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ABSTRACT 

The Traveling Salesman Problem (TSP) is one of computer science’s most famous combinatorial 

problems. This thesis studies a variation of the TSP called the Budget-Constrained Traveling 

Salesman Problem (BC-TSP). BC-TSP is inspired by a few emerging network applications, 

including robotic sensor networks and autonomous electric vehicles. Given a weighted complete 

graph G(V,E) where node i ∈ V has an available prize of 𝑝𝑖, two nodes s,t ∈ V, and a budget, the 

goal of the BC-TSP is to find the salesman a route from s to t to maximize his collected prizes 

while keeping his travel cost within the budget. To solve BC-TSP, we design a suite of 

algorithms, including a prize-driven multi-agent reinforcement learning algorithm (P-MARL) 

and a deep reinforcement learning approach utilizing Recurrent Neural Network (RNN). We give 

an analysis of the convergence between P-MARL and RNN using synthetic data of state capital 

cities of the U.S., we show that the P-MARL outperforms the RNN by collecting 45.3% more 

prizes while taking only 15.2% of its execution time. To our knowledge, our work is the first to 

design a MARL technique with guaranteed convergence to solve the BC-TSP problem. 
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CHAPTER 1 - INTRODUCTION 

 

 

Background. The Traveling Salesman Problem (TSP) is arguably the most famous 

combinatorial problem in computer science, engineering, and operation research [24], [9]. In this 

thesis, inspired by a few emerging network applications, we study a new variation of the TSP 

called the Budget- Constrained Traveling Salesman Problem (BC-TSP). In contrast to the 

traditional TSP, wherein the goal is to find a route to visit all the nodes in the most efficient 

manner, in BC- TSP, each node is associated with a prize, and the traveling salesman has a 

budget; the goal of the salesman is to visit a subset of the nodes to maximize the collected prizes 

while staying within his budget. 

BC-TSP is motivated by several robotic applications [16], [23], wherein one or multiple 

robots are dispatched to the field to accomplish tasks of different importance, such as search and 

rescue and planetary exploration. As robots are mainly powered by batteries, the robot might 

exhaust its battery power before finishing all its assignment tasks. When this takes place, one 

critical goal for the network operator is to schedule the untethered robot to accomplish as many 

important tasks as possible before returning to the charging station for recharge. One specific 

application is data collection in robotic sensor networks (RSNs) [21], where mobile robots are 

dispatched into sensor fields to collect sensory data. It has been shown that this approach can 

greatly prolong the network lifetime of sensor networks by migrating the energy bottleneck from 

sensor nodes with limited battery power to robots that can be recharged and re-dispatched 

indefinitely [45], [11].  

Another motivating example is Uber driving, wherein an Uber driver, starting from his home, 

picks up and drops off customers at different locations before getting to a charging station to 

recharge. Given the maximum mileage provided by the car’s electrical battery and a sequence of 
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ride requests at different locations offering different payments, a natural goal for the driver is to 

maximize the number of payments before running out of the vehicle’s battery power and 

recharging at the charging station or home.  

BC-TSP is defined as follows. Given a weighted complete graph G(V, E) where node i ∈ V has 

an available prize of 𝑝𝑖, two nodes s, t ∈ V , and a budget, the goal of the salesman is to find a 

route from s to t to maximize his collected prizes while keeping his travel cost within the budget. 

Here, the prizes model the tasks of different importance that various network applications 

attempt to accomplish, and the budget is a resource constraint in the network applications. 

Therefore, both prizes and budget are application-specific. For example, the prizes could be the 

importance of the search and rescue missions or the value of the sensory data to be collected in 

the RSNs; the budget could be the remaining battery power of the robots or the Uber driver’s 

electric car, or the computing power of the agents in many AI/ML applications [20].  

BC-TSP is NP-hard; when the budget is unconstrained, it degenerates into the TSP. However, 

unlike the TSP, which only needs to sequence the nodes, the BC-TSP requires both selection and 

sequencing of the nodes, making it a more challenging problem than the TSP.  

 

Motivation. Our main contribution is a cooperative multi-agent reinforcement learning 

(MARL) framework that specifically leverages the prizes available at nodes to achieve efficient 

learning of prize-collecting in BC-TSP. Unlike those above handcrafted combinatorial 

algorithms for BC-TSP, in MARL, intelligent agents learn cooperatively by interacting with the 

environment and thus are more adaptive in a dynamic network environment [36]. As such, RL 

has become an ideal alternative to solve many NP-hard combinatorial problems time-efficiently 

[27]. RL is particularly relevant to solving sequential combinatorial problems such as TSPs and 
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vehicular routing problems (VRPs), demonstrated by recent research [6], [28]. This is because 

when the traveling salesman or vehicles in the TSP and VRP decide to move from one node to 

another in a road network to serve the customers, it resembles the Markov decision process 

adopted in RL, where the agents transition among states of the environment.  

By studying the BC-TSP, however, we observe that the benefits of RL and combinatorial 

optimization problems to each other are somewhat mutual. That is, not only can RL help to 

design efficient learning algorithms to solve combinatorial problems, but the BC-TSP serves as a 

lens through which the existing RL paradigm and techniques can be scrutinized and further 

improved. First and foremost, the prominent feature of the BC-TSP, which are available prizes at 

nodes, closely resembles the rewards in the RL, the signals agents receive when interacting with 

the environment. As such, the prizes in BC-TSP could be utilized to build more effective reward 

models in the RL compared to other combinatorial problems such as TSP and VRP. Second, the 

prize-maximization goal of the traveling salesman in BC-TSP resembles naturally the RL agent’s 

goal of maximizing accumulative discounted rewards. Such resemblance serves as the common 

ground upon which BC-TSP can be tapped to design more powerful RL algorithms.  

Despite the above observations, how to exploit the synergy between the prize maximization in 

BC-TSP and the cumulative reward maximization in RL to uncover more powerful and effective 

RL algorithms remains largely unexplored by the research community. In this thesis, we thus ask 

the following question: How can we take advantage of the unique problem feature of node prizes 

in BC-TSP to design time-efficient RL algorithms with guaranteed convergence?  

Our Contribution. We address this new challenge by designing a cooperative multi-agent RL 

(MARL) framework. This framework, termed prize-driven MARL (P-MARL), integrates the 

prizes available at nodes into the reward model of the RL via the cooperative effort of multiple 
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learning agents. In particular, P-MARL consists of an active exploration mechanism for all the 

cooperative agents and a novel reward update mechanism in P-MARL called multiplicative 

increase reward update that constantly aligns the best-inferred action of a traveling salesman in 

the execution stage with the prize-collecting information learned by multi-agents in the training 

stage. We show that P-MARL can find an optimal prize-collecting route in the execution as long 

as the multi-agents have found it in the training stage. We show that our learning algorithm is 

solution-effective and time- efficient via extensive simulations under different network and RL 

parameters. In particular, it outperforms an existing work by collecting 45.3% more prizes while 

taking only 15.2% of its execution time.  

Thesis Organization. The rest of the thesis is organized as follows. Section 2 reviews all the 

related work. Section 3 formulates the BC-TSP. In Section 4, we introduce reinforcement 

learning and how it is used to solve BC-TSP. Section 5 and 6 present the P-MARL and RNN 

algorithms and its mechanism. Section 7 compares our algorithms with the existing research and 

discusses the results. Section 8 concludes the thesis with a discussion of future works. 
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CHAPTER 2 - RELATED WORK 

In this section, we review all the theory work in BC- TSP and the existing research in robotic 

sensor networks that inspires the BC-TSP. We also review the deep reinforcement learning 

(DRL)-based approach for combinatorial optimization and argue why we adopt a multi-agent RL 

(MARL) approach instead of DRL to solve the BC-TSP.  

Existing BC-TSP Research. A few works from the theory and operations research community 

have studied BC-TSP [35], [30], [4]. In his Ph.D. thesis, Sokkappa [35] systematically studied 

BC-TSP. He proved the problem is NP-hard and that no fully polynomial approximation scheme 

exists unless P = NP. He proposed branch-and-bound-based heuristics to solve the BC-TSP and 

optimal solutions for several special cases. Other efforts have been developed to find 

approximation algorithms for problems closely related to BC-TSP. Levin [4] presented a (4 + ε)-

approximation algorithm to the so-called budget prize collecting tree problem, which finds a 

subtree with maximum prizes while the cost of the tree (i.e., the sum of all its edge weights) 

stays in a budget. Recently, Paul et al. [30] improved it by a 2-approximation algorithm based on 

a primal-dual approach while maximizing the number of vertices visited (i.e., each vertex has the 

same prize). However, none of them adopted an RL approach, which is the main focus of this 

thesis. To our knowledge, our work is the first to apply the MARL technique to solve the BC-

TSP problem.  

Research in Robotic Sensor Networks (RSNs). RSNs [17], [21] have drawn lots of attention in 

recent years, wherein mobile robots are utilized to enhance the system performance of wireless 

sensor networks. As the BC-TSP is inspired by the data-collecting robots with limited battery 

power in the RSNs, we briefly review a few representative works [26], [18], [39], [32], [40], 

[22], [44]. Ma et al. [26] introduced mobile data collectors to gather data in large-scale sensor 
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networks. In a single mobile collector case, the goal is to minimize the length of the data-

gathering tour; in the multiple-collector case, the goal is to minimize the number of mobile 

collectors such that each subtour does not exceed some time constraint.  

They formulate the problems as mixed-integer programs and present heuristic data-gathering 

algorithms. Guo et al. [18], [39] extended it by introducing wireless energy-charging into mobile 

data collecting. They formulated a network utility maximization problem considering energy 

balance and the bounded sojourn time of the mobile collector and designed a distributed 

algorithm.  

All of the above work assumes enough battery power for the mobile unit or robots to collect all 

the data in the field. In a large-scale sensor field, it is possible that the robot does not have 

enough battery power to visit all the sensor nodes. When sensor nodes generate sensory data with 

different priorities and values (i.e., the prizes), a critical question is how to schedule the robot to 

visit them and collect data on maximum prizes before returning to the charging station to 

recharge.  

Deep Reinforcement Learning (DRL) for Combinatorial Optimization. DRL, which combines 

RL and artificial neural networks with representation learning of large data sets, is a powerful 

technique that has been widely used for a diverse set of applications [5]. Recently, DRL is 

utilized to solve many combinatorial problems [14], [6], [28], [46]. Bello et al. [6] presented a 

DRL-based framework for solving combinatorial optimization problems using neural network-

based function approximation algorithms. They solved the TSP by training a recurrent neural 

network (RNN) and optimizing its parameters using a policy gradient method. Nazari et al. [28] 

further extend it to solve vehicle routing problems, a generalization of TSPs, by considering a 

parameterized stochastic policy and applying a policy gradient algorithm to optimize its 
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parameters. It can produce the solution as a sequence of consecutive actions in real time without 

re-training every new problem instance. Training a graph neural network [33] with RL on an 

unlabeled training set of graphs, Drori et al. [14] developed a unified framework using RL with a 

Graph Neural Network (GNN) representation for learning to approximate different combinatorial 

problems over graphs. The trained network can output approximate solutions to new graph 

instances in linear running time. Very recently, Zhang et al. [46] used DRL to tackle a variant of 

TSP with a time window and rejections. In particular, a manager agent learns to assign customers 

to vehicles via a policy network based on Graph Isomorphism Network [43]. Refer to [27] for a 

comprehensive review of all the DRL techniques for combinatorial optimization.  

The closest DRL work to ours is Wei et al. [41], which proposed an RNN algorithm to solve the 

informative path planning problem (IPP). In IPP, a robot is dispatched into a sensing field to 

collect the sensing information, called mutual information, which measures the informativeness 

of data (i.e., sensor placement) collected along a path in the field. The informativeness of the 

path can be associated with the vertices, edges, or both on the path. IPP aims to find the most 

informative path from a pre-defined start location to a terminal location subject to a budget 

constraint. When the informativeness is defined on the vertices and is additive, IPP becomes the 

well-known orienteering problem (OP) [38].  

In OP, each vertex is associated with a reward, and the goal is to find a subset of vertices to 

collect a maximum reward amount within a budget constraint. As OP is very similar to the BC-

TSP studied in this thesis, we compare our MARL algorithm with the RNN algorithm in [41]. In 

particular, we show that P-MARL outperforms the IPP by collecting 45.3% more prizes while 

taking only 15.2% of its execution time.  
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We argue that DRL is not the best learning technique to solve the BC-TSP. First, DRL is 

particularly effective in handling complex tasks with high-dimensional and continuous input 

spaces, wherein data sets have a large number of features or dimensions. In contrast, BC-TSP has 

a low-dimensional and discrete setting regarding the agent’s states and actions, wherein nodes 

are the states and edges represent the actions that can be taken when an agent is in a state. 

Second, feature extraction, which identifies the data set’s most discriminating characteristics to 

reduce the data dimensionality, is one of the main strengths of deep learning algorithms [10]. 

However, the most prominent feature of a BC-TSP instance, the prizes available at nodes, is 

already available and does not need further processing. As such, feature extraction is an overkill 

for the BC-TSP. Third, training deep neural networks with a large number of parameters 

(weights and biases) involves optimization algorithms such as gradient descent and its variants 

[5]). These algorithms iterate over the entire dataset multiple times, adjusting parameters to 

minimize a defined loss function. As such, it is a computationally intensive process that either 

takes time to converge to an optimal solution or, many times, it only produces an approximate 

solution with a large optimality gap [6].  

Instead, we propose a MARL-based learning framework called P-MARL to solve the BC-TSP. 

In our framework, multiple agents share their learning from the environment while cooperatively 

updating the same Q-table to find the optimal route. We give a theoretical proof of the 

convergence of our MARL algorithm. Via extensive simulation, we show that P-MARL 

outperforms the existing DRL-based approach by Wei et al. [41], [42] by collecting 45.3% more 

prizes while taking only 15.2% of its execution time.  

Other Related Work. Our work was inspired by Ant-Q [15], an algorithmic framework 

combining the Q-learning algorithm [36] and ant colony optimization [8]. Ant-Q models 
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intelligent behavior and collective collaboration of a large number of autonomous agents. They 

showed that ant-Q is an effective RL technique for solving combinatorial optimization problems, 

including TSP. However, Ant-Q does not always converge to the optimal solution [13]. Our P-

MARL algorithm further improves Ant-Q by introducing an active exploration mechanism for all 

the cooperative agents and a novel reward update mechanism in P-MARL called multiplicative 

increase reward update that constantly updates the Q-table to reflect the latest global-best route 

that has been found so far. We show that P-MARL not only collects more prizes than Ant-Q but 

also converges to optimal as long as the global optimal is found in the training stage. Recently, 

Ruiz et al. [31] studied the prize-collecting traveling salesman problem (PCTSP) using an RL 

approach. In PCTSP, the goal of the traveling salesman is to find a route from s to t such that the 

sum of the prizes of all the nodes along the route reaches a preset quota while the distance along 

the route is minimized. As the budget is not a constraint in PCTSP, it is less challenging than the 

BC-TSP, wherein the salesman has to constantly check if his remaining budget is sufficient 

enough for him to return to the destination. Besides, as it is straightly derived from Ant-Q, it 

does not always converge. These call for new RL algorithms and reward models to solve the BC-

TSP efficiently and optimally.  
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CHAPTER 3 - PROBLEM FORMULATION 

Given a weighted complete graph 𝐺(𝑉, 𝐸), where V is a set of nodes and E is a set of edges. 

Each edge (u, v) ∈ E has a weight 𝑤(𝑢, 𝑣), indicating the travel distance or cost on this edge. 

Each node 𝑖 ∈ 𝑉 has a weight 𝑝𝑖≥ 0 ∈ R+, indicating the prize available at this node. Given any 

two nodes 𝑣1 and 𝑣𝑛 and a route between them R = {𝑣1, 𝑣2, … , 𝑣𝑛} in G, where (𝑣𝑖 , 𝑣𝑖+1) ∈ E, 

denote its cost as 𝐶𝑅 =  ∑ 𝑤(𝑣𝑖
𝑛−1
𝑖=1 , 𝑣𝑖+1) and it is total prizes as 𝑃𝑅 =  ∑ 𝑝𝑖𝑖 ∈𝑅 . Let 𝑠, 𝑡 ∈ 𝑉 be 

the traveling salesman’s source and destination nodes, respectively. Let B denote his budget, 

which indicates the distance he can travel before reaching t. The goal of the BC-TSP is to find a 

prize-collecting route 𝑅𝑠 = { 𝑠 =  𝑣1, 𝑣2, … , 𝑣𝑡 = 𝑡}  such that its total prize 𝑃𝑅 is maximized 

while its cost 𝐶𝑅 ≤ B. When 𝑠 =  𝑡, the salesman starts and ends at the same node. Table 1 

summarizes the notations used throughout the thesis. 

Table 1 - Notation Summary 

 

EXAMPLE 1: Fig. 1 illustrate BC-TSP with budget B = 8. The numbers on the edges are 

their weights, and the numbers in the parentheses are the prizes available at nodes. Assume s=E 

and t=C. The optimal walk from E to C is E, D, B, and C, with a total prize of 8 and a total cost 
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of 8. Other routes are not optimal. For example, although the path of E, A, B, and C is within the 

budget with a cost of 7, its total prize is 7. 

 

Figure 1 - BC-TSP Example  
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CHAPTER 4 - REINFORCEMENT LEARNING 

We describe an agent’s decision-making in an RL system as a Markov decision process (MDP), 

which is represented by a 4-tuple (𝑆, 𝐴, 𝑡, 𝑟): 

• 𝑆 is a finite set of states 

• 𝐴 is a finite set of actions 

• 𝑡: S × A → S is a state transition function, and 

• 𝑟: S × A → R is a reward function, where R is a real value reward. 

In MDP, an agent learns an optimal policy that maximizes its accumulated reward. At a specific 

state 𝑠 ∈  𝑆, the agent takes action a ∈ A to transition to state 𝑡(𝑠, 𝑎)  ∈  𝑆 while receiving a 

reward 𝑟(𝑠, 𝑎)  ∈  𝑅. The agent maintains a policy 𝜋(𝑠) ∶  𝑆 →  𝐴 that maps its current state 𝑠 ∈

 𝑆 into the desirable action 𝑎 ∈  𝐴. In the context of the BC-TSP, the states are all the nodes 𝑉, 

and the actions available for an agent at a node are all the edges emanating from this node. We 

consider a deterministic policy wherein, given the state, the policy outputs a specific action for 

the agent. A deterministic policy suits the BC-TSP well, as in BC-TSP, when an agent at a node 

takes action (i.e., follows one of its edges), it will surely end up with the node on the other end of 

the edge. 

A widely used class of RL algorithms is value-based [36], [25], which finds the optimal policy 

based on the value function at each state 𝑠, 𝑉𝑠
𝜋 = 𝐸{∑ 𝛾𝑡 𝑟(𝑠𝑡 , 𝜋∞

𝑡=0 (𝑠𝑡))| 𝑠0 = 𝑠}. The value at 

each state is the expected value of a discounted future reward sum with the policy π at state 𝑠. 

Here, 𝛾 (0 ≤  𝛾 ≤  1) is the discounted rate that determines the importance of future rewards; 

the larger of the γ, the more important the future rewards. Recall that 𝑟(𝑠, 𝜋(𝑠)) is the reward 

received by the agent at state 𝑠 by taking action following policy π. 
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4.1 Q-Learning  

Q-learning is a family of value-based algorithms [36]. It learns how to optimize the quality of the 

actions in terms of the Q-value 𝑄(𝑠, 𝑎). 𝑄(𝑠, 𝑎) is defined as the expected discounted sum of 

future rewards obtained by taking action a from state 𝑠 following an optimal policy. The optimal 

action at any state is the action that gives the maximum Q-value. For an agent at state 𝑠, when it 

takes action 𝑎 and transitions to the next state 𝑡, 𝑄(𝑠, 𝑎) is updated as 

𝑄(𝑠, 𝑎) ← (1 − 𝛼) · 𝑄(𝑠, 𝑎) + 𝛼 · [𝑟(𝑠, 𝑎) + 𝛾 · 𝑚𝑎𝑥𝑏𝑄(𝑡, 𝑏)] (1) 

where 0 ≤  𝛼 ≤  1 is the learning rate that decides to what extent newly acquired information 

overrides old information in the learning process. In equation 1, 𝑚𝑎𝑥𝑏𝑄(𝑡, 𝑏) is the maximum 

reward that can be obtained from the next state 𝑡. 

 

  



 

 

22 

 

CHAPTER 5 - COOPERATIVE P-MARL ALFORITHM 

To extend the Q-learning approach outlined above to multi-agent scenarios [7], we 

propose a hybrid model where agents act both independently and cooperatively. In the 

independent learning phase, each agent adheres to an action selection rule (defined 

subsequently), determining its next move to collect prizes while adhering to budget constraints. 

During this phase, agents are unaware of other agents and act independently. In the cooperative 

learning phase, once all agents have determined their prize-collecting routes, they communicate 

and evaluate if a new global-best route has been discovered in this episode. The global-best route 

is the route with the highest accumulated prizes since the trial's inception. Figure 2 illustrates the 

workflow of the P-MARL approach. 

Figure 2 - P-MARL workflow 

 

In this setup, multiple agents start from node s and collaboratively learn the state-action 

Q-table and reward table while acting synchronously. We first introduce the action selection rule 

for all learning agents and then outline the P-MARL algorithm. 

5.1 Action Selection Rule of Agents 

Each agent follows the same action selection rule specifying the next node it moves to 

during the learning process. It consists of the following three scenarios. 
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Exploitation. In exploitation, equation 2, the agent selects a node to visit randomly. In 

this context, U represents the set of nodes that the agent has not visited, and 𝐹(𝑠, 𝐵) is the set of 

nodes that are feasible within the agent's budget, and δ and β are preset parameters. When q > q0, 

where q is a random value in [0,1] and q0 (0≤q0 ≤1) is a preset value, exploitation is selected; 

otherwise, the agent chooses exploration explained below. 

𝑡 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑢∈𝑈∩𝐹(𝑠,𝐵)
[𝑄(𝑠,𝑢)]𝛿 ∗ 𝑝𝑢 

[𝑤(𝑠,𝑢)]𝛽   (2) 

Exploration. In active exploration, equation 3, the agent chooses a node 𝑡 ∈  𝑈 ∩

𝐹(𝑠, 𝐵) to move to by the following probability distribution: 

𝑝(𝑠, 𝑡) =  

([𝐶(𝑠,𝑡)]𝛿∗ 𝑝𝑢)

[𝑤(𝑠,𝑡)]𝛽

∑
([𝐶(𝑠,𝑢)]𝛿∗ 𝑝𝑢)

[𝑤(𝑠,𝑢)]𝛽𝑢∈𝑈∩𝐹(𝑠,𝐵)

 (3) 

A node 𝑢 ∈ 𝑈 ∩ 𝐹(𝑠, 𝐵) is selected with the highest probability 𝑝(𝑠, 𝑢), while 

∑ 𝑝(𝑠, 𝑢) = 1 𝑢∈𝑈∩𝐹(𝑠,𝐵) . Here,  𝐶(𝑢, 𝑣) =
𝑝𝑢+𝑝𝑣 

𝑤(𝑢,𝑣)
 remains unchanged in the learning process. The 

distribution 𝑝(𝑠, 𝑡) describes the desirability of moving to the next node t based on factors such 

as edge lengths and node prizes. Nodes with shorter edge lengths and higher node prizes are 

more desirable destinations. 

Termination. When 𝑢 ∈ 𝑈 ∩ 𝐹(𝑠, 𝐵) =  𝜙, which means the agent does not have an 

unvisited budget-feasible node to move to, the agent proceeds to destination t and terminates in 

this episode. 
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5.2 P-MARL Algorithm  

In P-MARL, in Algorithm 1, each trial consists of a learning stage for the m agents to 

learn a commonly shared Q-table (lines 1-33), and an execution stage for the traveling salesman 

to find the prize-collecting route and to collect the prizes (lines 34-39). The learning stage takes 

place in a present number of episodes. Each episode consists of the below two steps. 

In the first step (lines 3-24), all the m agents are initially located at the starting node s with zero 

collected prizes. Then, each independently follows the action rule to move to the next budget-

feasible node to collect prizes. This takes place in parallel for all the agents. When an agent can 

no longer find a feasible unvisited node to move to due to its insufficient budget, it terminates 

and goes to t (lines 8-13); in this case, it must wait for other agents to finish in this episode. 

Otherwise, it moves to the next node, collects the prize, and continues the prize-collecting 

process (lines 14-21). Here, the prizes at each node can be collected multiple times by different 

agents (as this is the learning stage). 

In the second step (lines 25-32), the m agents compare with each other their prize-

collecting route and check if there is a new global-best route found in this episode. Here, the 

global- best route is a route found so far with the maximum collected prizes since the beginning 

of the trial. If so, it updates the reward value and Q-value of the edges of this newly found 

global-best route (lines 29-30). In particular, in line 29, for any each edge (u, v) in the newly 

found global-best route, we increase its reward value of r(u, v) by 
𝑖∗𝑊

𝑃𝑗∗
, where i is the 𝑃𝑗∗ current 

episode number, W is a constant, and 𝑃𝑗∗ is the prize of the global-best route. We call this reward 

value update the multiplicative increase reward update, and its rationale will be explained in 

section 5.3. 
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In the execution stage (lines 34-38), the traveling salesman starts from s, visits the node 

with the largest Q-value in the Q-table, and ends at t, collecting the prizes along the way. 

 

1 
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5.3 Rationale of the Multiplicative Increase Reward Update 

Line 29: 𝑟(𝑢, 𝑣) = 𝑟(𝑢, 𝑣) + 
𝑖∗𝑊

𝑃𝑗∗
  is referred to as the multiplicative increase reward 

update. Its rationale is as follows. Whenever the current global-best route is found, it is preferred 

that it be embedded in the Q-table so that in the execution stage, the traveling salesman can 

always follow this global-best route to receive the maximum amount of prizes. To achieve this, 

we only need to increase the reward values of any edge (u, v) in this global best route in a way 

such that for node u, the reward 𝑟(𝑢, 𝑣) is the maximum among all the edges (u, v ) ∈ E. 

Fortunately, the episode number 𝑖 can be utilized to achieve this, as the episode number 

corresponding to the global-best route is the largest when 𝑟(𝑢, 𝑣) is updated, thus guaranteeing 

that 𝑟(𝑢, 𝑣) is the maximum among all the edges (u, v′) ∈ E. 

5.4 Ant-Q 

The main idea of the Ant-Q is to model the exploration-exploitation trade-off of RL for a 

group of agents (i.e., ants) to find the optimal solution for the traveling sales- man problem 

cooperatively. All the m ants at the starting node make independent and parallel moves following 

the below exploration-exploitation distribution function. Given its current node s, an ant moves 

to another node t following 

 (7) 

That is, when q > q0, an ant chooses to exploit what it has learned by moving to a node u 

that maximizes the learned Q-value Q(s,u). Otherwise, it adopts a pseudo- random-proportional, 

which gives the probability with which an ant chooses a node t to move to. It then updates the 

same Q-table using only the discounted next-state evaluation: 
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 (8) 

This is repeated until each ant has finished its tour and is back in the starting node. 

Finally, the edges belonging to the shortest tour j∗ are updated using  

 (9) 

where ∆𝑄(𝑢, 𝑣)  =  
𝑊

𝑃𝑗∗
 if (u, v) belongs to the best tour 𝑗∗ found in this round and zero 

otherwise. The loop is repeated until a termination condition is met. In Ant-Q, the termination 

condition is verified after a fixed number of episodes or when no improvement is obtained for a 

fixed number of episodes. 

 

5.5 Difference between P-MARL and Ant-Q 

P-MARL is inspired by Ant-Q [15], a combined colony optimization and RL approach to 

solving combinatorial optimization problems. The main idea of the Ant-Q is to model the 

exploration-exploitation trade-off of RL for a group of agents (i.e., ants) to find the optimal 

solution for the traveling salesman problem cooperatively. There are three major differences 

between Ant-Q and P-MARL. First, each agent in P-MARL only update the Q-table at the end of 

an episode when a global-best route is found. Second, multiplicative increase reward update 

approach is used to update the Q-value in P-MARL. Lastly, in P-MARL, each agent will 

terminate at the destination node within assigned budget.  



 

 

29 

 

 

 

  



 

 

30 

 

CHAPTER 6 – DEEP Q-LEARNING NETWORK 

In this section, we present a solution that employs a Q-learning approach to simulate the 

setup as described in [41]. We first outline the solution architecture and then discuss the reward 

mechanism, the Q-learning network, and the learning algorithm. The Q-learning network has 

been implemented and utilized to evaluate the performance of P-MARL. 

6.1 Solution Overview  

The model employs a Recurrent Neural Network (RNN) to approximate Q-values, as 

future rewards depend on all visited vertices. For each input state, a Q-value is assigned to every 

vertex in the graph, even if it is not a direct neighbor of the last vertex of the path. These Q-

values are then masked with the graph's connectivity to filter out non-reachable vertices. In each 

epoch, the agent starts from the initial vertex and selects actions according to an ε-greedy policy 

based on the Q-values. Rewards are calculated using f(P), and state transition tuples are added to 

the experience buffer. At each step, a batch of transition tuples is sampled from the buffer to 

update the model's parameters by minimizing the temporal difference in equation 6. Fig 3 shows 

the overall architecture of this solution.  
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Figure 3 – Architecture of RNN [41] 

 

6.2 Reward Mechanism  

Upon taking each action, the environment delivers an immediate reward signal and 

transitions to the next state. The reward of taking action 𝑎 ∈ 𝐴′(𝑃𝑝) is defined in equation 4 

where 𝑓(𝑃𝑝 + [𝑎]) represents the total reward of the epoch after taking the action while 𝑓(𝑃𝑝) is 

the reward before taking the action a. In contrast to the reward mechanism outlined in [41], the 

agent cannot visit any infeasible nodes, thus no penalty reward is incurred. 

𝑟(𝑃𝑝, 𝑎) = 𝑓(𝑃𝑝 + [𝑎]) − 𝑓(𝑃𝑝) (4) 

The process yields a transition tuple < 𝑠, 𝑎, 𝑟, 𝑠′, 𝐼𝑠𝐷𝑜𝑛𝑒 >, where taking action 𝑎 

from state 𝑠 results in the agent receiving reward 𝑟, the state transitioning to 𝑠′, and IsDone 

indicating whether the action terminates the episode. This transition tuple is stored in an 

experience buffer, which serves as input for training the Q-network. 
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6.3 Q-learning Network  

The Q-learning network predicts Q-values to help the agent make optimal decisions. We 

opt for an RNN-based neural network because of the sequential nature of the input. Given a path 

𝑃𝑝, the RNN takes as input the 2D location coordinates corresponding to each vertex in 𝑃𝑝. The 

output of the final cell is a Q-value vector 𝑄𝑚 with a length equal to the number of vertices |V|. 

However, because the graph might not be fully connected and the predicted Q-values are only 

applicable to adjacent vertices, we introduce a masking technique as in equation 5 which we will 

only consider vectors that are neighbors of the current node.  

𝑄𝑚[𝑖] = {
1              𝑣𝑖  ∈ 𝑁(𝑣𝑘)
0              𝑒𝑙𝑠𝑒              

 (5) 

6.4 Learning Algorithm  

Using the Q-network, the agent employs an ε-greedy policy to explore the solution space, 

incorporating the same constrained exploration and exploitation strategy as P-MARL mentioned 

in Section 5.1. The state transition tuples < 𝑠, 𝑎, 𝑟, 𝑠′, 𝐼𝑠𝐷𝑜𝑛𝑒 > explained in Section 6.2 are 

stored in an experience buffer M, and the network parameters are trained using this memory 

buffer. At each step, a batch of transition is sample from the memory buffer. The network is 

optimized in an iterative way by minimizing the temporal difference with a loss function defined 

as in equation 6. 

𝐿(𝜃) = (𝑄(𝑠𝑡 , 𝑎𝑡) − (𝑟𝑡 +  𝛾 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎)))2 (6) 
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CHAPTER 7 - SIMULATION RESULTS 

This section outlines the research findings. Firstly, we analyze the effect of varying the 

number of agents in P-MARL. Following that, we compare the performance of P-MARL with 

RNN using a dataset containing 48 cities in the U.S. 

 

7.1 Impacts of Number of Agents in P-MARL.  

We study the impact of the number of agents m on the P-MARL’s performance. We vary 

m from 1, 3, 5, 7, to 10, and the budget B from 2,000, 6,000, 10,000, to 15,000. Fig. 4(a) shows 

that for each m, the higher the B, the larger the collected prize. A close look shows that when B 

equals to 6,000 and 10,000, the collected prizes are increased when increasing m. This is because 

the more agents work collaboratively, the better chance that they can find the global prize-

collecting route. Fig. 4(b) shows the traveled distance of the P-MARL w.r.t. m and B. The higher 

the B, the more distances it can travel. Here, we observe that varying m does not seem to affect 

the traveled distance of the salesman, as the focus of the P- MARL algorithm is to collect as 

much prize as possible while staying within the budget. Finally, Fig. 4(c) shows for each B, with 

the increase of m, the execution time of the P-MARL algorithm increases. As more agents are 

learning the prize- collecting route in each episode and the P-MARL executes in a sequential 

manner for all the agents, it takes more time to find the global route. As there is a big jump in the 

execution time from m = 5 to 7 while the prizes and distance stay almost the same, it suggests 

that in our scenarios, 5 agents are the right number of agents for the prize-collecting learning 

process. We leave it as future work to investigate if there is any theoretical underpinning to 

explain the optimal number of agents with respect to the execution time of the learning process. 
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Figure 4 – MARL with varying number of Agents m  

 

7.2 Comparing P-MARL with RNN.  

We compare P-MARL with the RNN under various budget constraints, as shown in Fig. 

5, 6, and 7. In Fig 5, the total prizes collected are depicted, revealing that P-MARL consistently 

outperforms RNN, with the performance disparities being particularly pronounced at smaller 

budgets. In Fig. 6, it is observed that, at smaller budgets, both algorithms cover similar distances 

due to budget exhaustion. However, at larger budgets, P-MARL incurs less distance cost 

compared to RNN. Fig. 7 showcases that the training time of P-MARL remains consistently low, 

whereas the training time of RNN increases with higher budgets. This efficiency in training time 

underscores P-MARL’s superiority over RNN. These findings collectively demonstrate that the 

P-MARL algorithm is not only more efficient in terms of distance but also more effective in 

terms of prize collection compared to the DRL approach. This is due to DRL’s focus on high-

dimensional and continuous input spaces, the feature extraction process, and training deep neural 

networks with a large number of parameters with complex optimization algorithms such as 

gradient descent and its variants [5]). As such, it is a computationally intensive process that 

either takes time to converge to an optimal solution or, many times, it only produces an 

approximate solution with a large optimality gap [6]. 
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Figure 5 – Comparing reward between P-MARL and RNN in execution stage 

 

Figure 6 – Comparing distance between P-MARL and RNN in execution stage
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Figure 7 – Comparing execution time between P-MARL and RNN in execution stage  

 

Fig. 8, 9, 10, and 11 show the performance comparison of P- MARL and RNN in the 

training stage. The rewards attained by RNN and P-MARL are scrutinized over 5000 training 

episodes across various budget constraints. The rewards (i.e., the collected prizes) are presented 

as a running average derived from 100 episodes, with a 95% confidence interval. Fig. 8 

highlights P-MARL’s early capacity to discern positional signals within the initial 200 episodes 

under a budget of 20,000. Fig. 9, 10, and 11 reveal P-MARL consistently achieving maximum 

prize collection under budgets of 20,000, 30,000, and 40,000, respectively, while maintaining 

stable performance. Conversely, the RNN model demonstrates a lack of effective learning from 

the environment and performs notably poorly. These findings underscore the efficiency and 

consistent performance of the P-MARL algorithm in comparison to the RNN model throughout 

the training process. 

  



 

 

37 

 

Figure 8 – Comparing P-MARL and RNN in training stage with budget = 10,000 

 

Figure 9 – Comparing P-MARL and RNN in training stage with budget = 20,000 
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Figure 10 – Comparing P-MARL and RNN in training stage with budget = 30,000 

 

Figure 11 – Comparing P-MARL and RNN in training stage with budget = 40,000 
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7.3 RNN convergence  

 

To improve the RNN model's performance, we increased the training episodes to 50,000 

and observed the results. Fig 12, 13, 14, and 15 illustrate the learning process of the RNN. 

However, the model still lacks convergence, as it reaches its maximum potential with a budget of 

only 40,000, while the nearest neighbor algorithm indicates that the maximum reward can be 

achieved with a slightly higher budget of around 13,000. Additionally, we noticed that the RNN 

stops learning after 25,000 episodes for different budgets. This behavior is attributed to the linear 

epsilon policy setup, suggesting that it may not be suitable for this use case.  

 

Figure 12 – RNN average reward per episode with budget = 10,000 
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Figure 13 – RNN average reward per episode with budget = 20,000 

 

Figure 14 – RNN average reward per episode with budget = 30,000 
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Figure 15 – RNN average reward per episode with budget = 40,000 

 

 

CHAPTER 8 – TRANSFER LEARNING 

In real-world scenarios, the budget constraint B is typically tied to the battery capacity. 

Additionally, the starting vertices may vary. A key question arises: can we adjust the trained 

models to accommodate these changing constraints? This concept is known as transfer learning, 

where the Q-network parameters can be initialized either randomly or from pre-trained models. 

This section conducts experiments to show that the trained models can indeed adapt when one of 

the constraints changes. 

 

8.1 Transfer learning with different budget  

 

Fig. 16 illustrates the impact of transfer learning when the budget varies. Initially, the 

base model is trained using a budget of 40,000. Subsequently, the budget is adjusted, and the 

model is fine-tuned based on the original base model. A comparison is made between the 

learning curves of a model initialized randomly and the fine-tuned base model. The results 
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indicate that the fine-tuned base model converges more rapidly than the randomly initialized 

model. This rapid convergence and superior performance of the fine-tuned base model highlight 

the effectiveness of transfer learning. 

Figure 16 - Transfer learning with different budget 

 
 

8.2 Transfer learning with different starting city   

 

Fig 17 depicts the outcomes when the starting vertex is altered. Initially, the base model 

is trained with a starting vertex of 𝑣𝑠 = 0  and a budget of 40,000. The learning curves of a 

randomly initialized model and the fine-tuned base model are compared. The findings distinctly 

indicate the beneficial impact of transfer learning. The fine-tuned base model demonstrates 

quicker convergence compared to the randomly initialized model. Furthermore, the fine-tuned 

base model achieves superior results by collecting more prizes from the environment. 
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Figure 17 - Transfer learning with starting vertices  

 

 
 

CHAPTER 9 - CONCLUSION 

We introduce a problem called budget-constrained Traveling Salesman Problem (BC-

TSP), which arises in various robotic applications where robots are tasked with completing 

missions using limited battery power. Examples include robotic sensor networks, electric cars in 

ride-sharing, and automated warehouses. We compare our Multi-Agent Reinforcement Learning 

(MARL) approach with a Deep Reinforcement Learning (DRL)-based approach. The results 

indicate that the MARL approach outperforms DRL in terms of convergence and time efficiency 

for training and execution. However, since MARL relies on Q-learning as its core architecture, 

the algorithm needs to be recalculated to suit different instances. Therefore, we investigate 

transfer learning using the trained DRL model as a base model. The results demonstrate that fine-

tuning the base model leads to quicker convergence than training a new model from scratch, 

while also achieving better performance. In future work, we plan to implement a multi-agent 
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approach with DRL. Additionally, we intend to explore other DRL models such as actor-critic 

and determine the most effective model. Finally, we aim to expand the experimental 

environment to include more nodes and compare the performance of P-MARL and RNN. 
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APPENDIX A 

https://github.com/Vincentmak1994/Vincentmak1994-Multi-agent-reinforcement-learning-in-

TSP

https://github.com/Vincentmak1994/Vincentmak1994-Multi-agent-reinforcement-learning-in-TSP
https://github.com/Vincentmak1994/Vincentmak1994-Multi-agent-reinforcement-learning-in-TSP


 

 

 


