therefore, the final mobility energy is unchanged and thus the robot’s mobility 

consumption doesn’t depend on rover velocity or traveling time. 

ILP Solution. We first solve the DCR optimally by formulating it as an integer program ILP(A). 

Decision variable xi,j indicates if edge (i, j) is on the prize-collecting route (i.e., node j is visited 

immediately after node i is visited); xi,j = 1 if so and 0 otherwise. We introduce |V | − 1 position 

variables ui , i ∈ V − {s}, to indicate the order in which the nodes are visited. us = 1 as s is the 

starting node and ui < uj indicates that node i is visited before node j (but not necessarily 

immediately). ui − 1 equals the number of edges along the prize-collecting route when going 

from node s to node i. Objective function 1 is to maximize the total collected prizes. Constraint 3 

is the integer constraint of xi,j. Constraint 4 guarantees that the prize-collecting route starts at 

node s and ends at node t. Constraint 5 ensures the connectivity of the path and that each node is 

visited at most once. Constraint 6 guarantees that the total traveling cost on the path does not 

exceed the given budget of B. 

Figure 5 

Integer Linear Program Solution for DCR 
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Constraints 7 and 8 combined are called Miller–Tucker–Zemlin (MTZ) Subtour Elimination 

Constraints [1]. They guarantee that there is one global tour visiting all the selected vertices 

instead of multiple subtours each visiting only a subset of the selected vertices. 
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CHAPTER 4 

COMBINATORIAL ALGORITHMS 

Below, we design two greedy heuristic algorithms viz. Algo. 1 and 2. We also use the 

Minimum Spanning Tree algorithm to compare our results.  We first give the below definition. 

Definition 1: (Budget-Feasible Nodes.) Given the current node r the traveling salesman 

is located and his available budget B, the budget-feasible nodes, denoted as ℱ(𝑟, 𝐵), is s’s 

unvisited neighbor nodes that the salesman can travel to and then return to destination node t 

with enough budget. That is, ℱ(𝑟, 𝐵) = {𝑢 |(𝑟, 𝑢) ∈ 𝐸 ∧ (𝑤(𝑟, 𝑢) + 𝑤(𝑢, 𝑡) ≤ 𝐵) ∧ 𝑢 ∈ 𝑈}1 

where U is the set of unvisited nodes. 

Greedy Algorithm 1. In Algo. 1, at any node, the salesman always visits a budget-feasible node 

with the largest prize. It first sorts all the nodes in the descending order of their prizes (line 2) 

and then takes place in rounds (lines 4-12). In each round, with the current node r and the 

currently available budget B, it checks if there still exists unvisited and budget feasible nodes 

(line 4). If so, it visits the one with the largest available prize and updates all the information 

accordingly (lines 5-10). It stops when there are no unvisited nodes, or all the unvisited nodes are 

not budget-feasible (line 4), at which it goes to the destination node t and returns the route with 

its total cost, total prizes collected, and its remaining budget (lines 13 and 14). Its time 

complexity is O (|V |2). Algo. 1 also works for the problem where s = t. Algorithm 1 is given in 

the following Figure 6.  

Greedy Algorithm 2. Given an edge (u, v) ∈ E, and the traveling salesman is at node u, we 

define the prize cost ratio of visiting v, denoted as pcr(u, v), as the ratio between the prize 

available at v and the edge weight w(u, v). That is, pcr(u, v) = pv / w(u, v). Algo. 2 is similar to 
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Algo. 1, except it visits a budget-feasible node with the largest prize cost ratio in each round. Its 

time complexity is O (|V|2). 

Figure 6 

Greedy Algorithm 1 
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Figure 7  

Greedy Algorithm 2 

 

Spanning Tree Covering Algorithm (Yang et al., (2013)) The fundamental concept behind 

their greedy algorithm involves selecting a subset of points from the candidate polling point set, 

where each point corresponds to a neighbor set of sensors. At each step of the algorithm, a 

neighbor set of sensors can be covered by selecting its corresponding candidate polling point as a 

polling point in the data gathering tour. The algorithm continues until all sensors are covered, at 

which point it terminates. In our paper we refer to this algorithm as Yang’s. For our 
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implementation we have updated the algorithm’s next node selection. In Yang’s the next node is 

found by minimizing 

𝛼 =  
𝑐𝑜𝑠𝑡{𝑆}

|𝑆 ∩ 𝑈|
 

Where S is the neighbor set of a node n. Their approach focuses on minimizing cost by 

considering the number of nodes in the neighbor set, whereas ours aims to maximize the total 

data packets across all sensor nodes by weighing the cost to reach them. This fundamental 

disparity results in the collection of a greater number of data packets in our approach. 

Figure 8. (Yang et al. (2013)) 

Yang’s Algorithm 

 

For all these algorithms we are going to compare the results for the BC-TSP and BC-CSP 

approach to show that the latter collects more data packets given the budget. The only difference 

in our implementation of BC-CSP and BC-TSP is that the robot will have a transmission range to 

collect data packets from neighbors in BC-CSP. For the Covering Problem we use all the data 
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packets from the node within the range and in normal TSP it will just collect it from the node 

which it is visiting.  
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CHAPTER 5 

MULTI-AGENT REINFORCEMENT LEARNING ALOGRITHM 

Reinforcement Learning (RL). We describe an agent’s decision-making in an RL system as a 

Markov decision process (MDP), which is represented by a 4-tuple (S, A, t, r): 

 • S is a finite set of states,  

• A is a finite set of actions,  

• t : S × A → S is a state transition function, and  

• r : S × A → R is a reward function, where R is a real value reward (Sutton & Barto, 2020). 

 In MDP, an agent learns an optimal policy that maximizes its accumulated 

reward. At a specific state s ∈ S, the agent takes action a ∈ A to transition to state t(s, a) ∈ S 

while receiving a reward r(s, a) ∈ R. The agent maintains a policy π(s) : S → A that maps its 

current state s ∈ S into the desirable action a ∈ A. In the context of the BC-TSP, the states are all 

the nodes V , and the actions available for an agent at a node are all the edges emanating from 

this node. We consider a deterministic policy wherein, given the state, the policy outputs a 

specific action for the agent. A deterministic policy suits the BC-TSP well, as in BC-TSP, when 

an agent at a node takes action (i.e., follows one of its edges), it will surely end up with the node 

on the other end of the edge. A widely used class of RL algorithms is value-based (Sutton & 

Barto, 2020; Littman, 2001), which finds the optimal policy based on the value function at each 

state s, 

𝑉𝑠
𝜋 = 𝐸{∑

𝑡=0 

∞
𝛾𝑡𝑟(𝑠𝑡, 𝜋(𝑠𝑡))|𝑠0 = 𝑠}. 

The value at each state is the expected value of a discounted future reward sum with the 

policy π at state s. Here, γ (1 ≤ γ ≤ 1) is the discounted rate that determines the importance of 
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future rewards; the larger of the γ, the more important the future rewards. Recall that r(s, π(s)) is 

the reward received by the agent at state s by taking action following policy π. 

Q-Learning. Q-learning is a family of value-based algorithms (Sutton & Barto, 2020). It learns 

how to optimize the quality of the actions in terms of the Q-value Q(s, a). Q(s, a) is defined as 

the expected discounted sum of future rewards obtained by taking action a from state s following 

an optimal policy. The optimal action at any state is the action that gives the maximum Q value. 

For an agent at state s, when it takes action a and transitions to the next state t, Q(s, a) is updated 

as  

Q(s, a)  ←  (1 − α) · Q(s, a) + α · [r(s, a) + γ · maxbQ(t, b)], (9) 

where 1 ≤ α ≤ 1 is the learning rate that decides to what extent newly acquired information 

overrides old information in the learning process. In Eqn. 9, maxbQ(t, b) is the maximum reward 

that can be obtained from the next state t. 

Multi-agent Reinforcement Learning (MARL) Algorithm. In our MARL framework for BC-

TSP, there are multiple agents that all start from the node s. They work synchronously and 

cooperatively to learn the state-action Q-table and the reward table and act accordingly. We first 

introduce the action rules for all the learning agents and then present our MARL algorithm. 

 Action Rule of Agents. Each agent follows the same action rule specifying the next node it 

moves to during the learning process. It consists of the following three scenarios. 

• Exploitation. In exploitation, the agent always chooses the node, 

 

𝑡 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑢 ∈𝑈 ∩ ℱ(𝑠,𝐵) {
[𝑄(𝑠, 𝑢)]𝛿 ∗  𝑝𝑢

[𝑤(𝑠, 𝑢)]𝛽
} 

to move to. Here, U is the set of nodes not visited yet by the agent and F(s, B) is node s’s 

budget-feasible nodes, and δ and β are preset parameters. That is, an agent, located at 
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node s, always moves to an unvisited and feasible node u that maximizes the learned Q- 

value Q(s, u) weighted by the length w(s, u) and the prize pu available at node u. When q 

≤ q0, where q is a random value in [0, 1] and q0 (0 ≤ q0 ≤ 1) is a preset value, exploitation 

is selected; otherwise, the agent chooses exploration explained below 

• Exploration. In exploration, the agent chooses a node t ∈ U ∩ F(s, B) to move to by the 

following distribution: 

𝑝(𝑠, 𝑡) =  
([𝑄(𝑠, 𝑡)]𝛿 ∗ 𝑝𝑢  )/[𝑤(𝑠, 𝑡)]𝛽 

∑
𝑢∈𝑈 ∩ ℱ(𝑠,𝐵) ([𝑄(𝑠, 𝑢)]𝛿 ∗ 𝑝𝑢  )/[𝑤(𝑠, 𝑢)]𝛽

 

That is, a node u ∈ U ∩ F(s, B) is selected with probability p(s, u), while 

∑
𝑢∈𝑈 ∩ ℱ(𝑠,𝐵) p(s, u) = 1. The distribution p(s, t) characterizes how good the nodes are 

at learned Q-values, the edge lengths, and the node prizes. The higher the Q-value, the 

shorter the edge length, and the larger the node prize, the more desirable the node is to 

move to. 

• Termination. When an agent is located at node s and U ∩ F(s, B) = φ, it does not have 

an unvisited budget feasible node. In this case, the agent goes to destination t and 

terminates in this episode. 

MARL Algorithm.  Next, we present our MARL algorithm viz. Algo. 3, which consists of a 

learning stage for the m agents (lines 1-32) and an execution stage for the traveling salesman 

(lines 33-39). The learning stage takes place in a preset number of episodes. Each episode 

consists of the two steps below. In the first step (lines 3-26), all the m agents are initially located 

at the starting node s with zero collected prizes. Then each independently follows the action rule 

to move to the next budget-feasible node to collect prizes and collaboratively updates the Q-

value of the involved edges. This takes place in parallel for all the agents. When an agent can no 
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longer find a feasible unvisited node to move to due to its insufficient budget, it terminates and 

goes to t (lines 8-14); in this case, it must wait for other agents to finish in this episode. 

Otherwise, it moves to the next node, collects the prize, and continues the prize-collecting 

process (lines 15-23). In either case, it updates the Q-values of the involved edge. Here, we 

assume the prizes at each node can be collected multiple times (as this is the learning stage). In 

the second step (lines 27-31), the m agents communicate with each other and find among the m 

routes the one with the maximum collected prizes. It then updates the reward value and Q-value 

of the edges of this route. Finally, in the execution stage (lines 33-38), the traveling salesman 

starts from s, visits the node with the largest Q-value in the Q-table, and ends at t, collecting the 

prizes along the way. Note we set the initial Q-value and reward value for edge (u, v) as 

 
𝑝𝑢+ 𝑝𝑣

𝑤(𝑢,𝑣)
  and  

−𝑤(𝑢,𝑣)

𝑝𝑢
, respectively, to reflect the fact that the more prizes available and less length 

of an edge, the more valuable of the edge for the salesman to travel. Algorithm 3 is divided into 

3 parts below for better understanding. Figure 9 are the definitions and initial values. Figure 10 is 

the learning stage of the algorithm and Figure 11 shows the execution stage. 
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Figure 9. 

Initialization of MARL 
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Figure 10 

Learning Stage of MARL 
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Figure 11. 

Execution Stage of MARL 
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CHAPTER 6 

PERFORMANCE EVALUATION 

Experiment Setup. We write our own simulator in Java on Windows 11 with AMD Processor 

(AMD Ryzen 5 4000 Series 6-Core) and 24GB of DDR4 Memory. In the plots Algorithm 1 and 

Algorithm 2 are denoted as Greedy 1 and Greedy 2 respectively. The Minimum Spanning Tree is 

given as Yang’s (Yang et al., (2013)) and the algorithm 3 is stated as MARL. We generate a 

random sensor network with a size of 10,000m in length and 10,000m in width. 100 Nodes are 

randomly generated in the given filed with a random number of data packets ranging between 

[0,100]. For the covering salesman problem, we have kept the wireless transmission range of the 

robot to be 500m. The budget for the robot is in Kilo Watt-Hours (KWh). The base station is at 

location 0,0 for all the runs. 

Comparing Greedy 1, Greedy 2, Yang’s and MARL.  Figure 11. Shows the comparison of the 

three combinatorial algorithms and MARL. For this simulation a single instance of the network 

was run 10 times with varying budgets of 0.5, 1, 1.5, and 2 KWh. We observe that the MARL, 

Greedy 2 and Yang’s all outperform the Greedy 1. This is because Greedy 1 always chooses the 

node with highest data packet and does not consider the distance, which costs in using up the 

budget too early and not collecting more data packets. Moreover, our Greedy 2 algorithm 

outperforms Yang’s algorithm due to the difference in the function for calculating the next node. 

We use the ratio of number of data packets to the distance while they use only distance as a 

factor for the TSP. The MARL algorithm outperforms all the other algorithms in collecting data 

packets. The figure clearly demonstrates that MARL is more efficient prize wise than the 

combinatorial algorithms. 
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Figure 12 

Data Packets Collected vs Budget in Combinatorial Algorithms and MARL 

 

Figure 13. shows the budget all the algorithms use during the robot’s one run through the 

sensor network. All the algorithms are built in a way that they can use up maximum of their 

budget and return home. Also given the robot can go to any node from the base station as it is not 

bounded by any transmission range, we see that all the algorithms use up almost the initial 

budget which is given to them.  

Figures 14, 15,16 and 17 show the different routes taken by the robot for the same 

instance of a sensor network with a budget of 1KWh. Figure 14 depicts how less nodes are 

visited by Greedy 1 given its tendency to maximize the profit. Figures 15 and 16 are the Greedy 

2 and Yang’s Algorithms which visit almost same number of nodes, but their prominent 

difference is seen in Figure 12. Figure 17 shows the route taken by the robot performing MARL 

algorithm which is the best amongst these rest. 
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Figure 13 

Budget Consumption vs Total Budget in Combinatorial Algorithms and MARL 

 

Figure 14 

Route taken by Greedy 1 

 

 



31 

 

 

Figure 15 

Route taken by Greedy 2 

 

Figure 16 

Route taken by Yang’s.  
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Figure 17 

Route taken by MARL. 

 

Impacts of Number of Agents m on MARL. Next, we study the impact of the number of agents 

m on the MARL’s performance. We vary m from 1,5,10 to 15 and the budget from 0.5, 1, 1.5 to 

2 KWh. Figure 18 shows that for each m, the higher the budget B, the larger the collected data 

packets. This is only true when there is not enough budget to collect all the available prizes. 

Figure 19 shows the traveled distance of the MARL with respect to m and B. The higher the B, 

the more distances it can travel. We observe that varying m does not seem to affect the traveled 

distance of the salesman. In Figure 20, as the number of agents m increases, the execution time 

of the MARL algorithm also increases for each budget B. This is attributed to the fact that the 

algorithm is configured to run a fixed number of episodes (10,000), and with more agents 

participating in the learning process, each episode takes longer to execute. 
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Figure 18 

Data Collected vs Agents. 

 

Figure 19 

Total Distance Covered vs Agents 
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Figure 20 

Execution Time vs Agents 

 

Now we compare the MARL with the optimal ILP Solution. As ILP takes a long time to execute, 

we focus on a smaller sensor network of size 100m by 100m with 20 nodes in it. The start and 

end point for the robot is still the same i.e. base station (0,0). Figures 21 and 22 show the prize 

collected and distance travelled respectively, by varying the amount of initial budget from 50Wh 

to 120Wh. At 120Wh both can collect all the data packets from the sensor network. We observe 

that our MARL performs very similar to ILP in collecting data packets. The distance travelled is 

almost the same in both cases but a little higher when the budget is big in MARL. The average 

difference in the performance of MARL compared to ILP is 0.2%. This shows that MARL 

indeed is optimal for solving DCR.  

Comparing Greedy Algorithms for BC-CSP. From our previous results we have established 

that MARL is optimal to solve the BC-TSP. We now move onward to the evaluation of greedy 

algorithms for the BC-CSP approach. We will be just focusing on the data collection part and not 
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on the battery consumption/usage of the sensor node as the goal here is to show the amount of 

data collected in limited battery capacity of the robot. Figure 23 shows the route taken and the 

sensor nodes covered by the greedy 1 algorithm for covering salesman approach. The robot 

collects data packets from the nodes within the range hence maximizing the collection in a single 

run. After comparing the routes from figures 23 and 14 we can conclude that CSP approach 

covers more nodes. 

Figure 21 

Data Packets Collected in MARL & ILP 
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Figure 22 

Distance Travelled in MARL & ILP 

 

Figure 23 

Route of Greedy 1 Algorithm (BC-CSP) 
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Figure 24 

Data Packets Collected vs Budget (CSP) 

 

In Figure 24 we can see that the lighter shades which represent the CSP algorithms collect more 

data packets than their counterparts in darker shade. An increase of 40% is seen in the collection. 

The distance travelled is also less given the data packets collected. This shows us that the BC-

CSP approach can collect more data packets than BC-TSP approach. 

Comparing Yang’s Spanning Tree Covering Algorithm Figure 25 illustrates the comparison 

between the disparity of Yang's cost function and our own, as elaborated in Chapter 4. Our 

algorithm's cost function proves to gather a greater number of data packets compared to Yang's. 

This underscores the notion that while covering numerous nodes in a neighbor set, it's not 

guaranteed that they will contain more data packets. To enhance data packet collection, it's 

imperative to consider the data packets present at each sensor node. 
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Figure 25 

Comparison of Yang's Cost Function and Our Approach 

 

Figure 26 

Network Longevity  

 

Network Longevity In Figure 26, it is evident that the network exhibits greater longevity when 

utilizing the TSP approach for data collection. This is attributed to the fact that in TSP, sensor 
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nodes only expend energy during data sensing activities. Conversely, in CSP, when the robot 

reaches a node, neighboring nodes transmit data wirelessly, leading to energy expenditure from 

each node's battery power. This relationship is mathematically expressed in Chapter 3, under 

problem formulation. The results are observed across a range of data packet quantities, where 

higher data packet counts correspond to increased energy consumption for transmission/ 

reception, consequently resulting in reduced network longevity. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORKS 

We introduced an algorithmic problem termed budget-constrained TSP (BC-TSP), which finds 

application in various robotic scenarios where robots are assigned tasks under battery power 

constraints. Such contexts include robotic sensor networks, electric cars in ride-sharing services, 

and automated warehouses. We developed two greedy algorithms and a multi-agent 

reinforcement learning (MARL) algorithm to address BC-TSP. Our experimental results 

demonstrate that the MARL algorithm outperforms the handcrafted greedy algorithms and the 

minimum spanning tree algorithm in terms of prizes collected. Moreover, it closely approaches 

the optimal Integer Linear Programming (ILP) solution with a negligible difference of just 0.2%. 

Furthermore, our formulation of BC-CSP (budget-constrained covering salesman problem) 

indicates an enhanced data collection capability compared to existing greedy algorithms, 

achieving a 40% increase. The comparison between TSP and CSP approaches highlights TSP's 

superior efficiency in conserving network energy and prolonging network longevity, hence 

preserving the data. 

 In our future research endeavors, we aim to extend our comparisons by including a deep 

reinforcement learning (DRL)-based approach. DRL, leveraging neural network-based function 

approximation algorithms in conjunction with reinforcement learning (RL), has emerged as a 

potent framework for addressing combinatorial optimization challenges (Chen et al., 2016; 

Heinzelman et al., 2000; Current & Schilling, 1989; Luo & Hubaux, 2005; Ma et al., 2013; 

Sutton & Barto, 2020). DRL exhibits the capability to handle intricate states and decision-

making processes for agents effectively. However, in this current study, we have opted for a 

multi-agent reinforcement learning (MARL) approach over DRL. This decision stems from our 
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desire to maintain transparency and control over the learning process, which may be perceived as 

a "black box" in DRL, especially concerning agent learning within neural networks.  
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