
 

 

 

CHEAT-PROOF DATA PRESERVATION IN BASE STATION-LESS SENSOR NETWORKS  

______________ 

A Project  

Presented  

to the Faculty of  

California State University Dominguez Hills 

______________ 

In Partial Fulfillment 

Of the Requirements for the Degree 

Master of Science 

in 

Computer Science 

______________ 

by 

Yu-Ning Yu 

Fall 2020 

 

 

 



CHEAT-PROOF DATA PRESERVATION IN BASE STATION-LESS SENSOR NETWORKS 

AUTHOR: YU-NING YU 

 

 

 

 

 

 

           APPROVED: 

 

 

_________________________ 

          Bin Tang, Ph. D 

                    Project Committee Chair 

 

_________________________ 

          Liudong Zuo, Ph. D 

            Committee Member 

 

_________________________ 

                   Mohsen Beheshti, Ph. D 

          Committee Member 



 iii 

ACKNOWLEDGEMENTS 

I would like to thank California State University Dominguez Hills and all the supportive staff and 

faculty for giving me the chance to complete my master’s degree and improving me both 

academically and personally. I would like to express my great appreciation to Dr. Tang who is my 

graduation project committee chair, he has great idea and suggestions for my graduation project. 

Dr. Tang always can give me helpful feedback while I have implementation problem. If I have 

stuck with understanding algorithm, he always explains to me clearly and patiently. I would also 

like to thank to Dr. Zuo and Dr. Beheshti, my committee members, who gives me helpful feedbacks 

to achieve my academic success.  

 

Yu-Ning Yu 

Fall 2020 

 

 

 

 

 

 

 

 

 

 

 



 iv 

TABLE OF CONTENTS 

      APPROVAL PAGE …………………………………………………………………………. ii 

      ACKNOWLEDGEMENTS …...……………………………………………………………. iii 

      LIST OF TABLES …………………………………………………………………………... vi 

ABSTRACT …………………………………………………………………………...……viii 

1. INTRODUCTION……………………………………………………………………………. 1 

Background of Base Station-less Sensor Networks……………………………….…………...1 

Algorithmic Mechanism Design (AMDs) ………………………………………………….…2 

Paper Organization………………………………………………………………………….…5 

2. RELATED WORK……………………………………………………… ……………………5 

3. PROBLEM FORMULATION OF DATA PRESERVATION PROBLEM……….……….…6 

Network Model…….………………………………………………………………….………6 

Energy Model………...………………………………………………………………..………7 

Problem Formulation………………………………………………………….…… …………9 

4. ALGORITHMIC SOLUTIONS OF DATA PRESERVATION…………………...…….……9 

4.1. Data Preservation With Infinite Energy…………………………………………………9 

4.2. Data Preservation With Finite Energy …………………………………….…...……… 11 

4.2.1. Data Preservation Feasibility Problem.………………………………...……… 11 

4.2.2. Minimum Cost Flow ILP Solution ………………………………….…………15 

5. ALGORITHMIC MECHANISM DESIGN (AMD) APPROACH…………………..………18 

The AMD Model …………………………………………………………………….………18 

Payment and Utility Model ………………………………………………………….……… 20 



 v 

Definition 1. (Payment and Utility.) ………………………………………………..……20 

Definition 2. (Timing of the Game.) ……………………………………………….….…21 

6. STORAGE NODES WITH ENERGY CONSTRAINT ………………………………..……28 

7. SIMULATION RESULTS …………………………………………………..………………33 

7.1. Infinite Energy Case ………………………………………………………...…………34 

7.2. Finite Energy Case ………………………………………………………..……………37 

7.2.1. Network Characteristics in Truth-Telling……………………..….…………… 38 

7.2.2. VCG Performance of Nodes. ……………………………………….………… 40 

7.2.3. Network Characteristics under VCG………………………..………………… 45 

7.2.4. Investigating Node 32…………………………………………….…………… 48 

7.2.5. Modified VCG Mechanism for Truth-Telling………………………………… 53 

8. CONCLUSIONS AND FUTURE WORK……………………………..…………………… 55 

9. REFERENCES…………………………………………...………………………….……… 57 

10. APPENDIX……………………………………………………………..……………………60 

  



 vi 

LIST OF FIGURES 

Figure 1.  

(a) G (V, E) ……………………………………………………………………………………7 

(b) G’ (V’, E’) ……………………………………………………………………...…………7 

(c) G’’ (V’’, E’’) ………………………………………………………………………...……7 

Figure 2. Minimum cost flow model …………………………………………………………..…11 

Figure 3. A Network with Multiple data nodes …………………………………………………..25 

Figure 4. A Network Where data nodes are Energy-Constrained ………………………………...30 

Figure 5. A sensor network with 50 nodes………………………………………………………..34 

Figure 6: Homogeneous parameters in half full network…………………………………………35 

Figure 7: Homogeneous parameters in completely full network…………………………………36 

Figure 8: Hetergeneous parameters in half full network…………………………………….……36 

Figure 9: Hetergenous parameters in completely full network………………………………..…36 

Figure 10: Utilities of nodes when lying all of its three parameters simultaneously………………37 

Figure 11: Number of dead nodes and offloaded data packets w.r.t. initial energy levels……..…39 

  



 vii 

Figure 12: Workload and energy consumption of each node when truth-telling…………………40 

Figure 13: Nodes with same truth-telling and lying utilities when varying !"……………………40 

Figure 14: Nodes with different truth-telling and lying utilities when varying !"……………….42 

Figure 15: Nodes with same truth-telling and lying utilities when varying !#……………………43 

Figure 16: Nodes with different truth-telling and lying utilities when varying !#……………….43 

Figure 17: Nodes with same truth-telling and lying utilities when varying !$……………………44 

Figure 18: Nodes with different truth-telling and lying utilities when varying !$………………...44 

Figure 19: Comparing total energy consumption in truth-telling and lying………………………45 

Figure 20: Nodes that discard data packets when lying with different amplifiers………………..46 

Figure 21: Workload and energy consumption of each node when amplifier = 0.6…………….…47 

Figure 22: Workload and energy consumption of each node when amplifier = 0.9…………….…47 

Figure 23: Workload and energy consumption of each node when amplifier = 1.1…………….…48 

Figure 24: Number of discarded data at node 32 when varying its initial energy…………………49 

Figure 25: Number of discarded data at node 32 when varying its storage capacity………………50 

Figure 26: Utility of Node 32 when varying initial energy level………………………………….50 

Figure 7: Incentive to lie of node 32 when varying initial energy level…………………………...52 

Figure 28: Utility of node 32 when varying storage capacity……………………………………..52 

Figure 29: Incentive to lie of node 32 when varying storage capacity…………………………….53 

Figure 30: Utilities of nodes in Modified VCG…………………………………………………...54 

Figure 31: Utilities of nodes in Modified VCG…………………………………………………...54 

 



ABSTRACT 

We aim to preserve the large amount of data generated inside base station-less sensor networks 

with minimum energy cost, while considering that sensor nodes are selfish. Previous research 

assumed that all the sensor nodes are cooperative and that sensors have infinite battery power, and 

designed a centralized minimum-cost flow solution. However, in a distributed setting wherein 

energy- and storage-constrained sensor nodes are under different control, they could behave 

selfishly not only to stay away from data preservation but also to lie about their private types in 

order to maximize their own benefit. In this paper, we show that the traditional VCG mechanism 

fails to achieve truth-telling in our problem. We design a computationally efficient data 

preservation game that guarantees cheat-proof outcomes with efficient data preservation. Via 

extensive simulations, we show that it achieves a system-wide efficient data preservation solution 

and enforces truth-telling among sensor nodes regarding their private types.  

  



  1 

 

  

1. INTRODUCTION 

Background of Base Station-less Sensor Networks. Sensor networks are ad hoc multi-hop wire- 

less networks formed by a large number of low-cost sensor nodes with limited battery power, 

storage spaces, and processing capacity. Wireless sensor networks have been used in a wide range 

of applications such as military surveillance, environmental monitoring, and target tracking [29]. 

Recently, some of the emerging sensor networks are deployed in challenging environments such 

as in remote or inhospitable regions, or under extreme weather, to continuously collect large 

volumes of data for a long period of time. Such emerging sensor networks include seismic sensor 

networks [8], underwater or ocean sensor networks [23, 14, 28], wind and solar harvesting [15, 5], 

and volcano eruption monitoring and glacial melting monitoring [27, 16].  

In the above scenarios, it is not practical to deploy data-collecting base stations with power 

outlets in or near such inaccessible sensor fields. Due to the absence of the base stations, these 

sensor networks are referred to as base station-less sensor networks. Sensory data generated 

therefore have to be stored inside the network for some unpredictable period of time and then being 

collected by periodic visits of robots or data mules [21], or by low rate satellite link [9]. In 

particular, some sensor nodes are close to the events of interest and are constantly generating 

sensory data, depleting their own storage spaces. We refer to the sensor nodes with depleted 

storage spaces while still generating data as data nodes. The newly generated data that can no 

longer be stored at data nodes is called overflow data. To avoid data loss, overflow data is 

offloaded to sensor nodes with available storages (referred to as storage nodes). We call this 

process data preservation in base station-less sensor networks.  

New Challenges in Data Preservation. As wireless communication consumes most of the battery 

power of sensor nodes, the key challenge of data preservation in base station-less sensor networks 



  2 

 

  

is to conserve sensors’ battery power. Tang et al. showed that minimizing the total energy 

consumption of data preservation in base station-less sensor networks is equivalent to minimum 

cost flow problem [24], which can be solved optimally and efficiently [3]. However, they assume 

that all the storage nodes are cooperative in the data preservation process. That is, they are all self-

less and are willing to contribute their battery power and storage spaces to help offloading and 

storing the overflow data from the data nodes. In a large-scale distributed sensor networks, how- 

ever, sensor nodes could be under the control of different users or controllers, each of which 

pursues their own self-interest. Therefore, sensor nodes can behave selfishly only to maximize 

their own benefit. Furthermore, sensor nodes are generally resource-constrained, with very limited 

amount of hardware resources including battery power, storage capacity, and processing power. 

Such resource constraints give sensor nodes minimum or zero motivation to be an altruistic player 

in data preservation. In order to conserve their own battery power and storage spaces, the storage 

nodes will choose not to spend their energy and storage resources to help the data nodes to preserve 

their overflow data, obstructing the entire data preservation process. When sensor nodes are selfish, 

the algorithms designed in Tang et al. are no longer valid. The new challenge is how to achieve 

good system performance, i.e., efficient data preservation with minimum energy cost, while still 

accommodating selfishness of the sensor nodes.  

Algorithmic Mechanism Design (AMDs). In this paper, we address the above challenge by 

utilizing the technique of algorithmic mechanism design (AMD) [17, 19, 18], a subfield of 

microeconomics and game theory. The goal of AMD is desirable for our data preservation problem 

– it designs computationally efficient game (including strategies and payoffs) such that individual 

players (i.e., sensors), motivated solely by self-interest, achieve good system-wide solution. In 

particular, we consider the Vickrey-Groves-Clark (VCG) mechanism [25, 12, 7]. VCG mechanism 



  3 

 

  

is a major branch of AMD that motivates selfish players to participate in games while guaran- 

teeing that each agent truthfully reports its true valuation [17]. In VCG payment model, each 

storage node needs to be paid in order to be motivated to participate in data preservation. Using 

VCG, a centralized algorithm calculates the minimized total energy for data preservation based on 

reported thus possibly misleading cost types. For all the nodes chosen to participate in data 

preservation, the centralized algorithm designates each with either data relaying or data storing 

tasks. Thus, for each node, the VCG payment model guarantees that it is optimal truthfully 

reporting its private type, compared to lying in order to drop out of data preservation or to switch 

to different data preservation tasks.  

However, several complexities in our model deems the applicability of VCG mechanism 

directly into our problem not feasible. For example, VCG mechanism looks at optimization 

problems where each agent either participates in certain project or not as the outcome. Instead, in 

our work when a storage node receives a data packet originated from a data node, it faces three 

different outcomes: it could relay a data packet, or store a data packet, or not participate in data 

preservation. Therefore, each node could have subtle incentives to lie about its private type in or- 

der to switch the outcome for itself from one to the other, so long as doing so improves its utility. 

In light of the exist. We will address a few challenges applying VCG directly into our problem and 

propose our solutions.  

What Is Working? First, we show that the existing VCG model works for the data preservation 

process wherein sensor nodes have infinite amount of energy power. In this scenario, VCG 

achieves below two guarantees that for all the participating sensor nodes. First, each node, 

understanding how the payments are calculated, finds that truthfully reporting its private cost 

information is an optimal strategy. Second, based on the reported cost of each node, the VCG 



  4 

 

  

payment can sufficiently motivate each node to actually participate in data preservation. In 

particular, VCG guarantees that truth-telling is a dominate strategy; that is, the truth-telling utility 

of a node is always greater than or equal to its lying utility, making a node to always opt for truth-

telling strategy. With these two goals achieved, the VCG payment model in our game leads to 

optimal system-wide data preservation solution in terms of energy cost with each sensor node 

motivated solely by self-interest.  

What Is Not Working? However, we observe that when nodes have finite amount of energy, VCG 

payment model does not deliver truth-telling as dominate strategy for some nodes. As the 

associated costs for data preservation of each storage node (i.e, energy costs of receiving, saving, 

and transmitting packets) are normally private information which are not directly observed by 

outsiders, the storage nodes, being selfish, can lie about their costs in order to gain more payment 

thus more utilities following the VCG payment model. We show that through lying about its 

associated cost of data preservation, the storage node may successfully induce a data preservation 

path which generates itself a higher payoff compared to the payoff when it tells the truth. Such 

lying behavior of the storage nodes out of their selfishness clearly not only makes the data 

preservation in the network suboptimal and inefficient, and more importantly, makes the VCG 

model not longer valid in this scenario.  

We take a thorough investigation about the cause of above phenomenon with the following 

finding. As a node lies and exaggerates about its efficacy of processing data packets in the data 

preservation process, the system, according to the centralized data preservation algorithms, tends 

to assign the lying node more data packets than what it is actually able to process. Such node has 

to discard those extra amount of data packets that are beyond its processing capability, resulting 

in data loss in the network. We come up with a simple fix to the flawed VCG model and show in 



  5 

 

  

our experiment results that not only truth-telling becomes the dominate strategy for sensor nodes, 

but also it achieves optimal data preservation in the network while accommodating the selfish 

behavior of sensor nodes.  

Paper Organization. The rest of the paper is organized as follows. Section 2 review all the related 

work. Section 3 formulate the data preservation problem. Section 4 present the algorithms for both 

infinite and finite energy cases.  

We then consider the case when each node is energy constrained but the whole network is still 

feasible for data preservation. In this case, the data preservation route which minimizes total 

system-wide energy will result in some data loss because of the limited energy of some nodes. 

While we modify the centralized algorithm to achieve minimum energy subject to energy 

constraint, we show that a modified payment model is also needed, and it continues to guarantee 

each node’s truth-telling and participation in data preservation.  

 

2. RELATED WORK 

Game theory techniques have been extensively applied to solve research problems in computer 

networks in general and wireless ad hoc and sensor networks in particular [20, 22, 4, 6]. There are 

three main classes of game theory techniques that are generally employed. Non-cooperative game 

theory studies strategies between interactions among individual competing players, with Nash 

Equilibrium (NE) being its solution concept that describes a steady state condition for the players. 

Cooperative game theory models situations in which players form groups (i.e., coalitions) rather 

than acting individually. One of its central notations is the core, which is the payoff allocation that 

no group of players has an incentive to leave its coalition to form another coalition. The third one 



  6 

 

  

is called cooperation enforcement games [4], wherein selfish players are incentivized to cooperate 

in order to maximize the social optimal of the system.  

 

3. PROBLEM FORMULATION OF DATA PRESERVATION PROBLEM 

Network Model. Network Model. The sensor network is represented as an undirected connected 

graph %(', )), where '	 = 	 {1,2, . . . , 1} is the set of n sensor nodes and E is the set of 3 edges. 

The sensory data are modeled as a sequence of data packets, each of which is 4 bits. Some sensor 

nodes are close to the event of interest and generate large amount of data packets and deplete their 

storage spaces; they are referred to as data nodes. WLOG there are k data nodes '5	 = 	 {1, 2, . . . , 6}. 

The rest nodes in ' − '5	 = 	 {6 + 1, 6 + 2, . . . , 1} are referred to as storage nodes. Let 9: denote 

the number of overflow data packets data node i generates. Because of the storage depletion of the 

data nodes, the overflow data packets must be offloaded from their data nodes to some storage 

nodes to be preserved. Let 9 = ∑ 9<=
<>?  be the total number of overflow data packets, and let @	 =

	{@1, @2, . . . , @9} denote the set of these 9 data packets. Let 5(A) 	∈ 	'5, 1	 ≤ 	A	 ≤ 	9, denote @A’5 

data node. Let 3: be the available free storage space (in bits) at sensor node :	 ∈ 	'. EF	:	 ∈ 	'5, 

then 3:	 = 	0, implying that a data node is storage-depleted and thus has zero available storage 

space. If :	 ∈ 	'	 − 	'5, then 3:	 ≥ 	0, implying that a storage node : can store another 3: bits of 

data packets. We assume that ∑ 3<
I
<>=J? ≥ 9 ∙ 4, that is, the total size of the overflow data packets 

can be accommodated by the total available storage spaces. Fig. 1(a) shows a linear sensor network 

%	(', )) with two data nodes 1 and 3, each having two data packets to offload, and two storage 

nodes 2 and 4, each having two storage spaces.  



  7 

 

  

 

Figure 1: (a) shows a linear sensor network %	(', )) with two data nodes 1 and 3, each having two data packets to 

offload, and two storage nodes 2 and 4, each having two storage spaces. (b) shows its transformed flow network 

%	L('L, )L)  that finds maximum number of data packets to offload. (c) shows its transformed flow network 

%	LL('LL, )LL)that finds the minimum energy cost, given that maximum d1∗ and d3∗ amount of data packets can be 

offloaded from data node 1 and 3, respectively. Here, 4 = (∞, )?O(2) + )PQ), R = (∞, )PO(1) + )?Q), S = (∞, )PO(3) +

)UQ), 9 = (∞, )UO(2) + )PQ), V = (∞, )UO(4) + )XQ), F = (∞, )XO(3) + )UQ). 

Energy Model. We consider three different kinds of energy consumptions incurred in data 

preservation.  

• Transmitting Energy )<O(A). When node is ends a data packet of a bits to its one-hop 

neighbor j over their distance Y<,Z, the amount of transmitting energy spent by : is )<
O(A) =

4 ∙ !<
" ∙ Y<,Z

P + 4 ∙ !<
# . Here, !<"  is energy consumption of sending one bit on transmit 

amplifier of node : ∙ !<
" = 100[\/R:^/3P; and !<

# is energy consumption of transmitting 

one bit on the circuit of node : ∙ !<
# = 1001\/R:^. Note that Et depends on not only the 

distance between nodes but also on the size of the data it transmits.  

• Receiving Energy )<Q. When node : receives an a-bit data packet from one of its one-hop 

neighbor, the amount of receiving energy it spends is )<
Q = 4 ∙ !<

# . Here, !<
#  is energy 



  8 

 

  

consumption of receiving one bit on the circuit of node :. Note that )<
Q only depends on the 

size of the data it receives, not the distance between nodes.  

• Storing Energy )<$ . When node : stores a-bit data into its local storage, the amount of 

storing energy it consumes is )<
$ = 4 ∙ !<

$. Here !<
$ is the energy consumption of storing 

one bit at node :; !<
$ = 1001\/R:^. Thus )$ depends on size of data it stores.  

In the baseline model, we assume that each node has enough energy to participate the data 

preservation process. We study the case when some nodes are subject to energy depletion in data 

preservation in Section 6.  

Our energy model generalizes the well-known first order wireless radio model [13] in two 

aspects. First, first order model does not consider storing energy parameterized by !<
$. Mathur et 

al. [2] examined the energy consumptions of different currently available flash memory, a viable 

storage technology for low-power, energy-constrained wireless sensor networks. They found that 

read, write, and erase energy consumption per byte for Hitachi MultiMedia Cards (MMC) and 

NAND flash memory are 1.108	`\ and 0.062	`\ respectively (which are equivalent to 139	1\/R:^ 

and 8	1\/R:^, respectively). Therefore, the energy consumption of storing data packets on sensor 

nodes cannot be neglected. Second, first order radio model assumes that !<
" and !<

# are the same 

for any sensor node : (in particular, !<
" = 100[\/R:^/3P and !<

# = 1001\/R:^). However, Wang 

and Yang [26] pointed out that the energy consumption is a function of the features of devices. 

Specifically, they found that the energy consumption on circuits varies significantly from state to 

state of a device and among different types of real sensor devices. Thus, in this paper, we assume 

that different sensor nodes could have different energy parameters. That is, all the three parameters 

!<
", !<

#, and !<
$ are node dependent.  



  9 

 

  

Problem Formulation. Define a preservation function as [: @ → ' − '$, indicating that a data 

packet @Z ∈ @  is offloaded from its data node 5(A) ∈ '$  to a storage node [(A) ∈ ' − '$  to be 

preserved. Let eZ = {5(A), … , [(A)} be the preservation path along which @Z is offloaded. Let S<,Z 

denote node :′5 energy consumption in preserving @Z ∙ S<,Z can be represented as Equation 1 below, 

with h(:, A) being the successor node of : on eZ. 

 

The objective is to find a preservation function [ and eA	(1	 ≤ 	A	 ≤ 	9) to minimize the total 

preservation cost, denoted as S, i.e., 

 S = 3:1i ∑ ∑ S<,ZI
<>?

j
Z>? = 3:1i ∑ ∑ S<,Zj

Z>?
I
<>? , (2) 

under the storage constraint that the total size of data offloaded to storage node : cannot exceed  

:′5 storage capacity: |A|1 ≤ A ≤ 9, [(A) = :| ∙ 4 ≤ 3<, ∀: ∈ ' − '$. 

 

4. ALGORITHMIC SOLUTIONS OF DATA PRESERVATION 

In this section, we first consider that each node has infinite amount of energy and propose a 

minimum cost flow-based optimal solution. We then consider that each node has finite energy 

power and propose a ILP-based optimal solution.  

 

4.1. Data Preservation With Infinite Energy 



  10 

 

  

Minimum Cost Flow Solution. Let m(:, A) = )<
O(A) + )Z

Q be the total energy consumption 

when node : sends an a-bit packet to its one-hop neighbor A; i.e., m(:, A) is :′5 transmitting energy 

plus A′5  receiving energy. Given a data node n?  and a storage node no , let e(n?, no) =

{:, n?, nP, … , no}, (n<, n<J?) ∈ ), 1 ≤ : ≤ p − 1, denote a shortest path between n? and no (this can 

be computed efficiently using Dijkstra’s algorithm). Let S = (n?, no)  denote the total energy 

consumption spent on sending one data packet from n?  to no  along e = (n?, no) . That is, 

S = (n?, no) = ∑ m(n<, n<J?) + )qr
$os?

<>? . It includes the transmitting energy of (n?, the receiving 

energy as well as transmitting energy of n:, 2	 ≤ 	:	 ≤ 	p	 − 	1, and the receiving energy as well 

as storing energy of np. 

Tang. et al. [24] has shown that this problem is equivalent to the minimum cost flow 

problem in a flow network G (V′, E′) properly transformed from the sensor network graph G (V, 

E). The transformation takes place as shown in Fig. 2.  

Step I. '′
	
= {5} ∪ {^} ∪ '5 ∪ ' − '5, where 5 is the data node and ^ is the sink node in the flow 

network.  

Step II. )′
	
= 	 {(5, :)} 	∪ 	 {(:, A)} 	∪ 	 {(A, ^)}, where :	 ∈ 	'5  and A	 ∈ 	'	 − 	'5 . Note that it is a 

complete bipartite graph between '5 and '	 − 	'5.  

Step III. For each edge (5, :), set its capacity as di and cost as 0. For each edge (A, ^), set its capacity 

as 3A, the storage capacity of A, and cost as 0.  

Step IV. For each edge (:, A), set its capacity as 9: and cost as S<,Z. Here v is the total minimum 

energy consumption sending one data packet from data node : to storage node A.  

Step V. Set the supply at 5 and the demand at ^ as ∑ 9<=
<>? . 



  11 

 

  

However, as S(n1, np) indicates the energy consumption on the shortest path between n1 

and np, above minimum cost flow formulation implicitly assumes that each node on such shortest 

path has enough energy to participate the data preservation process. The minimum cost flow 

problem can be solved optimally and efficiently [3]. We adopt and implement the scaling push-

relabel algorithm proposed in [10, 1]. It has the time complexity of u(|'|2|)|Yvw(|'|x)), where 

C is the maximum capacity of an edge in the transformed graph. We denote the algorithm designed 

in Tang. et al. [24] as the centralized algorithm to highlight that it minimizes data preservation 

energy based on the assumption that each node in the network is selfless and therefore fully 

cooperative.  

 

Figure 2: Minimum cost flow model. 

4.2. Data Preservation With Finite Energy  

In this section, we will first present another related problem called feasibility problem. We will 

then formulate an ILP to solve data preservation optimally.  

4.2.1. Data Preservation Feasibility Problem.  



  12 

 

  

When sensor nodes have limited amount of initial battery energy, it is possible that some of them 

can exhaust and deplete their energy and data packets can no longer be transmitted along the 

shortest path between data nodes and storage nodes. Thus, a new question arises: Given a sensor 

network topology with data nodes and storage nodes, and each node has an initial finite energy 

level, is it possible that all the data packets from the data nodes can be offloaded? We refer to this 

problem as data preservation feasibility problem. Before we answer this question, we first 

transform the sensor network %	(', )), shown in Fig. 1(a), to a flow network %	L('L, )L), shown 

in Fig. 1(b).  

1) Replace each undirected edge (:, A) 	 ∈ 	)  with two directed edges (:, A)  and (A, :) . Set the 

capacities of all the directed edges as infinity.  

2) Split node :	 ∈ 	' into two nodes: in-node :L and out-node :LL. Add a directed edge (:L, :LL) with 

capacity of ):, the initial energy level of node :. All the incoming directed edges of node : are 

incident on :L and all the outgoing directed edges of node : emanate from :LL. Therefore, the 

two directed edges (:, A) and (A, :) in Step 1) are now changed to (:LL, AL) and (ALL, :L).  

3) Add a super data node S, and connect S to the in-node :L of the data node :	 ∈ 	'5 with an edge. 

Set the capacity of this edge as 9:, the number of data packets at data node :.  

4) Add a super sink node T, and connect out-node ALL of the storage node A	 ∈ 	'	 − 	'5 to T. Set 

its edge capacity 3A, the storage capacity of storage node j.  

Therefore, 'L = {y} ∪ {z} ∪ {:L ∶ 	: ∈ '} ∪ {:LL ∶ 	: ∈ '}  and )L = {(:LL, AL) ∶ 	 (:, A) ∈ )} ∪

{(ALL, :L) ∶ 	 (:, A) ∈ )} ∪ {(:L, :LL) ∶ 	: ∈ '} ∪ {(y, :L) ∶ 	: ∈ '$} ∪ {(ALL, z) ∶ 	A ∈ ' − '$} . We have 

|'L| 	= 	21	 + 	2	419	|)L| 	= 	23	 + 	21.  



  13 

 

  

Next, we formulate and solve a linear program on the flow network %	L('L, )L) in Fig. 1(b), 

in order to find the maximum amount of data packets that can be offloaded in the sensor network 

in Fig. 1(b). Let p:A be the amount of flows on edge (:, A) in %	L('L, )L).  

34p:3:|V	}p~�Ä
<∈ÅÇ

 

subject	to } pZ ≥ 1
Z:#�∈~ã

,																																										: = 1,… , 1 

pZ ∈ {0,1}, A = 1,… ,3	

p~�Ä ≤ 9<, : ∈ '$	

p<ÄÄå ≤ 3<, : ∈ ' − '$	

p~�Ä+= 3<, : ∈ '$ 

34p:3:|V	}p~�Ä
<∈ÅÇ

																																																																																					(3) 

5. ^		p~�Ä ≤ 9<, : ∈ '$ (4) 

p<ÄÄå ≤ 3<,       : ∈ ' − '$ (5) 

p~�Ä + } pZÄÄ<Ä
Z:(<,Z)∈ç

= } p<ÄÄZÄ
Z:(<,Z)∈ç

,																	: ∈ '$																											(6) 

} pZÄÄ<Ä
Z:(<,Z)∈ç

= } p<ÄÄZÄ
Z:(<,Z)∈ç

+ p<ÄÄå,																: ∈ ' − '$																			(7) 



  14 

 

  

)<
Q × } pZÄÄ<Ä

Z:(<,Z)∈ç

+ } ()<
O(A) × p<ÄÄZÄ) ≤ )<

Z:(<,Z)∈ç

,										: ∈ '$																												(8) 

)<
Q × } pZÄÄ<Ä

Z:(<,Z)∈ç

+ } )<
O(A) × p<ÄÄZÄ + )<

$

Z:(<,Z)∈ç

× p<ÄÄå ≤ )<,							: ∈ ' − '$																					(9) 

Here, 	∑ p~�Ä<∈ÅÇ  in Objective (3) is to find maximum amount of packets that can be 

offloaded in the entire network. Inequality (4) indicates the number of packets data node : can 

offload is less than or equals 9:, the initial number of data packets data node : has. Inequality (5) 

indicates the maximum number of packets storage node : can store is 3:, the storage capacity of 

storage node :. Equation (6) shows the flow conservation for data nodes, where the number of its 

own data packets offloaded plus the number of data packets it relays for other data nodes equals 

the number of data packets it transmits. Equation (7) is the flow conservation for storage nodes, 

which says that data packets a storage node receives are either relayed to other nodes or stored by 

this storage node. Inequalities (8) and (9) represents the energy constraints for data nodes and 

storage nodes respectively and need some special note. In particular, each data node costs its 

energy power when it transmits its own data packets as well as relays (i.e., receives and transmits) 

data packets for other data nodes; each storage node costs its energy when it stores or relays data 

packets from data nodes.  

Note that above formulation is different from that of the classic maximum flow problem. 

While classic maximum flow stipulates that the amount of flows on each edge cannot exceed its 

edge capacity, in our formulation, the amount of flow on edge (:L, :LL) (i.e., p<Ä<ÄÄ) and the capacity 

on edge(:L, :LL) (i.e., ):) do not follow this relationship. Instead, the relationship between p<Ä<ÄÄ and 

):	 is more intricate. We observe that for data node :, p<Ä<ÄÄ  equals to the amount of data packets : 



  15 

 

  

can offload (i.e., p~�Ä ) plus the amount of data packets it relays for other data nodes (i.e., 

∑ pZÄÄ<ÄZ:(<,Z)∈ç ). p<Ä<ÄÄ  also equals to the total amount of data packets it transmits (i.e., 

∑ p<ÄÄZÄZ:(<,Z)∈ç ). The energy cost of sensor node : can now be expressed as a function of p~�Ä  and 

pZÄÄ<Ä  (r.h.s. of Inequality (8)). Similarly, for storage node :, p<Ä<ÄÄ  equals to the amount of data 

packets : can store (i.e., p<ÄÄå) plus the amount of data packets it relays for other data nodes (i.e., 

pZÄÄ<Ä), while the energy cost of : is a function of p<ÄÄå and pZÄÄ<Ä (r.h.s of Inequality (9)). Finally, a 

sensor node (be it a data node or storage node) :L5 energy cost must be less than or equal to its 

initial energy level )<, thus giving the correlation between p<Ä<ÄÄ and )<.  

 

4.2.2. Minimum Cost Flow ILP Solution  

After finding the number of packets that can be offloaded by each data node, say, data node : can 

offload 9<
∗ data packets out of its original 9: data packets, next it needs to compute the minimum 

energy consumption spent for offloading these data packets. We accomplish this by formulating 

and solving another linear program. To do that, we first transform the sensor network %(', )), 

shown in Fig. 1(a), to a flow network %	LL('LL, )LL), shown in Fig. 1(c). The graph topology of 

%	LL('LL, )LL) looks similar to that of %	L('L, )L) in Fig. 1(b). However, as this is a minimum cost 

flow formulation, each edge in Fig. 1(c) has a capacity as well as a cost, which are specified as 

below (from top to bottom).  

1) For directed edge connecting super data node S to the in-node :L of the data node : ∈ 	'5, 

set its capacity as 9<
∗, the number of data packets that are computed by the maximum flow 

formulation, set its cost as zero.  



  16 

 

  

2) For directed edge (:L, :LL); set its capacity as )<, the initial energy level of node :, and cost 

as zero.  

3) For directed edge (:LL, AL), set its capacity as infinity and cost as )<O(A) + )ZQ,  the sum of 

node :L5 transmitting energy and node j’s receiving energy. For directed edge (ALL, :L), set 

its capacity as infinity and cost as )Z
O(:) + )<

Q, the sum of node AL5 transmitting energy and 

node :L5 receiving energy.  

4) For directed edge connecting the out-node :LL of the storage node A	 ∈ 	'	 −	'$ to super sink 

node z, set its capacity as 3<, the storage capacity of :, and its cost as )<.  

Now, we find the minimum energy cost of offloading 9<
∗ packets from data node :, ∀:	 ∈

	'$ by formulating and solving a linear program upon %	LL('LL, )LL), as shown below. Here p<Z is 

the amount of flow on edge (:, A) 	 ∈ 	)LL and S<Z is the cost of one amount of flow on edge (:, A), 

thus ∑ p<Z × S<Z(<,Z)∈çÄÄ  is the total energy consumption in the entire network. In particular, for edge 

(:LL, AL), its cost S<ÄÄ,ZÄ = )<
O(A) + )Z

Q, which equals the sum sensor node :L5 transmitting energy 

and sensor nodeAL5 receiving energy; for edge (ALL, :L), its cost SZÄÄ,<Ä = )Z
O(:) + )<

Q, which equals 

the sum of sensor node AL5 transmitting energy and sensor node :L5 receiving energy. Note that its 

constraints are very similar to those for the maximum flow formulation, except Equation (11), as 

the number of offloaded data packets is given in minimum cost flow linear programming 

formulation.  

34p:3:|V	 } p<Z × x<Z
(<,Z)∈çÄÄ

																																																													(10) 

5. ^		p~�Ä ≤ 9<
∗, : ∈ '$ (11) 



  17 

 

  

p<ÄÄå ≤ 3<, : ∈ ' − '$ (12) 

p~�Ä + } pZÄÄ<Ä
Z:(<,Z)∈ç

= } p<ÄÄZÄ
Z:(<,Z)∈ç

,																						: ∈ '$																											(13) 

} pZÄÄ<Ä
Z:(<,Z)∈ç

= } p<ÄÄZÄ
Z:(<,Z)∈ç

+ p<ÄÄå,										: ∈ ' − '$																			(14) 

)<
Q × } pZÄÄ<Ä

Z:(<,Z)∈ç

+ } ()<
O(A) × p<ÄÄZÄ) ≤ )<

Z:(<,Z)∈ç

,																	: ∈ '$																												(15) 

)<
Q × } pZÄÄ<Ä

Z:(<,Z)∈ç

+ } )<
O(A) × p<ÄÄZÄ + )<

$

Z:(<,Z)∈ç

× p<ÄÄå ≤ )<,																: ∈ ' − '$																			(16) 

Again, note that above linear programming formulation is different from that of the classic 

minimum cost flow problem, for the same reason discussed in maximum flow case.  

In this work, we instead consider selfishness of nodes in the sense that each node is 

maximizing its own interest instead of the system interest. The central problem is to design a 

mechanism to incentivize selfish nodes to accomplish data preservation as in the centralized 

algorithm. Note that each data node is obligated to offload its data therefore selfishness does not 

apply to data nodes. On the other hand, storage nodes are selfish and need to be motivated. 

However, selfishness of storage nodes can lead to two problems. First, each storage node has no 

incentive to either relay or store data as either task consumes energy. Therefore, our mechanism 

needs to pay those storage nodes involved in data preservation path solved from the centralized 

algorithm, in order to give them incentive to participate in data preservation. The second problem 

is more subtle but fundamental. The centralized algorithm can figure out the minimum cost data 



  18 

 

  

preservation path only based on the assumption that data preservation costs of each storage node 

are observed. However, some of those cost parameters of each node (given by !<
#, !<

"and !<
$) are 

private information of each node and may not be directly observed by outsiders. Thus, our 

mechanism needs to induce each node to truthfully report their unobserved cost parameters, so that 

the centralized algorithm can calculate the minimum cost path based on the reported cost 

parameters.  

 

5. ALGORITHMIC MECHANISM DESIGN (AMD) APPROACH 

The goal of AMD is to design a game in which selfish players maximizing their own utility 

will choose strategies resulting in the social optimum specified by an optimal algorithm. Here the 

resulted state is referred to as the dominant strategy equilibrium/solution. Dominant strategy of a 

player is a strategy always maximizing his utility regardless of the other players’ strategies. In a 

dominant strategy solution, each player is playing his dominant strategy. Note that a dominant 

strategy solution is also a Nash equilibrium since no player has an incentive to deviate from its 

strategy unilaterally. The challenge in the data preservation problem is to design utility function 

so that truthfully reporting its cost parameter is a dominant strategy to each storage node. Below 

we first introduce the concepts and notations of the AMD model. We then present the payment 

model, and prove that under this payment model, acting truthfully (that is, telling its true energy 

cost involved in data preservation) is each node’s dominant strategy.  

The AMD Model. There are 1 nodes in the network - node : has some private information 

^:, called its type. There is an output specification that maps each type vector ^	 = 	 {^1, . . . , ^1} to 

some output v. Node :Ls cost is given by valuation function n:(^:, v), which depends on ^: as well 

as v. A mechanism defines for each node : is a set of strategies ë:. When : plays strategy 4:	 ∈ 	ë:, 



  19 

 

  

the mechanism computes an output v	 = 	v(41, . . . , 41) and a payment vector	[	 = 	 ([1, . . . , [1), 

where [:	 = 	[:(41, . . . , 41) . Node :  wants to maximize its utility function í:(41, . . , 41) 	=

	n:(^:, S) 	+ 	[:.  

Recall that x<Z is energy cost of sensor node : in preserving data packet @A, which is given 

by Equation 1. x<Zis private information to node : because all of the cost parameters viz. !<
#, !<

"and 

!<
$are unobservable to the public. Therefore, we define ^:	 ∈ 	 {!<

#, !<
", !<

$} as node i’s private type.  

Node :L5  strategy set ë:  includes any value of private type ti it can report; and n<(^<, v) =

−x<Z	given by (1). Its utility is í<(^<, ^s<) = [< − ∑ S<,Zj
Z>? , where 9 is the total number of data 

packets to be offloaded.  

According to the total preservation cost given by equation (2), to preserve a single data packet, the 

total cost in the network is the sum of all participating nodes’ energy costs. We can there- fore 

consider the Vickrey-Groves-Clark (VCG) mechanism [25, 12, 7]. VCG mechanism is a major 

branch of mechanism design which applies to optimization problems where the objective function 

is simply the sum of all agents’ valuations, and it guarantees that each agent truthfully reports its 

true valuation [17]. However, several complexities in our model deems the applicability of VCG 

mechanism not clear: first, VCG mechanism looks at optimization problems where each agent 

either participates in certain project or not as the outcome. Instead, in our work each node faces 

three different outcomes for each data packet according to the centralized algorithm: it could relay 

a data packet, or store a data packet, or not participate in data preservation. Therefore, each node 

could have subtle incentives to lie about its private type in order to switch the outcome for itself 

from one to the other, so long as doing so improves its utility. In light of the existence of triple 

out- comes to each agent for each data packet, a closer examination is required on the applicability 

of VCG mechanism. Second, when there are multiple overflow data packets, efficient data 



  20 

 

  

preservation cost in the network is not a simple summation of the minimized preservation cost of 

each data packet Dj due to storage capacity constraint of each storage node. In order to present a 

detailed analysis, we shall first study our payment model based on a single overflow data packet; 

then we extend to multiple overflow data packets and show that our results continue to hold. Third, 

the baseline model assumes no energy constraint, i.e., each node is with enough energy to carry 

out its tasks in data preservation assigned by the centralized algorithm. However, if nodes are 

subject to energy constraint such that some may eventually die while carrying out data preservation, 

the original VCG mechanism could fail to achieve social efficiency. We show that this indeed is 

the case. In addition, we propose a modified VCG mechanism, which again guarantees truthfulness 

to each node and therefore restores data preservation efficiency to the network.  

Payment and Utility Model. Below we present the payment and utility model. We use 

S:	to denote node :L5 true total cost in data preservation, and [: the total payment to node :. Thus 

í:	 = 	[:	 − 	S:. Let ^s< = 	 {^?, . . . . . , ^<s?, ^<J?, . . . , ^I} denote the vector of cost types of all other 

nodes except node :, and Ss< 	= {S?, . . . . . , S<s?, S<J?, . . . , SI} denote the data preservation costs of 

all other nodes except node :.  

Definition 1. (Payment and Utility.) Based on Green and Laffont [11], under VCG mechanism, 

given any cost ^̃<reported by node :, the amount of payment given to node : depends on whether 

node : is chosen to participate in data preservation according to the centralized algorithm. Its 

payment is 0 if it is not chosen; and its payment when it is chosen is:  

[<(^̃<, ^s<) = xqs{<} − (S̃Å − S̃<), (17) 

where SÅs{<} is the minimum total cost of the preservation path that does not go through :; S̃Å is 

the minimum total cost of the preservation path that goes through :, when : reports its cost S̃<. 



  21 

 

  

Therefore, :L5 utility is 0 when it is not chosen by the centralized algorithm; and when : is chosen, 

its utility is  

í<(^̃<, ^s<) = [<(^̃<, ^s<) − S< = Sqs{<} − (S̃Å − S̃<) − S<, (18) 

where S:  is node :L5  true cost. Moreover, we define Sq  as the minimum total cost of the 

preservation path that goes through : when : truthfully reports its cost, i.e., when ^̃< = ^<.  

Time complexity of the payment model. The time taken to compute the payment model is the time 

taken for the minimum cost flow calculation, which is u(|'|2|)|Yvw(|'|x)), where x  is the 

maximum capacity of an edge in the transformed graph [10, 1]. Under this model, the amount of 

payment given to a specific node : equals the total minimum cost of all the participating nodes 

when :  does not participate minus all other participating nodes’ cost when :  participates. The 

rationale is that a node can be motivated to participate if it is paid its share of contribution, which 

in our case, is the amount of preservation energy this node helps to reduce when it participates.  

An implication here is that the payment and utility model is common knowledge to each 

node. That is, each node understands that based on their reported cost types and the corresponding 

data preservation path calculated by the centralized algorithm, their payment and utility are given 

by (17) and (18), respectively. The timing of the game among the data nodes is given below.  

Definition 2. (Timing of the Game.) The game unfolds as follows. In stage 1, each storage node 

reports its private type ^:. In stage 2, the centralized algorithm is applied based on reported cost 

types to calculate the minimum cost data preservation path. In stage 3, each of the storage nodes 

chosen in the path chooses to participate in data preservation or not. If they participate, they realize 



  22 

 

  

the data preservation cost and also the payment given by Equation (17), and each gets utility given 

by Equation (18).  

Note that each storage node moves only in stages 1 and 3, when each chooses how much 

to report for private type and whether to participate in data preservation based on the corresponding 

payment. Stage 2 is non-strategic: in the absence of base stations, the centralized algorithm is 

provided by an outsider of the system, and it cannot be enforced in the system by the outsider. 

Since there is a time sequence between the two decisions of each node in stage 1 and stage 3, the 

solution concept of the game is subgame perfect Nash equilibrium (SPNE). SPNE is a Nash 

equilibrium (NE) in which players are doing NE in every subgame of the whole game tree.  

The payment model aims at achieving the following two properties:  

1. Individual-rationality (IR). It is the participation constraint which makes sure that each 

node, when truthfully reporting its cost type, will participate in data preservation once it is 

chosen by the centralized algorithm. That is,  

í<(^<, ^s<) ≥ 0	∀^s< and ∀<∈ ' − '$. 

2. Incentive-compatibility (IC). It requires that truth fully reporting private cost type is the 

dominant strategy of each node. Namely, each node gets the highest utility under truth-

telling regardless of reported types of other nodes:  

í<(^<, ^s<) ≥ í<(^̃<, ^s<)	∀^s<, ∀^̃< ≠ ^< and ∀<∈ ' − '$. 

Note that when IR and IC are satisfied, it is a dominant strategy solution to our game that 

each node truthfully reports its private type, then participates in data preservation whenever chosen 

by the centralized algorithm.  

Assumptions. We make several assumptions in the baseline model. First, the data nodes 

are obliged to offload their overflow data packets to other storage nodes and need not to be 



  23 

 

  

motivated. Their types are public knowledge, and they will be reimbursed according to their true 

costs entailed in data preservation. Second, the payment model is common knowledge to each 

node. That means each node understands that based on reported cost types, the centralized 

algorithm will calculate the efficient data preservation path; correspondingly, its payment and 

utility are given by (17) and (18) if it participates in data preservation, or zero if it does not. Third, 

no single storage node is critical to the data preservation. This means that for each node, if it is 

removed from the network, data preservation shall still be feasible to the network. Feasibility 

means that the network has the capability (in terms of storage capacity and energy) to preserve all 

the over-flow data packets. The above assumptions are needed for VCG mechanism to work. Forth, 

each node, although is subject to storage capacity constraint, is not energy-constrained when 

performing data preservation tasks. This last assumption will be relaxed in Section 6, where we 

consider the payment model when each node is subject to energy constraint.  

For storage node : that participates in the preservation of a specific data packet, it incurs 

one of the two costs below:  

• Relaying Cost S<Q(A). When node : receives a data packet and then sends it to one of its 

one-hop neighbor A over their distance Y<,Z, its relaying cost, denoted as S<
Q(A), is the 

sum of its receiving energy and transmitting energy. That is S<
Q(A) = )<

Q + )<
O(A) = 2 ∙

4 ∙ !<
# + 4 ∙ !<

" ∙ Y<,Z
P . 

• Storing Cost S<$. When node : receives a data packet and then stores it into its storage, 

its storing cost, denoted as  S<$, is the sum of its receiving energy and its storing energy. 

That is, S<
$ = 4 ∙ !<

# + 4 ∙ !<
$. 



  24 

 

  

Note that for each node : , either !<
"  or !<

$  or !<
#  is its private type, among which !<

#  is 

involved in the calculation for both S<
Q(A) and S<

$, while !<
"  is involved only in the calculation for 

S<
Q(A) and !<

$ is involved only for S<
$. There are three different designated roles to each node: either 

it does not participate in data preservation; or when it participates, it may either relay or store the 

data packet. By lying about its type, node : might switch its role from one to the other among these 

three roles. In what follows, we consider each cost parameter as nodes’ private type to examine 

whether truthfulness satisfies IR and IC in the payment model. Note that given a reported type 

vector ^	 = 	 {^1, . . . , ^1}, it could occur that there exist multiple routes which minimize the data 

preservation cost. If that is the case, in reality the centralized algorithm randomly picks up one 

route. W.L.O.G., at a given ^	 = 	 {^1, . . . , ^1}, we treat all the (feasible) data preservation routes 

which generate the same total preservation cost to the network thereby making the centralized 

algorithm indifferent as “the same data preservation routes”. Thus, the term “different data 

preservation routes” refers to the routes with strictly different data preservation cost for the 

network.  

An assumption of our work is that the network is feasible in terms of storage capacity for 

data preservation, i.e., ∑ 3< ≥ 9 ∙ 4I
<>=J?  (the available storage spaces in the network is enough 

for the whole overflow data packets). However, each storage node is subject to its storage capacity 

constraint 4	 ≤ 	3:	 ≤ 	9	 · 	4. Therefore, minimizing the total preservation cost of multiple data 

packets cannot be reduced to a simple aggregation of minimizing the preservation cost of each 

single data packet.  

The following graph illustrates a simple network wherein minimum total data preservation 

cost is not a linear summation of minimum preservation cost of each data packet. In the network, 

S1 and S2 are two data nodes and nodes 1 and 2 are two storage nodes. All cost parameters of 



  25 

 

  

nodes 1 and 2 are the same; each has a capacity to store one unit of overflow data packet. The 

distance between the two data nodes to node 1 are 1; the distance between S2 to node 2 is 2. 

Consider the scenario when there is a single overflow data packet, generated either by S1 or S2. In 

either case, the minimum cost preservation route is to send the overflow data packet to node 1 for 

storage. Instead, suppose S1 and S2 each generates a overflow data packet so that there are two 

overflow data packets in the network. Due to the storage capacity constraint of node 1, the 

minimum cost data preservation requires S1 to send its data to node 1 for storage and S2 to send 

its data to node 2 for storage. The total minimized preservation cost is clearly not a summation of 

the minimized preservation cost with single overflow data packet in the network.  

 

Figure 3: A Network with Multiple data nodes 

As shown by the example, the centralized algorithm is a synchronized procedure, which 

calculate optimal preservation paths of multiple data packages while taking into account storage 

capacity of each storage node. On the other hand, the total energy cost for data preservation of the 

network is a linear summation of the energy cost of each single storage node in data preservation. 

In what follows, we show that when nodes are not energy constrained, the VCG mechanism will 

motivate each node to truthfully report its private type. Before we prove this result, we first present 

the following lemma.  

Lemma 1. At given ^s<, if the centralized algorithm designates the same tasks to node : under 

^ˆ:	and ^	̃:	with ^ˆ:	 ≠ ^	̃:, it must be that the preservation routes of all data packets remain the 

same under ^ˆ: and	^	̃:.  



  26 

 

  

Proof: We need to prove that all the nodes other than : are doing the same tasks under ^̂< 

and ^̃<, when node : are designated the same tasks. Denote the minimized total data preservation 

cost Sq = S< + Ss< , with Ss< the data preservation cost of all nodes except node :. Denote Sq̂ =

S<̂ + Ŝs<  under (^̂<	, ^s<	) , S̃q = S̃< + S̃s<  under (^̃<	, ^s<	) . It holds that Ŝ< = S̃<  . Suppose data 

preservation routes are different hence Ŝs< ≠ S̃s<. Suppose Ŝs< < S̃s< W.L.O.G.. Given that node : 

conducts same tasks, the data preservation routes under (^̂<	, ^s<	) must also be available under 

(^̂<	, ^s<	). Thus under (^̃<	, ^s<	) , switching to the same data preservation routes found under 

(^̂<	, ^s<	) gives a total cost S̃< + Ŝs< < S̃< + S̃s< = S̃q, a contradiction to cost minimization of the 

centralized algorithm.  

Theorem 1. Under the payment given by (17) and	^:	 ∈ 	 {!<
", !<

$, !<
#}, both IR and IC are 

satisfied. It is a dominant strategy of every storage node : to truthfully report its cost type in stage 

1; then to participate in data preservation in stage 3 if node :  is chosen by the centralized 

algorithm.  

Proof: Node : can either report truthfully or tell a lie about its cost type ^:	 ∈ 	 {!<
", !<

$, !<
#}. 

According to a comparison between the outcome for : under truthfulness and under lying, there 

can be four cases. Below we show that IR and IC are satisfied in all the four cases.  

Case I: Node : is not in the preservation path when reporting either ^: or ^̃<. In this case 

í<(^<, ^s<) = í<(^̃<, ^s<) = 0 

Case II: Node : is in the preservation path when reporting ^:, which implies that SÅs{<} ≥

SÅ; and it is not in the preservation path when reporting ^̃< , which gives payoff í<(^̃<, ^s<) = 0. 

Thus, its payoff under truth-telling is í<(^<, ^s<) = SÅs{<} − SÅ ≥ 0 . In this case í<(^<, ^s<) ≥

í<(^̃<, ^s<). 



  27 

 

  

Case III: Node : is not in the preservation path when reporting ^:; however, it is in the 

preservation path when reporting ^̃< . Thus í<(^<, ^s<) = 0. Denote S̃Å
O� as the true data preservation 

cost (based on (^<, ^s<)) when data preservation route is determined under (^̃<, ^s<). We have 

SÅs{<} ≤ S̃Å
O� due to cost minimization under ^<. Node :L5 payoff under ^̃< is í<(^̃<, ^s<) = SÅs{<} −

(S̃Å − S̃<) − S< = SÅs{<} − (S̃Å − S̃< + S<) = SÅs{<} − S̃Å
O� ≤ 0. Thus í<(^<, ^s<) ≥ í<(^̃<, ^s<). 

Case IV: Node :  is in the preservation path when reporting either ^<  or ^̃<  . There are 

different subcases depending on the tasks assigned to node :. We discuss each subcase below:  

Subcase IVa. Node : is assigned exactly the same tasks when reporting either ^< or ^̃<. By 

Lemma 1, node : is getting the same payoff since í<(^̃<, ^s<) = SÅs{<} − (S̃Å − S̃<) − S< = SÅs{<} −

SÅ = í<(^<, ^s<) ≥ 0. 

Subcase IVb. The jobs assigned by the centralized algorithm to node : are different under 

^<  and ^̃< . The payment of : when it reports truthfully is í<(^<, ^s<) = SÅs{<} − (SÅ − S<) − S< =

SÅs{<} − SÅ ≥ 0 . Instead when it lies by reporting ^̃< , its payoff is í<(^̃<, ^s<) = SÅs{<} −

(S̃Å − S̃<) − S< = SÅs{<} − (S̃Å − S̃< + S<) . Here S̃Å − S̃< + S< ≡ S̃Å
O� , the total preservation cost 

calculated according to (^<, ^s<) using the route found by the centralized algorithm under (^̃<, ^s<). 

By cost minimization of the centralized algorithm under (^<, ^s<), S̃Å
O� ≥ SÅ . Thus í<(^̃<, ^s<) ≤

SÅs{<} − SÅ = í<(^<, ^s<). 

Since IR and IC are satisfied, the results immediately follow.  

To see the intuition, note that the idea of the VCG mechanism is to give each node a net 

payoff (utility) according to its marginal contribution in data preservation. Whenever lying by node 

: leads to different data preservation routes, it is always possible switching the preservation routes 

under truthfulness to the ones found under node :L5 lying. The reason is that nodes are not energy-



  28 

 

  

constrained; therefore, switching between different routes will not result in any data loss. Since 

lying by a node will increase the real total data preservation cost in the network, it will reduce the 

marginal contribution made by the node to the network, implying a lower utility to the node. As a 

result, the VCG mechanism will provide incentives for each node to tell the truth and to participate 

in data preservation.  

However, the above argument will no longer hold true when nodes are energy constrained. 

We consider this scenario in the following section.  

 

6. STORAGE NODES WITH ENERGY CONSTRAINT  

Note that our baseline model assumes that each node is subject to no energy constraint. In this 

section, we consider the scenario when storage nodes are energy-constrained and may not have 

enough energy to conduct data-preservation tasks assigned by the centralized algorithm. On the 

other hand, the whole network is still feasible in terms of energy for data preservation. That is, 

total system energy of the network is enough for the preservation of overflow data packets. i.e., 

∑ V<I
<>=J? ≥ ∑ S<I

<>=J? . 

The centralized algorithm shall be correspondingly modified to take into consideration both 

the capacity and the energy constraints. Here we focus on the payment model. When nodes are 

also energy constrained, multiple problems could arise and make the original payment model no 

longer work. We explain each of the problem below.  

First, we need to deal with data loss in multiple cases. In one case, consider that a node 

exaggerates its private cost by reporting a higher cost type. The centralized algorithm may find the 

network infeasible to store all overflow data packets under reported cost types. In another case, 

note that the VCG payment calculation requires the value of Ss< , the total minimized data 



  29 

 

  

preservation cost when node :  does not exist. However, the network system could become 

infeasible for data preservation when a node is removed from the network. In either case, the 

centralized algorithm needs to deal with the infeasibility of the network for data preservation. In 

addition, we need to modify the payment model to reflect the system cost due to data loss.  

When the network is infeasible, the centralized algorithm will conduct two steps of tasks: 

step one, solve the problem of maximizing the number of nodes which can be stored by the network; 

step two, find the cost-minimizing data preservation routes for the data packets chosen to be stored 

in step one. All the other data packets deemed beyond the system energy capacity will be dropped. 

By doing so, the centralized algorithm guarantees the overall optimality of the network on data 

preservation.  

Second, a more serious problem is that now a node could have incentives to either lie about 

its private type, implying that the VCG mechanism may fail to satisfy IC or/and IR. The failure of 

the VCG mechanism is due to the potential data loss when notes are under energy constraints. If 

there is no data loss involved in the application of the payment model when nodes are subject to 

energy constraints, the argument in Theorem 1 continues to hold, and truth-telling continues to be 

the dominant strategy of each node. Therefore, it is the occurrence of data loss in the procedure of 

the payment calculation that could result in the violation of IC in the payment model. Below we 

argue that there are scenarios when a node has incentive to either exaggerate its private type, or 

downsize its private time.  

To see that a node may want to downsize its private type in certain scenarios, we consider 

a simple example. Consider the network in Fig. 4, where node 0 is the single source node with 5 

units of overflow data packets. Node 1 and node 2 are the storage nodes with equal distance given 

by 1 to node 0, and each are with storage capacity for at least 5 data packets.  



  30 

 

  

Let a = 1 for each data packet. Suppose !<
" = 0, !<

# = 0 for : = 1, 2,  whereas 	

!<
$ = 1, !<

$ = 2. I.e., nodes 1 and node 2 has zero relaying cost; storing cost of each data packet is 

1 for node 1 and 2 for node 2. Thus !<
$ is the private type of each node. In addition, each node is 

subject to an energy constraint: node 1 has a total energy of 10 and node 2 has a total energy of 4. 

This means that node 2 can store up to 2 units data packets and node 1 can store up to 10 units data 

packets.  

Under truth-telling, node 2 will not be chosen to store any data packet and its utility is 

íP(^?, ^P) = 0. Instead, consider node 2 lies by reporting ^̃P = 	0.8. Since node 1 is telling the truth, 

now the centralized algorithm will choose node 2 to store the 5 data packets and its utility is 

íP(^?, ^̃P) = SÅs{P} − SÅ + S̃P − SP = 5 − 4 + 4 − 4 = 1 > 0 , implying that node 2 has an 

incentive to lie. Here S2	 = 	4 because node 2 actually stores only 2 units data packets; the other 3 

units are dropped due to its energy constraint. Clearly, by reporting a lower cost type, node 2 can 

improve  

 

Figure 4: A Network Where data nodes are Energy-Constrained 

its utility since it is paid according to the number of data packets it is supposed to store, yet its 

actual energy consumption is according to the data packets it can store under its energy constraint. 

The consequence of node 2’s lie is that the network suffers 2 units of data loss.  



  31 

 

  

Now let us examine the scenario when a node wants to exaggerate its private type. Note 

that by doing so, the node will never be assigned a heavier data preservation task by the centralized 

algorithm compared to the case of truth-telling, therefore the node will never drop any data packets. 

However, the system might drop some data packets when a node is critical in data preservation to 

the system, in the sense that the system will not be able to preserve every overflow data packet 

when this single node is removed from the system. We argue that a critical node might want to 

exaggerate its private type.  

To understand why such problem could occur, note that the VCG mechanism in our 

baseline model works by aligning individual and system incentives. However, one discrepancy 

exists between their incentives when data can be dropped by individual nodes through misreporting 

its private type. To an individual storage node, data loss does not hurt its utility and may enhance 

its utility due to a lighter load of data preservation. However, to the system data loss is creating 

negative values. Therefore, if we continue with the standard VCG mechanism defined in our 

baseline payment mode, the aforementioned situation can occur that individual node misreports its 

private type, resulting in data loss whereas improving its own utility. The problem studied here 

thus shows that the application of VCG mechanism warrants scrutiny even when the system cost 

is a linear summation of the individual cost.  

In order to restore truthfulness to the VCG mechanism and to have the cost calculation take 

account for data loss, we modify the VCG model in two folds: first, we add a data loss punishment 

to any node which drops data packets as a consequence of its lying about its private type. second, 

we add a data loss cost to reflect the loss in the data value when the system is infeasible and has to 

drop some data packets. Here we clarify more assumptions: first, no node is malice with the 

purpose of dropping data packets. If any data loss occurs, it is due to the limitation of the node’s 



  32 

 

  

energy/storage capacity. Second, we assume that any data loss in the network is perfectly 

detectable. In addition, all data packets are equally valued and reflected by the same parameter.  

Given reported type (^̃<, ^s<), whenever node : is chosen to participate in data preservation, 

its payment is calculated as  

[<
o(^̃<, ^s<) = SÅs{<} − (S̃Å − S̃<) − E<õSÅs{<} − (S̃Å − S̃<)ú. (19) 

Here E< = 1 if node : ever drops any data packet; E< = 0  if not. Different from (17), here node : is 

punished by receiving zero payment when it drops any data packet. The corresponding utility of 

node : is thus 

í<
o(^̃<, ^s<) = [<

o(^̃<, ^s<) − S<. (20) 

Therefore, if node : drops any data packet, its utility calculated in (20) is −S<, which is at most 

zero.  

Theorem 2. Consider a network feasible for data preservation but storage nodes are subject to 

energy constraints. With the payment given by (19) and ^:	 ∈ 	 {!<
", !<

$, !<
#}, both IR and IC are 

satisfied.  

Proof: When there is no data loss of node : through reporting ^̃<, the payment is the same as in (17) 

and the proof follows the same as in Theorem 1. We consider the case when node : drops at least 

one data packet under ^̃<, implying that node : must be in the preservation path under ^̃<. There can 

be two cases.  

Case I: Node : is not in the preservation path when reporting ^: and is in the preservation 

path when reporting ^̃<. Thus í<
o(^̃<, ^s<) ≤ 0 = í<(^<, ^s<). 



  33 

 

  

Case II: Node : is in the preservation path when reporting either ^: or ^̃< . The utility of : 

when it reports truthfully is í<(^<, ^s<) = SÅs{<} − (SÅ − S<) − S< = SÅs{<} − SÅ ≥ 0. Instead when 

it lies by reporting ^̃<, its utility is í<
o(^̃<, ^s<) = −S< ≤ 0. Thus í<(^<, ^s<) ≥ í<

o(^̃<, ^s<). 

The results immediately follow.  

 

7. SIMULATION RESULTS 

Simulation Topology. Fig. 5 shows the sensor network topology that is used for our simulation 

experiments. 50 sensor nodes are randomly located in a field of 1000 meters by 1000 meters. The 

transmitting range of each sensor node is 250 meters. That is, two nodes are connected by an edge 

if their distance is less than or equal to the transmission range; that is, they can directly 

communicate with each other by sending or receiving data packets. Among the 50 sensors, nodes 

0-9 are data nodes and nodes 10-49 are storage nodes. Each data node has 100 data packets, each 

of which has size of 512B. The storage capacity of each storage node can be varied from 26 - 50 

(although 25 is the minimum storage capacity to accommodate all the 1000 data packets, as we 

need to take out one storage when compute utilities, we set the minimum storage capacity as 26). 

When it is 26, the network is almost full after all the data packets are offloaded; when it is 40, the 

network is exactly half-full after all the data packets are offloaded. Unless otherwise mentioned, 

the default values of !#, !" and !$ are 100	1\/R:^, 100	[\/R:^/32, and 100	1\/R:^, respectively. 

Below we consider infinite energy case and finite energy case, respectively. For each of the three 

cost parameters ( !#, !" and !$), we allow a storage node to fix the value of two of them and lie 

about the value of the third parameter.  

 



  34 

 

  

7.1. Infinite Energy Case  

We first consider the case that each node has infinite amount of energy, thus the total energy 

consumption of the network can be computed using the minimum cost flow algorithms discussed 

in Section 4.1.  

Homogeneous Case. We first study the homogeneous case wherein each node’s true parameters 

are the same. Fig. 6 studies the half-full case and Fig. 7 the completely full case. We have several 

observations. First, VCG works for all the nodes, showing its truth-telling utility is never less than 

its lying utility. Second, !"has the most dramatic effect on true vs. reported utilities compared to 

the effects of !$ and !#, as a node’s utility of lying about εa is more evidently different from its 

truth-telling utility. Second, scaling down can result in negative utility while scaling up results in 

at least zero utility. ThiscanbeexplainedusingEquation18: í<(^̃<, ^s<) = [<(^̃<, ^s<) − S< = Sqs{<} −

(S̃Å − S̃<) − S< as follows. 

 

Figure 5: A sensor network with 50 nodes. Nodes 0-9 are data nodes and 10-49 are storage nodes.  



  35 

 

  

When scaling down, as a node claims to cost less, its claimed cost value S̃< could get much smaller, 

making its total utility í<(^̃<, ^s<) negative. However, when scaling up, a node could be assigned 

zero tasks, making its utility zero. Third, when the network scenario gets completely full and more 

stressful, Fig. 7(b) shows that more lying nodes gets negative utility. This is because with 

completely full storage, it is more likely that lying storage node is assigned a heavy load, and as 

such S̃< − S< becomes negative.  

Fig. 6 illustrates the true vs. reported utilities in the half-full homogeneous case when nodes 

lie about their !$ parameter. It also illustrates how the reported utilities change as !$ is scaled by 

different scaling factor α. For example, Node 17 acquires the same amount of utility when α =0.01, 

0.1, and 1.0. However, when it inflates its cost by 10.0 and 100.0, it gains less than half the utility 

under truth-telling. This shows how a node that tries to inflate its costs in the hopes of gaining 

more utility will in fact gain less.  

Heterogeneous Case. We then study the heterogeneous case wherein different nodes’ true 

parameters could be different. Fig. 8 studies the half-full case and Fig. 9 the completely full case. 

We have the same observations as in homogeneous case.  

 

Figure 6: Homogeneous parameters in half full network. 



  36 

 

  

 

Figure 7: Homogeneous parameters in completely full network. 

 

Figure 8: Hetergeneous parameters in half full network. 

 

Figure 9: Hetergenous parameters in completely full network. 

Lying With Three Parameters. Next, we let each node to lie about all of its three parameters!", 

!#, and !$. That is, each node randomly and independently chooses a value in the range of [0.1, 

10]. Fig. 10 shows comparison of node’s utilities between truth-telling and lying. It shows that 



  37 

 

  

truth-telling is always the dominate strategy and our VCG theory works for the general case of 

lying of multiple parameters.  

 

Figure 10: Utilities of nodes when lying all of its three parameters simultaneously. 

7.2. Finite Energy Case  

In this part we conduct three phases of investigation in a progressive manner. In Section 7.2.1, we 

focus on the centralized data preservation algorithms with truth-telling and study its network 

characteristics w.r.t. initial energy levels and storage capacities of sensor nodes. In particular, we 

are interested in the workload of each node (that is, number of data received, transmitted, or saved 

data packets), its energy consumption, as well as the dead nodes (i.e., the nodes that deplete their 

energies during the data preservation process). Second, in Section 7.2.2, we study the system 

wherein each node one by one lies about their data preservation parameters. We check how VCG 

works by comparing each node’s lying utility with its truth-telling utility. We find that there is one 

node that does not follow the VCG theory although the rest do. Third, in Section 7.2.3, we check 

the detail network characteristics in VCG. Fourth, in Section 7.2.4, we focus on the ab- normal 

node identified in Section 7.2.2 and study its network behavior thoroughly under different network 



  38 

 

  

parameters and identifies the cause. Finally implement our fix and show it indeed works in Section 

7.2.5. 

 

7.2.1. Network Characteristics in Truth-Telling.  

Minimum Feasible Initial Energy Level. We define minimum feasible energy level as the 

minimum energy level at which all the 1000 data packets can still be offloaded into the network 

shown in Fig. 5. We denote it as )3	3\; that is, when each node’s initial energy level is ()3	 −

	1)	3\, the maximum amount of data packets offloaded is less than 1000.  

To find )3 given any sensor network instance, we decrease the initial energy level of 

sensor nodes from 1600	3\ and record the number of dead nodes and number of data packets 

offloaded at different levels. At each energy level, we use the maximum flow LP proposed in 

Section 4.2.1 to find out the maximum number of packets are offloaded, then we use the minimum 

cost flow LP proposed in Section 4.2.2 to find out the minimum total energy consumption 

offloading that number of data packets.  

To find dead nodes, we analyze data preservation paths resulted from the minimum cost 

flow LP to calculate the energy consumption of each node. A data node is dead if it does not have 

enough energy to relay (i.e., receive then transmit) at least one data packet to its closest neighbor; 

that is, its remaining energy is less than the energy to relay one packet to its closest neighbor. For 

a storage node, we compute its energy cost of saving one data packet to its storage and its energy 

cost of relaying one data packet to its closest neighbor. A storage node is dead if its remaining 

energy is less than the smaller one of above two energy costs.  



  39 

 

  

Fig. 11 shows that the number of dead nodes increases from 0 at 1600 3\ to 4 at 1312 3\, 

while the network is still able to offload all the 1000 data packets. It also shows the IDs of the dead 

nodes at each energy level. Among the four dead nodes, three are data nodes (i.e., nodes 0, 2, and 

4) and one is storage node (i.e., node 32). When we further decrease it to 1311, 999 data packets 

can be offloaded. We thus set )3  as 1312 3\  for the rest of simulation unless otherwise 

mentioned.  

 

Figure 11: Number of dead nodes and offloaded data packets w.r.t. initial energy levels. 

Work Load and Energy Consumption of Each Node. Fig. 12 shows the workload and energy 

consumption of individual nodes. It shows that node 48 has the most work load, with the most 

number of received packets and transmitted packets. This is because node 48 is close to data nodes 

3, 5, and 6, thus serves as the “traffic hub” to offload their data packets to the storage nodes located 

at the top left region of the sensor field in Fig. 5. However, although it is most work loaded, its 

energy consumption is second to the one of node 32, which has already depleted its 1312 3\ of 

energy. Like node 48, node 32 is also close to a few data nodes (i.e., node 1 an 8); however, unlike 

node 48, node 32 is relatively distant to neighboring storage nodes, thus costing more transmission 

energy to relay node 1 and 8’s data packets to other storage nodes.  



  40 

 

  

 

Figure 12: Workload and energy consumption of each node when truth-telling. 

 

7.2.2. VCG Performance of Nodes.  

In this part, we investigate how cheat-proof VCG works in our network. In particular, each storage 

node one by one lies about each of the three parameters viz. !", !#, and !$, and computes its lying 

utilities and compares with its truth-telling utility. We set the initial energy level of nodes as 1312 

3\	and their storage capacity as 26 at which the network is almost full after data offloading.  

 

Figure 13: Nodes with same truth-telling and lying utilities when varying !". 



  41 

 

  

Varying !". We vary !" from 0.6, 0.8. 0.9, 1, 1.1, to 1.2. Fig 13 shows that out of 40 storage nodes 

(i.e., node 10 to 49), 18 of them have the same values of truth-telling and lying utilities. This is 

consistent to the VCG theory that the truth-telling utility is never less than the lying utility. 

Moreover, the reason they have the same truth-telling and lying utilities is because they participate 

in the same way whether lies or not; i.e., each such node receives, transmits, and saves the same 

amount of data packets. We note that node 23’s utilities are all zeros for truth-telling or lying. As 

23 is farthest from all the data nodes in the sensor field in Fig 5, it does not participate at all in the 

minimum-energy data preservation process, incurring zero payment, cost, and utility.  

Fig. 14 shows the rest of 22 storage nodes with at least one lying utility different from its 

truth-telling utility. We observe that while 21 of them comply with our VCG theory, node 32 does 

not as its truth-telling utility of 2014 being less than its lying utilities at scaling factors of 0.6, 0.8, 

and 0.9, which are 2024, 2043, and 2054, respectively. This can be explained using Equation 18:  

í<(^̃<, ^s<) = [<(^̃<, ^s<) − S< = Sqs{<} − (S̃Å − S̃<) − S< , as follows. As the first term of its r.h.s, 

which is Sqs{<}, is the total energy consumption excluding :, it does not change whether : lies or 

not. Its second term, S̃Å − S̃<, is all other nodes’ total energy consumption excluding :. When : 

scales down its factor by claiming it costs less energy than it actually does, it receives more data 

packets  



  42 

 

  

 

Figure 14: Nodes with different truth-telling and lying utilities when varying !". 

than what its energy allows and consequently, other nodes’s total energy consumption S̃Å − S̃< gets 

less. The third term S< is node :L5 real cost no matter it lies or not, which is restricted by :L5 initial 

energy level, thus is around the same whether : lies or not. Therefore, i’s utility í<(^̃<, ^s<) could 

gets larger when it scales down, which explains node 32’s abnormal behavior.  

Note that when node 32’s scaling factor is 1.1 and 1.2, its lying utility is smaller than its 

truth- telling utility, which is consistent with the VCG prediction. As node exaggerate its parameter 

and claims to cost more energy than necessary when performing a task, the system passes less 

number of packets to it and pays it less, resulting in less utility compared to when truth-telling.  

Varying !# We then let each node lie about its receiving amplifier !# and compare its lying utility 

with its truth-telling utility. Fig. 15 shows that out of 40 storage nodes, 29 of them have exactly 

the same truth-telling and lying utilities. Compare to Fig 13 of varying !", which shows 18 storage 

nodes with the same truth-telling and lying utilities, varying !# has less impact on nodes’ utilities.  



  43 

 

  

Fig. 16 shows the rest 11 storage nodes that have different truth-telling and lying utilities 

when varying !#. Again, node 32 is the only node that violates the VCG theory by showing that 

its truth- telling utility of 2014 is less than its scaling-down utility at factor 0.6, which is 2016. 

However, the difference between these two is just 2, which is much smaller than the that in Fig. 

14, which  

 

Figure 15: Nodes with same truth-telling and lying utilities when varying !#. 

 

Figure 16: Nodes with different truth-telling and lying utilities when varying !#. 

has the maximum difference of 40. It shows again for a storage node, lying about !# has less effect 

on its utility compared to lying about !".  



  44 

 

  

Varying !$. Finally, we compare the truth-telling utility of each storage node with its utility when 

lying about its saving amplifier !$. Fig. 17 shows the utilities of the 32 storage nodes with the 

same values of truth-telling and lying utilities while Fig. 18 shows the utilities of the rest 8 storage 

nodes with different truth-telling and lying utility values. Like !#, !$ also has a smaller effect upon 

a lying node’s utility compared to !".  

Total Energy Consumption of the Network Under Lying. Fig. 19 shows the total energy 

consumption of data preservation of the entire network when each node lies about its !". It shows 

that in most of the cases, total energy consumption when truth-telling is no larger than that of when 

lying, demonstrating the optimality of our minimum cost flow ILP proposed in Section 4.2.2.  

 

Figure 17: Nodes with same truth-telling and lying utilities when varying !$. 

 

Figure 18: Nodes with different truth-telling and lying utilities when varying !$. 



  45 

 

  

However, we also observe that when a few nodes lie at !"  = 0.6, the resulted total energy 

consumption is much larger than the optimal energy consumption. This is because when they claim 

they are very efficient in data preservation, the system assigns them lots of data packets that are 

not assigned in optimal solution via those non-optimal data preservation paths, resulting in much 

larger energy consumption.  

 

7.2.3. Network Characteristics under VCG.  

Next we investigate the effect of VCG by finding each node’s network characteristics when 

lying. Such network characteristics of a node include its workload, its discarded data packets, and 

its energy consumption. Here, the workload of a storage node includes three parts: the number  

 

Figure 19: Comparing total energy consumption in truth-telling and lying. 



  46 

 

  

 

Figure 20: Nodes that discard data packets when lying with different amplifiers.  

of data packets it receives, the number of data packets it saves, and the number of data packets it 

transmits. The workload of a storage node shows its “contribution” to the data offloading process. 

The number of discarded data packets is referred to as data loss. This number is obtained by 

subtracting the total number of packets a node saves and transmits from the total number of packets 

it receives from other nodes. As changing !" has more impact upon node’s utility, we adopt !" as 

the parameter that each node lies about. Fig. 20 shows the nodes that discard data packets when 

lying with different scaling factors of !" while fixing storage capacity as 26 and initial energy 

level as 1312 3\. It shows that among the 40 storage nodes, only five storage nodes viz. nodes 25, 

30, 32, 43, 45 discard data in at least one of the three amplifiers viz. 0.6, 0.8, 0.9. The topology in 

Fig. 5 shows that all these nodes are close to one or more data nodes, thus participating heavily 

and possibly consuming lots of energy in transmitting data packets for the data nodes.  

To find out why there are data loss, we present the detailed analysis of the workload and 

energy consumption of each node for amplifier = 0.6, 0.9. and 1.1, respectively, as shown in Fig. 

21, 22, and 23. For example, Fig. 21 shows that at amplifier 0.6, all the five nodes 25, 30, 32, 43, 

45 all have energy consumption of 1312 3\, depleting their energy power. Fig. 22 shows that at 



  47 

 

  

amplifier 0.9, node 32 has energy consumption of 1312 3\, depleting its energy power. It becomes 

clear that those nodes discard data packets are due to that they deplete their energy power. When 

amplifier is 1.1 or 1.2, none of the nodes deplete their energy, thus no data discarding in these 

cases.  

 

Figure 21: Workload and energy consumption of each node when amplifier = 0.6. 

 

Figure 22: Workload and energy consumption of each node when amplifier = 0.9. 



  48 

 

  

 

Figure 23: Workload and energy consumption of each node when amplifier = 1.1. 

 

7.2.4. Investigating Node 32.  

As Section 7.2.2 shows that node 32 has incentive to lie when VCG is applied, next we explain 

why VCG could fail to yield truth-telling in the data-preservation problem. As varying εa has more 

influence upon a node’s utility calculation, we let node 32 to lie about its εa only. In this section 

we are trying to answer the following question: among all the 40 storage nodes, why only node 32 

shows behavior that is not consistent with VCG? We try to answer this question from two 

quantities of each individual sensor node: its data loss and its utilities under both lying and truth-

telling.  

Investigating Data Loss of Node 32. We take a close look of how many data packets node 32 

discards. Fig. 24 shows the data loss of node 32 while increasing the initial energy levels of sensor 

nodes; and at each energy level, we vary the scaling factors from 0.6, 0.7, 0.8, 0.9, to 1.0. We have 

three observations. First, at each energy level, with the increase of scaling factor, the data loss 

decreases. This is because as the scaling factor gets close to 1, which is the truth-telling case, node 

32’s extend of lying gets less. As such, the number of data packets sent to node 32 becomes smaller, 



  49 

 

  

making it discarding less number of data packets. Second, for the same scaling factor, with the 

increase of energy level, the data loss decreases too. This is because with the increase of energy 

level, node 32 is able to deal with more data packets, thus discarding less number of data packets. 

Our final observation is that when the energy level is high (at 1500 3\ and 1550 3\) and when 

the amplifier is closer to 1 (at 0.8 and 0.9), there is no data loss and node 32’s lying behavior is 

compensated by its enough energy. Note that there is no data loss at all at scaling factor of 1.0 for 

node 32 in all energy levels; as it is truth-telling, it always receives the amount of data it can deal 

with thus it does not discard any data.  

 

Figure 24: Number of discarded data at node 32 when varying its initial energy. 

Fig. 25 shows node 32’s data loss when we change its storage capacity at different amplifier 

while fixing the initial energy as 1312 3\. It shows that the data loss decreases as the storage 

capacity increases, as node 32 have more space to store data thus discarding less data. We again 

observe that with the increase of the amplifier, node 32 discards less amount of data, as it behaves 

more and more truthfully. When amplifier is 1.1, there is no data loss at all. As node 32 claims to 

spend more energy that it is necessary, it receives less data than in the truthful case thus has enough 

energy to process all such received data.  



  50 

 

  

 

Figure 25: Number of discarded data at node 32 when varying its storage capacity. 

 

Investigating Utility of Node 32 by Varying Energy. Fig. 26 shows the utility of node 32 when 

increasing the initial energy level from 1312 3\  to 1550 3\  while varying !"  and fixing the 

storage as 26 at each energy level. We find that when the initial energy level is under or at 1450 

3\, node 32 shows abnormal that its truth-telling utility is smaller than at least one of its lying 

utilities. However, when the energy level is greater than or equal 1500 3\, node 32 follows the 

AMD theory in which the truth-telling utility is the dominate strategy. This can be explained using 

incentive to lie defined below.  

 

Figure 26: Utility of Node 32 when varying initial energy level. 



  51 

 

  

Investigating Incentive to Lie of Node 32. For any storage node, its incentive to lie is its lying 

utility minus its truth-telling utility; the more utility it gets when lying the larger of its incentive to 

lie. We re-plot Fig 26 as Fig 27 to show the incentive to lie for node 32 under different initial 

energy levels. When amplifier is less than 1 (i.e., 0.6 and 0.9), its incentive to lie decreases with 

the increase of the initial energy levels. This is because data loss by node 32 eventually drops as 

system energy increases (see Figure 24), shrinking the potential benefit accrued to node 32 through 

its data loss. As a result, the incentive for node 32 to lie also drops.  

When amplifier is greater than 1, the incentive to lie is always negative based on our 

assumption that no single node is critical to the system feasibility, therefore no data loss could 

occur for amplifier is greater than 1. Moreover, the curve in the figure goes up and closer to zero, 

showing that node 32’s utility loss under lying drops when energy constraint is more relaxed. The 

reason is that node 32’s lie becomes less harmful to the system performance when the energy 

constraint is more relaxed, and the job load assigned to node 32 gets less and less differentiated 

from its job load under truth-telling. Indeed, if under certain energy level node 32 is assigned the 

same task under lying with 1.1 amplifier and under truth-telling, its incentive to lie becomes zero.  

Investigating Utility When Varying Storage Capacity. Next we fix the energy as 1312 3\ and  



  52 

 

  

 

Figure 7: Incentive to lie of node 32 when varying initial energy level. 

compare node 32’s utilities by varying storage capacity of sensor nodes. Fig 28 shows that when 

amplifiers are 0.6 and 0.9 while storage capacities are 26 and 27, truth-telling utilities are less than 

the lying utilities, which is against the AMD theory. However, when storage capacity gets to 28, 

the truth-telling utility will be larger than lying utility. This shows that when storage capacity of 

sensor nodes are small, nodes have more incentive to lie in order to gain more utilities, which is 

further explained in Fig. 29 below.  

 

Figure 28: Utility of node 32 when varying storage capacity. 



  53 

 

  

Investigating Incentive to Lie of Nodes When Varying Storage. Fig. 29 investigates the incentive 

to lie for node 32 under different storage capacities. When the amplifier is smaller than 1 (i.e., 0.6 

and 0.9), its intention to lie is decreasing when increasing the storage capacity. The main reason is 

that under a larger sensor network storage capacity, each node does not need much energy to 

offload data. So, lying results in less distortion in the data preservation route, meaning that data 

loss under lying drops and the intention to lie will decrease. We also observe while amplifier is 

equal to 1.1 and we increase the storage capacity, the difference between lying utility and truth-

telling utility will decrease.   

 

Figure 29: Incentive to lie of node 32 when varying storage capacity. 

7.2.5. Modified VCG Mechanism for Truth-Telling.   

As node can lie about its parameters in order to gain more utility, we modify the VCG mechanism 

to fix this problem. Our fix is simple: for any node that drops its received packages, the system 

gives it zero payment. Dropping packets can be observed as wireless communication is broad- cast, 



  54 

 

  

any node’s neighbors knows exactly how many data packets it transmits. As the number of 

received packets minus the number of stored packets is the number of transmitted packets while 

each node’s storage capacity is a public knowledge, whether a node drops received data packets 

or not thus can be easily observed.  

The we implement above data loss inhibiting mechanism and calculates the utilities of each node 

when it is truth-telling or lies with different amplifiers. Fig. 30 and 31 shows the utilities of nodes 

with the data loss inhibiting mechanism implemented. With this mechanism, for each node, the 

truth-telling again is the dominating strategy; that is, the truth-telling utility of each node is always 

greater than or equal to its lying utilities.  

 

Figure 30: Utilities of nodes in Modified VCG. 

 

Figure 31: Utilities of nodes in Modified VCG. 



  55 

 

  

8. CONCLUSIONS AND FUTURE WORK 

In this work, we study data preservation problem in base station-less sensor networks 

wherein energy- and storage-constrained sensor nodes behave selfishly. We take a game theoretic 

approach and design a payment model under which the individual sensor nodes, motivated solely 

by self- interest, achieve good system-wide data preservation solution. In particular, we break 

down the data preservation cost of each storage node into two parts: relaying cost and storing cost, 

where cost parameters are node-dependent. The payment model is designed in a way such that no 

matter which cost parameter (related only to the relaying cost or only to the storing cost or to both) 

is private to the node, truthfully reporting the cost parameter is a dominant strategy to each node. 

We show that as a result, in the game it is an equilibrium that each storage node first truthfully 

reports its cost parameter, then participates in data preservation if it is chosen by the centralized 

data preservation algorithm.  

In the next step of the work, we will validate theoretical findings using simulation results. 

By contrasting the payment of each storage node in the sensor network under truth-telling strategy 

to what it is under lying, we will show that truth-telling is never worse off and in certain cases is 

strictly better off to each storage node regardless of the choice of the other nodes. The simulation 

results thus can verify that truth-telling is a dominant strategy of each data node. Other future work 

includes relaxing some assumptions in the current work. In particular, we have assumed that data 

preservation is feasible in the sensor network, which implies two assumptions: first, the total size 

of the overflow data packets can be accommodated by the total available storage spaces in the 

network. Second, there is no energy constraint of each node, i.e., all the nodes have enough energy 

to offload and preserve all the overflow data packets. If any of the two assumptions is re- laxed, 

the network is infeasible and some data packets may inevitably be lost. If so, it is interesting to see 



  56 

 

  

how the payment model can work to induce the efficient data preservation. Finally, we will extend 

our analysis to a dynamic scenario wherein overflow data are generated from time to time at 

different nodes. It is well understood in game theory that an infinitely repeated game gives a much 

larger set of equilibrium and in certain scenarios full cooperation can be achieved. In our setting 

of data preservation among selfish nodes, it is interesting to see to what extent we need to provide 

motivation for selfish storage node to engage in the optimal data preservation.  

 

  

  



  57 

 

  

9. REFERENCES 

[1] Andrewgoldberg’snetworkoptimizationlibrary.http://www.avglab.com/andrew/soft.html.  

[2] G. Aathur, P. Desnoyers, D. Ganesan, and P. Shenoy. Ultra-low power data storage for 

sensor networks. ACM Trans. Sen. Netw., 5(4):33:1–33:34, 2009. 

[3] R.K.Ahuja,T.L.Magnanti,andJ.B.Orlin.NetworkFlows:Theory,Algorithms,andApplications. 

Prentice Hall, Inc., 1993.  

[4] Tarek AlSkaif, Manel Guerrero Zapata, and Boris Bellalta. Game theory for energy 

efficiency in wireless sensor networks: Latest trends. Journal of Network and Computer 

Applications, 54:33 – 61, 2015.  

[5] A. Cammarano, C. Petrioli, and D. Spenza. Pro-energy: A novel energy prediction model 

for solar and wind energy-harvesting wireless sensor networks. In IEEE 9th International 

Conference on Mobile Adhoc and Sensor Systems (MASS 2012).  

[6] Dimitris E. Charilas and Athanasios D. Panagopoulos. A survey on game theory 

applications in wireless networks. Comput. Netw., 54(18):3421–3430, December 2010.  

[7] E. H. Clarke. Multipart pricing of public goods. Public Choice, 1971.  

[8] E. Cochran, J. Lawrence, C. Christensen, and A. Chung. A novel strong-motion seismic net- 

work for community participation in earthquake monitoring. IEEE Inst and Meas, 12(6):8–

15, 2009.  

[9] W. Colitti, K. Steenhaut, N. Descouvemont, and A. Dunkels. Satellite based wireless sensor 

networks: Global scale sensing with nano- and pico-satellites. In Proceedings of the 6th 

ACM Conference on Embedded Network Sensor Systems, SenSys ’08, pages 445–446, 2008.  

[10] A. V. Goldberg. An efficient implementation of a scaling minimum-cost flow algorithm. J. 

Algorithms, 22:1–29, 1997.  

[11] J. Green and J. Laffont. Incentives in public decision making. Studies in Public Economics, 

1:65–78, 1979.  

[12] T. Groves. Incentives in teams. Econometrica, 1973.  

[13] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communication 

protocol for wireless microsensor networks. In Proc. of HICSS 2000.  



  58 

 

  

[14] S. Li, Y. Liu, and X. Li. Capacity of large scale wireless networks under gaussian channel 

model. In Proc. of MOBICOM 2008.  

[15] Y. Li, X. Li, and P. Wang. A module harvesting wind and solar energy for wireless sensor 

node. Advances in Wireless Sensor Networks, the series Communications in Computer and 

Information Science, 334:217–2224, 2012.  

[16] K. Martinez, R. Ong, and J.K. Hart. Glacsweb: a sensor network for hostile environments. 

In Proc. of SECON 2004.  

[17] N. Nisan. Algorithms for selfish agents: Mechanism design for distributed computation. 

STACS 1999. LNCS, Meinel, C., Tison, S. (eds.), 1563.  

[18] N. Nisan and A. Ronen. Algorithmic mechanism design. In Proceedings of the thirty-first 

annual ACM symposium on Theory of computing (STOC 1999), pages 129–140.  

[19] N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic Behavior, 

35:166–196, 2007.  

[20] F. Pavlidou and G. Koltsidas. Game theory for routing modeling in communication 

networks – a survey. Journal of Communications and Networks, 10(3):268–286, Sep. 2008.  

[21] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data mules: Modeling a three-tier architecture 

for sparse sensor networks. In Proc. of SNPA 2003.  

[22] Hai-Yan Shi, Wan-Liang Wang, Ngai-Ming Kwok, and Sheng-Yong Chen. Game theory 

for wireless sensor networks: A survey. Sensors (Basel, Switzerland), 12:9055–97, 12 2012.  

[23] A. A. Syed, W. Ye, and J. Heidemann. T-lohi: A new class of mac protocols for underwater 

acoustic sensor networks. In Proc. of INFOCOM 2008. 

http://www.isi.edu/ilense/snuse/index.html.  

[24] B. Tang, N. Jaggi, H. Wu, and R. Kurkal. Energy-efficient data redistribution in sensor 

networks. ACM Trans. Sen. Netw., 9(2):11:1–11:28, April 2013.  

[25] W. Vickrey. Counterspeculation, auctions and competitive sealed tenders. Journal of 

Finance, 1961.  

[26] Q. Wangand W. Yang. Energy consumption model for power management in wireless 

sensor networks. In Proceedings of SECON 2007.  

[27] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fidelity and yield in a 

volcano monitoring sensor network. In Proc. of OSDI 2006.  



  59 

 

  

[28] Yang Xiao. Underwater Acoustic Sensor Networks. Auerbach Publications, 2009.  

[29] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey. Computer Networks, 

52:2292–2330, 2008.  

  



  60 

 

  

10. APPENDIX 

/** 
 * Axis 
 */ 
 
public class Axis { 
 
   private double xAxis; 
   private double yAxis; 
   private int capa; 
    
   public double getxAxis() { 
      return xAxis; 
   } 
   public void setxAxis(double xAxis) { 
      this.xAxis = xAxis; 
   } 
   public double getyAxis() { 
      return yAxis; 
   } 
   public void setyAxis(double yAxis) { 
      this.yAxis = yAxis; 
   } 
   public int getcapa() { 
      return capa; 
   } 
   public void setcapa(int capa) { 
      this.capa = capa; 
   } 
    
} 
 

/** 
 * Edge 
 */ 
public class Edge{ 
 
    private int tail; 
    private int head; 
 
    public Edge(int tail, int head, int sort) { 
       if (sort == 1) { 
           if (tail<=head) { 



  61 

 

  

               this.tail = tail; 
               this.head = head; 
           } else { 
               this.tail = head; 
               this.head = tail; 
           } 
       } else { 
            this.tail = tail; 
            this.head = head; 
       } 
    } 
     
     
    public int getTail(){ 
        return this.tail; 
    } 
 
    public int getHead(){ 
        return this.head; 
    } 
 
    @Override 
    public boolean equals(Object o) { 
        System.out.println("calling Edge's equals()"); 
        if(this.tail == ((Edge)o).getTail() && this.head == ((Edge)o).getHead()) { 
            return true; 
        } else if(this.tail == ((Edge)o).getHead() 
 && this.head == ((Edge)o).getTail()) { 
            return true; 
        } 
        return false; 
    } 
 
    @Override 
    public String toString(){ 
        return "(" + tail + ", " + head + ")"; 
    } 
} 
 

/** 
 * Link 
 */ 
import java.text.DecimalFormat; 
public class Link{ 



  62 

 

  

 
    Edge edge; 
    double distance; 
    double Rcost; 
    double Tcost;     
    double Scost;     
    double energy; 
    DecimalFormat fix = new DecimalFormat("##.######"); 
     
    public Link(Edge edge, double distance, double Rcost, double Tcost, double Scost 
 , double energy) { 
        this.edge = edge; 
        this.distance = distance; 
        this.Rcost = Rcost; 
        this.Tcost = Tcost; 
        this.Scost = Scost; 
        this.energy = energy; 
    } 
 
    public void setEdge(Edge edge) { 
        this.edge = edge; 
    } 
 
    public void setDistance(double distance) { 
        this.distance = distance; 
    } 
 
    public void setRCost(double Rcost) { 
        this.Rcost = Rcost; 
    } 
    public void setTCost(double Tcost) { 
        this.Tcost = Tcost; 
    } 
    public void setSCost(double Scost) { 
        this.Scost = Scost; 
    } 
     
    public void setEnergy(double energy) { 
        this.energy = energy; 
    } 
 
    public Edge getEdge() { 
        return edge; 
    } 
 



  63 

 

  

    public double getDistance() { 
        return distance; 
    } 
 
    public double getRCost() { 
        return Rcost; 
    } 
     
    public double getTCost() { 
        return Tcost; 
    } 
     
    public double getSCost() { 
        return Scost; 
    } 
     
    public double getEnergy() { 
        return energy; 
    } 
 
    @Override 
    public boolean equals(Object o) { 
        if (this.edge.getTail()==((Link)o).getEdge().getTail() 
            && this.edge.getHead()==((Link)o).getEdge().getHead()){ 
            return true; 
        } 
        return false; 
    } 
    @Override 
    public String toString(){ 
 
        return "edge: " + edge.toString() + 
                ", distance: " + Math.round(distance * 1000.0)/1000.0 + 
                ", receivecost: " + Math.round(Rcost*Math.pow(10,7))/Math.pow(10,7) + 
                ", transmitcost: " +Math.round(Tcost*Math.pow(10,7))/Math.pow(10,7) + 
                ", storagecost: " + Math.round(Scost*Math.pow(10,7))/Math.pow(10,7) + 
                ", energycapacity: " + energy; 
    } 
 
    public int compareTo(Link value) { 
        if (this.getEnergy() < value.getEnergy()) { 
            return 1; 
        } else if (this.getEnergy() > value.getEnergy()) { 
            return -1; 
        } else { 



  64 

 

  

            return 0; 
        } 
    } 
} 
 
 
/** 
 * Path 
 */ 
import java.util.ArrayList; 
 
public class Path { 
    private ArrayList<Integer> path; 
    private double cost; 
 
    public Path(ArrayList<Integer> path, double cost){ 
        this.path = path; 
        this.cost = cost; 
    } 
 
    public ArrayList<Integer> getPath() { 
        return path; 
    } 
 
    public double getCost() { 
        return cost; 
    } 
 
    public void setPath(ArrayList<Integer> path) { 
        this.path = path; 
    } 
 
    public void setCost(double cost) { 
        this.cost = cost; 
    } 
 
 
    @Override 
    public String toString(){ 
   
        return this.path.toString() + " " + cost; 
    } 
} 
 
 



  65 

 

  

/** 
 * Dijkstra 
 * 
 * Implementation of weighed directed edge. 
 * 
 * Created by marcinkossakowski on 11/2/14. 
 */ 
 
public class DijkstraFind { 
    private int size; 
    private HashMap<Integer, Double> weight; // store weights for each vertex 
    private HashMap<Integer, Integer> previousNode; // store previous vertex 
    private PriorityQueue<Integer> pq; // store vertices that need to be visited 
    private WeighedDigraph graph; // graph object 
 
    /** 
     * Instantiate algorithm providing graph 
     * @param graph WeighedDigraph graph 
     */ 
    public DijkstraFind(WeighedDigraph graph) { 
        this.graph = graph; 
        size = graph.size(); 
        //System.out.print(graph.vertices()); 
    } 
 
    /** 
     * Calculate shortest path from A to B 
     * @param vertexA source vertex 
     * @param vertexB destination vertex 
     * @return list of vertices composing shortest path between A and B 
     */ 
    public ArrayList<Integer> shortestPath(int vertexA, int vertexB, int numberOfDG){ 
        previousNode = new HashMap<Integer, Integer>(); 
        weight = new HashMap<Integer, Double>(); 
        pq = new PriorityQueue<Integer>(size, PQComparator); 
 
        /* Set all distances to Infinity */ 
        for (int vertex : graph.vertices()) 
            weight.put(vertex, Double.POSITIVE_INFINITY); 
 
        previousNode.put(vertexA, -1); // negative means no previous vertex 
        weight.put(vertexA, 0.0); // weight to has to be 0 
        pq.add(vertexA); // enqueue first vertex 
         
        while (pq.size() > 0) { 



  66 

 

  

            int currentNode = pq.poll(); //get the head 
            ArrayList<WeighedDigraphEdge> neighbors = graph.edgesOf(currentNode);  
 //get the adjacent list of the head 
 
            if (neighbors == null) { 
               continue; 
            } 
             
            for (WeighedDigraphEdge neighbor : neighbors) { 
                int nextVertex = neighbor.to(); 
                //this loop considers DG can not pass data between themselves 
                //if (nextVertex > numberOfDG) { 
                double newDistance = weight.get(currentNode) + neighbor.weight(); 
                if (weight.get(nextVertex) == Double.POSITIVE_INFINITY) { 
                    previousNode.put(nextVertex, currentNode); 
                    weight.put(nextVertex, newDistance); 
                    pq.add(nextVertex); 
                } else { 
                    if (weight.get(nextVertex) > newDistance) { 
                        previousNode.put(nextVertex, currentNode); 
                        weight.put(nextVertex, newDistance); 
                    } 
                } 
            } 
        } 
        /* Path from A to B will be stored here */ 
        ArrayList<Integer> nodePath = new ArrayList<Integer>(); 
 
        /* 
        We are reverse walking points to get to the beginning of the path. 
        Using temporary stack to reverse the order of node keys stored in nodePath. 
        */ 
        Stack<Integer> nodePathTemp = new Stack<Integer>(); 
        nodePathTemp.push(vertexB); 
 
        int v = vertexB; 
        while ((previousNode.containsKey(v)) && (previousNode.get(v) >= 0) 
 && (v > 0)) { 
            v = previousNode.get(v); 
            nodePathTemp.push(v); 
        } 
 
        // Put node in ArrayList in reversed order 
        while (nodePathTemp.size() > 0) 
            nodePath.add(nodePathTemp.pop()); 



  67 

 

  

 
        return nodePath; 
    } 
 
    /** 
     * Comparator for priority queue 
     */ 
    public Comparator<Integer> PQComparator = new Comparator<Integer>() { 
 
        public int compare(Integer a, Integer b) { 
            if (weight.get(a) > weight.get(b)) { 
                return 1; 
            } else if (weight.get(a) < weight.get(b)) { 
                return -1; 
            } 
            return 0; 
        } 
    }; 
     
 
} 
 
 
/** 
 * Digraph Edge 
 * 
 * Implementation of weighed directed edge. 
 * 
 * Created by marcinkossakowski on 11/2/14. 
 */ 
public class WeighedDigraphEdge { 
    private int from, to; 
    private double weight; 
 
    /** 
     * Construct graph edge 
     * @param from 
     * @param to 
     * @param weight 
     */ 
    public WeighedDigraphEdge(int from, int to, double weight) { 
        this.from = from; 
        this.to = to; 
        this.weight = weight; 
    } 



  68 

 

  

 
    /** 
     * @return from vertex 
     */ 
    public int from() {  
        return from;  
    } 
 
    /** 
     * @return to vertex 
     */ 
    public int to() {  
        return to;  
    } 
 
    /** 
     * @return weight of edge between from() and to() 
     */ 
    public double weight() {  
        return weight;  
    } 
} 
/** 
 * Digraph 
 * 
 * Implementation of weighed directed edge. 
 * 
 * Created by marcinkossakowski on 11/2/14. 
 */ 
import java.util.HashMap; 
import java.util.ArrayList; 
import java.util.HashSet; 
 
// For file reading 
import java.io.BufferedReader; 
import java.io.IOException; 
import java.io.FileReader; 
import java.util.Map; 
 
public class WeighedDigraph { 
    private HashMap<Integer, ArrayList<WeighedDigraphEdge>> adj = new HashMap(); // 
adjacency-list 
 
    public WeighedDigraph(Map<String, Link> tree) { 
    for (Map.Entry<String, Link> info : tree.entrySet()) { 



  69 

 

  

        addEdge(new WeighedDigraphEdge(info.getValue().getEdge().getHead(),  
                info.getValue().getEdge().getTail(),  
                info.getValue().getTCost())); 
    } 
} 
 
 
    /** 
     * Instantiate graph from file with data 
     * @param file 
     * @throws IOException 
     */ 
    public WeighedDigraph(String file) throws IOException { 
        BufferedReader reader = new BufferedReader(new FileReader(file)); 
        String line = null; 
        while ((line = reader.readLine()) != null) { 
            String[] parts = line.split("\\s"); 
 
            if (parts.length == 3) { 
                int from = Integer.parseInt(parts[0]); 
                int to = Integer.parseInt(parts[1]); 
                double weight = Double.parseDouble(parts[2]); 
 
                addEdge(new WeighedDigraphEdge(from, to, weight)); 
            } 
        } 
    } 
 
    /** 
     * @param vertex 
     * @return list of edges vertex is connected to. 
     */ 
    public ArrayList<WeighedDigraphEdge> edgesOf(int vertex) { 
        return adj.get(vertex); 
    } 
 
    /** 
     * @return list of all edges in the graph. 
     */ 
    public ArrayList<WeighedDigraphEdge> edges() { 
        ArrayList list = new ArrayList<WeighedDigraphEdge>(); 
 
        for (int from : adj.keySet()) { 
            ArrayList<WeighedDigraphEdge> currentEdges = adj.get(from); 
            for (WeighedDigraphEdge e : currentEdges) { 



  70 

 

  

                list.add(e); 
            } 
        } 
        return list; 
    } 
 
    /** 
     * @return iterable of all vertices in the graph. 
     */ 
    public Iterable<Integer> vertices() { 
        HashSet set = new HashSet(); 
        for (WeighedDigraphEdge edge : edges()) { 
            set.add(edge.from()); 
            set.add(edge.to()); 
        } 
 
        return set; 
    } 
 
    /** 
     * @return size of adjacency list 
     */ 
    public int size() { return adj.size(); } 
 
    /** 
     * @return string representation of digraph 
     */ 
    public String toString() { 
        String out = ""; 
        for (int from : adj.keySet()) { 
            ArrayList<WeighedDigraphEdge> currentEdges = adj.get(from); 
            out += from + " -> "; 
 
            if (currentEdges.size() == 0) 
                out += "-,"; 
 
            for (WeighedDigraphEdge edge : currentEdges) 
                out += edge.to() + " @ " + edge.weight() + ", "; 
 
            out += "\n"; 
        } 
 
        return out; 
    } 
 



  71 

 

  

    /** 
     * Add new edge to the system. 
     * @param newEdge 
     */ 
    public void addEdge(WeighedDigraphEdge newEdge) { 
        // create empty connection set 
        if (!adj.containsKey(newEdge.from())) 
            adj.put(newEdge.from(), new ArrayList<WeighedDigraphEdge>()); 
 
        ArrayList<WeighedDigraphEdge> currentEdges = adj.get(newEdge.from()); 
 
        /* Check if edge already exists, 
         * if it is, replace it with new one assuming it needs to be updated */ 
      //if (!edgeExists) 
            currentEdges.add(newEdge); 
 
        adj.put(newEdge.from(), currentEdges); 
    } 
 
    /** 
     * Graph Tests 
     * @param args 
     */ 
 
} 
  



  72 

 

  

 
/** 
 * Sensor Network Graph 
 */ 
 
import java.awt.*; 
import java.awt.geom.Ellipse2D; 
import java.awt.geom.Path2D; 
import java.util.ArrayList; 
import java.util.List; 
import java.util.Map; 
import java.util.Set; 
 
import javax.swing.JFrame; 
import javax.swing.JPanel; 
public class SensorNetworkGraph extends JPanel implements Runnable { 
    private static final long serialVersionUID = 1L; 
 
    private Map<Integer, Axis> nodes; 
    private double graphWidth; 
    private double graphHeight; 
    private int scaling = 25; // 25 
    private int ovalSize = 10; // 6 
    private int gridCount = 10; // 10 
    private boolean connected; 
    private Map<Integer, Set<Integer>> adjList; 
    private int[] dataGens; 
 
    public SensorNetworkGraph(int[] dataGens){ 
        this.dataGens = dataGens; 
    } 
 
    public boolean isConnected() { 
        return connected; 
    } 
 
    public void setConnected(boolean connected) { 
        this.connected = connected; 
    } 
 
    public Map<Integer, Set<Integer>> getAdjList() { 
        return adjList; 
    } 
 
    public void setAdjList(Map<Integer, Set<Integer>> adjList) { 



  73 

 

  

        this.adjList = adjList; 
    } 
 
    public void setNodes(Map<Integer, Axis> nodes) { 
        this.nodes = nodes; 
        invalidate(); 
        this.repaint(); 
    } 
 
    public Map<Integer, Axis> getNodes() { 
        return nodes; 
    } 
 
    public double getGraphWidth() { 
        return graphWidth; 
    } 
 
    public void setGraphWidth(double graphWidth) { 
        this.graphWidth = graphWidth; 
    } 
 
    public double getGraphHeight() { 
        return graphHeight; 
    } 
 
    public void setGraphHeight(double graphHeight) { 
        this.graphHeight = graphHeight; 
    } 
 
    @Override 
    protected void paintComponent(Graphics g) { 
        super.paintComponent(g); 
        Graphics2D g2 = (Graphics2D) g; 
        g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, 
 RenderingHints.VALUE_ANTIALIAS_ON); 
 
        double xScale =  ((getWidth() - 3 * scaling) / (graphWidth)); 
        double yScale =   (( getHeight() - 3 * scaling) / (graphHeight)); 
 
        List<Point> graphPoints = new ArrayList<Point>(); 
        for (Integer key: nodes.keySet()) { 
            double x1 = ( nodes.get(key).getxAxis() * (xScale) + (2*scaling)); 
            double y1 =  ((graphHeight - nodes.get(key).getyAxis()) 
 * yScale + scaling ); 
            Point point = new Point(); 



  74 

 

  

            point.setLocation(x1, y1); 
            graphPoints.add(point); 
        } 
 
        g2.setColor(Color.white); 
        g2.fillRect(2*scaling, scaling, getWidth() - (3 * scaling) 
 , getHeight() - 3 * scaling); 
        g2.setColor(Color.black); 
 
 
        for (int i = 0; i < gridCount + 1; i++) { 
            int x0 = 2*scaling; 
            int x1 = ovalSize + (2*scaling); 
            int y0 = getHeight() - ((i * (getHeight()  
 - (3*scaling))) / gridCount + (2*scaling)); 
            int y1 = y0; 
 
 
            if (nodes.size() > 0) { 
                g2.setColor(Color.black); 
                g2.drawLine((2*scaling) + 1 + ovalSize, y0 
 , getWidth() - scaling, y1); 
                String yLabel = ((int) ((getGraphHeight()  
 * ((i * 1.0) / gridCount)) 
 * 100)) / 100.0 + ""; 
                FontMetrics metrics = g2.getFontMetrics(); 
                int labelWidth = metrics.stringWidth(yLabel); 
                g2.drawString(yLabel, x0 - labelWidth - 5 
 , y0 + (metrics.getHeight() / 2) - 3); 
            } 
            g2.drawLine(x0, y0, x1, y1); 
        } 
 
        for (int i = 0; i < gridCount + 1; i++) { 
            int x0 = i * (getWidth() - (scaling * 3)) / gridCount+ (2*scaling); 
            int x1 = x0; 
            int y0 = getHeight() - (2*scaling); 
            int y1 = y0 - ovalSize; 
            //if ((i % ((int) ((nodes.size() / 20.0)) + 1)) == 0) { 
            if (nodes.size() > 0) { 
                g2.setColor(Color.black); 
                g2.drawLine(x0, getHeight() - (2*scaling) – 1 
 - ovalSize, x1, scaling); 
                String xLabel = ((int) ((getGraphWidth() * ((i * 1.0) / gridCount)) 



  75 

 

  

 * 100)) / 100.0 + "";//i + ""; 
                FontMetrics metrics = g2.getFontMetrics(); 
                int labelWidth = metrics.stringWidth(xLabel); 
                g2.drawString(xLabel, x0 - labelWidth / 2, y0  
 + metrics.getHeight() + 3); 
 
            } 
            g2.drawLine(x0, y0, x1, y1); 
            //} 
        } 
 
        //Draw the edges 
        Stroke stroke = g2.getStroke(); 
        // pick color 
        Color darkBlue = new Color(51, 161, 201); // Color white 
        g2.setColor(darkBlue); 
        // control the width "?? f" 
        g2.setStroke(new BasicStroke(1f)); 
        for (int node: adjList.keySet()) { 
            if((adjList.get(node) != null) && (!adjList.get(node).isEmpty())) { 
                for (int adj: adjList.get(node)) { 
                    if(adjList.get(node).contains(adj)) { 
                        int x1 = graphPoints.get(node-1).x; 
                        int y1 = graphPoints.get(node-1).y; 
                        int x2 = graphPoints.get(adj-1).x; 
                        int y2 = graphPoints.get(adj-1).y; 
                        g2.drawLine(x1, y1, x2, y2); 
                    } 
                } 
            } 
        } 
 
        //Draw the oval 
        g2.setStroke(stroke); 
        // pick color 
        Color lightBlue = new Color(61, 89, 171); // Color white 
        g2.setColor(lightBlue); 
        for (int i = 0; i < graphPoints.size(); i++) { 
            double x = graphPoints.get(i).x - ovalSize / 2; 
            double y = graphPoints.get(i).y - ovalSize / 2; 
            double ovalW = ovalSize; 
            double ovalH = ovalSize; 
            Ellipse2D.Double shape = new Ellipse2D.Double(x, y, ovalW, ovalH); 
 
            boolean flag = false; 



  76 

 

  

            for (int dg: dataGens){ 
                if(i+1==dg){ 
                    x = graphPoints.get(i).x; 
                    y = graphPoints.get(i).y; 
                    g2.fill(createDefaultStar(5, x, y)); 
                    g2.draw(createDefaultStar(5, x, y)); 
                    flag = true; 
                } 
            } 
 
            if (!flag) { 
                g2.fill(shape); 
                g2.draw(shape); 
            } 
        } 
    } 
 
    public void run() { 
        String graphName= "Sensor Network Graph"; 
        JFrame frame = new JFrame(graphName); 
        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
        frame.getContentPane().add(this); 
        frame.pack(); 
        frame.setLocationRelativeTo(null); 
        frame.setVisible(true); 
    } 
 
    private static Shape createDefaultStar(double radius, double centerX, double centerY) { 
        return createStar(centerX, centerY, radius, radius * 2.63, 5, 
                Math.toRadians(-18)); 
    } 
 
    private static Shape createStar(double centerX, double centerY, 
                                    double innerRadius, 
 double outerRadius, int numRays, 
                                    double startAngleRad) { 
        Path2D path = new Path2D.Double(); 
        double deltaAngleRad = Math.PI / numRays; 
        for (int i = 0; i < numRays * 2; i++) { 
            double angleRad = startAngleRad + i * deltaAngleRad; 
            double ca = Math.cos(angleRad); 
            double sa = Math.sin(angleRad); 
            double relX = ca; 
            double relY = sa; 
            if ((i & 1) == 0) 



  77 

 

  

            { 
                relX *= outerRadius; 
                relY *= outerRadius; 
            } 
            else 
            { 
                relX *= innerRadius; 
                relY *= innerRadius; 
            } 
            if (i == 0) 
            { 
                path.moveTo(centerX + relX, centerY + relY); 
            } 
            else 
            { 
                path.lineTo(centerX + relX, centerY + relY); 
            } 
        } 
        path.closePath(); 
        return path; 
    } 
} 
 

 

 

/** 
 * Game Theory 
 */ 
 
import java.awt.Dimension; 
import java.io.BufferedReader; 
import java.io.BufferedWriter; 
import java.io.File; 
import java.io.FileOutputStream; 
import java.io.FileReader; 
import java.io.FileWriter; 
import java.io.IOException; 
import java.util.*; 
 
import org.apache.poi.ss.usermodel.Cell; 
import org.apache.poi.ss.usermodel.Row; 
import org.apache.poi.xssf.usermodel.XSSFSheet; 



  78 

 

  

import org.apache.poi.xssf.usermodel.XSSFWorkbook; 
 
import java.text.DecimalFormat; 
import ilog.concert.*; 
import ilog.cplex.*; 
import ilog.cplex.IloCplex.UnknownObjectException; 
 
public class SensorNetworkGameTheroy { 
 
   private static long seed = 995; 
   static Random rand = new Random(995); 
   static XSSFWorkbook energyworkbook = new XSSFWorkbook(); 
   static XSSFWorkbook dataworkbook = new XSSFWorkbook(); 
   static XSSFWorkbook deadnodeworkbook = new XSSFWorkbook(); 
   static XSSFSheet energysheet = energyworkbook.createSheet("EnergyCostData"); 
   static XSSFSheet datasheet = dataworkbook.createSheet("DataItems"); 
   static XSSFSheet deadnodesheet = deadnodeworkbook.createSheet("DeadNode"); 
   static Map<Integer, Axis> nodes = new LinkedHashMap<Integer, Axis>(); 
   static Map<Integer, Axis> nodes2 = new LinkedHashMap<Integer, Axis>(); 
   static Map<Integer, Axis> nodes5 = new LinkedHashMap<Integer, Axis>(); 
   Map<Integer, Boolean> discovered = new HashMap<Integer, Boolean>(); 
   Map<Integer, Boolean> explored = new HashMap<Integer, Boolean>(); 
   Map<Integer, Integer> parent = new HashMap<Integer, Integer>(); 
   Map<Integer, Integer> connectedNodes = new HashMap<Integer, Integer>(); 
   Stack<Integer> s = new Stack<Integer>(); 
   static Map<String, Link> links = new HashMap<String, Link>(); 
   static Map<String, Link> links2 = new HashMap<String, Link>(); 
   static Map<String, Link> links3 = new HashMap<String, Link>(); 
   static Map<String, Link> linkstest = new HashMap<String, Link>(); 
   static Map<String, Link> linksamp1 = new HashMap<String, Link>(); 
   static Map<String, Link> linksamp10 = new HashMap<String, Link>(); 
   static Map<String, Link> linksamp1000 = new HashMap<String, Link>(); 
   static Map<String, Link> linksamp10000 = new HashMap<String, Link>(); 
   static Map<String, Link> linksamp1re = new HashMap<String, Link>(); 
   static Map<String, Link> linksamp10re = new HashMap<String, Link>(); 
   static Map<String, Link> linksamp1000re = new HashMap<String, Link>(); 
   static Map<String, Link> linksamp10000re = new HashMap<String, Link>(); 
   static HashMap<Integer, List<Integer>> close = new HashMap<>(); 
   static HashMap<Integer, Double> totaldataitems = new HashMap<>(); 
 
   static int minCapacity; 
   static int capacityRandomRange; 
   static int biconnectcounter = 1; 
   static int[] dataGens; 
   static int[] storageNodes; 



  79 

 

  

   static int[] dataGens2; 
   static int[] storageNodes2; 
   static int numberOfDG; 
   static int numberOfDataItemsPerDG; 
   static int numberOfStoragePerSN; 
   static int numberOfNodes; 
   static DecimalFormat fix = new DecimalFormat("##.########"); 
 
   public static void main(String[] args) throws IOException, IloException { 
 
      Scanner scan = new Scanner(System.in); 
      System.out.print("The width is set to: "); 
      //double width = scan.nextDouble(); 
      double width = 1000.0; 
      System.out.println(width); 
 
      System.out.print("The height is set to: "); 
      //double height = scan.nextDouble(); 
      double height = 1000.0; 
      System.out.println(height); 
 
      System.out.print("Number of nodes is set to: "); 
      //numberOfNodes = scan.nextInt(); 
      numberOfNodes = 50; 
      System.out.println(numberOfNodes); 
 
      System.out.print("Transmission range in meters is set to: "); 
      //int transmissionRange = scan.nextInt(); 
      int transmissionRange = 250; 
      System.out.println(transmissionRange); 
 
      System.out.print("Data Generators amount is set to: "); 
      //numberOfDG = scan.nextInt(); 
      numberOfDG = 10; 
      System.out.println(numberOfDG); 
 
      dataGens = new int[numberOfDG]; 
      System.out.println("Assuming the first " + numberOfDG + " nodes are DGs\n"); 
      for (int i=1; i<=dataGens.length; i++) { 
         dataGens[i-1] = i; 
      } 
 
      storageNodes = new int[numberOfNodes-numberOfDG]; 
      for (int i=0; i<storageNodes.length; i++){ 
         storageNodes[i] = i + 1 + numberOfDG; 



  80 

 

  

      } 
 
      System.out.print("Data items per DG is set to: "); 
      //numberOfDataItemsPerDG = scan.nextInt(); 
      numberOfDataItemsPerDG = 100; 
      System.out.println(numberOfDataItemsPerDG); 
 
      System.out.print("Data storage per node is set to:"); 
      numberOfStoragePerSN = scan.nextInt(); 
      // CHANGE 
//    numberOfStoragePerSN = 26; 
//    System.out.println(numberOfStoragePerSN); 
 
      capacityRandomRange= 0; 
 
      int numberOfSupDem = numberOfDataItemsPerDG * numberOfDG; 
      int numberOfstorage = numberOfStoragePerSN * (numberOfNodes-numberOfDG); 
      System.out.println("The total number of data items overloading: " +  
 numberOfSupDem); 
      System.out.println("The total number of data items storage: " +  
 ssnumberOfstorage); 
 
      if (numberOfSupDem > numberOfstorage) { 
         System.out.println("No enough storage"); 
         return; 
      } 
 
      int numberOfStorageNodes = numberOfNodes - numberOfDG; 
      int totalNumberOfData = numberOfDG * numberOfDataItemsPerDG; 
 
      SensorNetworkGameTheroy sensor = new SensorNetworkGameTheroy(); 
      //sensor.populateNodes(numberOfNodes, width, height); 
 
      File myfile = new File("inputdata.txt"); 
      readfileNodes(myfile); 
 
      System.out.println("\nNode List:"); 
      for(int key :sensor.nodes.keySet()) { 
         Axis ax = sensor.nodes.get(key); 
         System.out.println("Node:" + key + ", xAxis:" + ax.getxAxis() + ", yAxis:" +  
 ax.getyAxis() + ", energycapacity:" + ax.getcapa()); 
      } 
 
      Map<Integer, Set<Integer>> adjacencyList1 =  



  81 

 

  

 new LinkedHashMap<Integer, Set<Integer>> (); 
 
      sensor.populateAdjacencyList(numberOfNodes, transmissionRange, adjacencyList1); 
      System.out.println("\nAdjacency List: "); 
 
      for(int i: adjacencyList1.keySet()) { 
         System.out.print(i); 
         System.out.print(": {"); 
         int adjSize = adjacencyList1.get(i).size(); 
 
         if(!adjacencyList1.isEmpty()){ 
            int adjCount = 0; 
            for(int j: adjacencyList1.get(i)) { 
               adjCount+=1; 
               if(adjCount==adjSize){ 
                  System.out.print(j); 
               } else { 
                  System.out.print(j + ", "); 
               } 
            } 
         } 
         System.out.println("}"); 
      } 
 
      System.out.println("\nOriginal Graph:"); 
      sensor.executeDepthFirstSearchAlg(width, height, adjacencyList1); 
      System.out.println(); 
 
      //test if the graphic is bi-connect 
      for (int i = 1; i <= numberOfNodes; i++) { 
         for (Map.Entry<Integer, Axis> entry : nodes.entrySet()) { 
            int k = entry.getKey(); 
            Axis v = entry.getValue(); 
            nodes2.put(k, v); 
         } 
         nodes2.remove(i); 
         Map<Integer, Set<Integer>> adjacencyList2 = new LinkedHashMap<Integer,  
 Set<Integer>> (); 
         sensor.checkbiconnect(i ,numberOfNodes, transmissionRange, adjacencyList2); 
         sensor.executeDepthFirstSearchAlgbi(width, height, adjacencyList2); 
      } 
 
      if(biconnectcounter == 1) { 
         System.out.println("\nAll of the Graph is fully connected!"); 
      } else { 



  82 

 

  

         System.out.println("\nSome Graph is not fully connected!!"); 
         return; 
      } 
 
      //sorting 
      Map<String, Link> treeMap = new TreeMap<String, Link>(linkstest); 
 
      StringBuilder totalenergycost = new StringBuilder(); 
      totalenergycost.append("Sensor Network Edges with Distance, Cost and Capacity:\n"); 
      System.out.println("\nSensor Network Edges with Distance, Cost and Capacity:"); 
      for (Link link : treeMap.values()){ 
         for (Link innerlink : treeMap.values()) { 
            if ((innerlink.getEdge().getHead() == link.getEdge().getHead())  
 &&(innerlink.getEdge().getTail() == link.getEdge().getTail())) { 
               System.out.println(innerlink.toString()); 
               totalenergycost.append(innerlink.toString() + "\n"); 
            } 
         } 
      } 
 
      System.out.println(); 
 
      // run Algorithm 
      // initiate Lp solver 
 // for max function to find the min off load electricity 
      IloCplex CpFirst = new IloCplex(); 
      IloCplex CpObject = new IloCplex(); // for calculating optimized path 
 
      Map<String, IloNumVar> Firstname = varName(CpFirst, treeMap, 
 dataGens, storageNodes); 
      Map<String, IloNumVar> Objtname = varName(CpObject, treeMap, 
 dataGens, storageNodes); 
 
      System.out.println("Original Objective:"); 
      // create first row 
      int rowcounter = 0; 
      Row energyrow = energysheet.createRow(rowcounter); 
      Row datarow = datasheet.createRow(rowcounter); 
      Row deadnoderow = deadnodesheet.createRow(rowcounter++); 
      // name for cols 
      String[] row = new String[]{"TargetNode", "C_{V-{i}}", "C_V", "dataitems",  
 "dead(Cvi)", "dead(Cv)", "deadNodeLabel", 
 "C_V_fake", "Utility_i_Truth_Telling", "C*_i",  
 "C_i", "Utility_i_Lying", "Die_if_lie",  
 "True_Data_Receive", "True_Data_Send",  



  83 

 

  

 "True_Data_Save", "Fake_Data_Receive",  
 "Fake_Data_Send", "Fake_Data_Save",  
 "Utility_Difference", "Discarded_amount",  
 "True_energy_cost", "Single_node_cost"}; 
      // write 
      for (int i = 0; i < row.length; i++) { 
         Cell energycell = energyrow.createCell(i); 
         energycell.setCellValue((String) row[i]); 
      } 
 
      energyrow = energysheet.createRow(rowcounter++); 
      double[] notremove = new double[row.length]; 
      double[] trueDataSend = new double[3]; 
      double[] fakeDataSend = new double[3]; 
      ArrayList<Integer> deadNodes = new ArrayList<>(); 
      ArrayList<Double> totalenergy = new ArrayList<>(); 
      ArrayList<Double> dumtotalenergy = new ArrayList<>(); 
      ArrayList<Double> newCalenergy = new ArrayList<>(); 
      claculateLp(treeMap, adjacencyList1, close, Firstname, Objtname, CpFirst,  
 CpObject, storageNodes, notremove, deadNodes, totalenergy,  
 dumtotalenergy, newCalenergy, trueDataSend,  
 fakeDataSend,"original", "original"); 
      // add the first row (not removing node) 
 
      Cell cell = energyrow.createCell(0); 
      cell.setCellValue((Double) notremove[0]); 
      Cell cell1 = energyrow.createCell(1); 
      cell1.setCellValue((Double) notremove[1]); 
      Cell cell2 = energyrow.createCell(2); 
      cell2.setCellValue((Double) notremove[1]); 
      Cell cell3 = energyrow.createCell(3); 
      cell3.setCellValue((Double) notremove[3]); 
      Cell cell4 = energyrow.createCell(4); 
      cell4.setCellValue((Double) notremove[4]); 
      Cell cell5 = energyrow.createCell(5); 
      cell5.setCellValue((Double) notremove[4]); 
 
      Cell cell6 = energyrow.createCell(6); 
      cell6.setCellValue(deadNodes.toString()); 
 
      Cell cell7 = energyrow.createCell(7); 
      cell7.setCellValue((Double) notremove[1]); 
 
      // for remove nodes also generates .xlxs 
      removeLp(treeMap, adjacencyList1, rowcounter); 



  84 

 

  

 
      // write to csv file 
      FileOutputStream out = new FileOutputStream(new File("data.xlsx")); 
      energyworkbook.write(out); 
      out.close(); 
 
      System.out.println(); 
      System.out.println("Finish"); 
   } 
 
   /** 
    * this function create the name for lp solver's col 
    * @param treeMap: get the links 
    * @param dgs: data generators 
    * @param sns: storage nodes 
    * @return 
    * @throws IloException 
    */ 
   public static Map<String, IloNumVar> varName (IloCplex Cp, 
 Map<String, Link> treeMap, 
 int[] dgs, int[] sns) 
 throws IloException { 
      //generateFiles(treeMap, adjacencyList1); 
      Map<String, IloNumVar> name = new TreeMap<>(); 
 
      // create column names for each index 
      for (int i = 1; i <= dgs.length; i++) { 
         String str = "x0" + i + "'"; 
         IloNumVar element = Cp.numVar(0, Double.MAX_VALUE, str); 
         name.put(str, element); 
      } 
      for (Link link : treeMap.values()){ 
         String str = "x" + link.getEdge().getTail() + "''" +  
 link.getEdge().getHead() + "'"; 
         IloNumVar element = Cp.numVar(0, Double.MAX_VALUE, str); 
         name.put(str, element); 
      } 
      for (int i = 0; i < sns.length; i++) { 
         String str = "x"+sns[i] + "''" +(dataGens.length + storageNodes.length + 1); 
         IloNumVar element = Cp.numVar(0, Double.MAX_VALUE, str); 
         name.put(str, element); 
      } 
      return name; 
   } 
 



  85 

 

  

   public static void removeLp(Map<String, Link> treeMap, Map<Integer, Set<Integer>> 
adjacencyList1, int rowcounter) throws IOException, IloException { 
      /** 
       * fix remove first to get the dataitem to offload 
       * 
       * 
       * 
       */ 
      Scanner scan = new Scanner(System.in); 
      System.out.println("Select which amplifier to modify: (1: transfer, 2: receive, 3: save)"); 
      int method = scan.nextInt(); 
      System.out.println("Please enter the amplifier:"); 
      double amp = scan.nextDouble(); 
 
      for (int i = dataGens.length+1;i<=(dataGens.length+storageNodes.length); i++) { 
         Map<String, Link> temptreeMap = new TreeMap<>(treeMap); 
         Map<String, Link> newtreeMap = new TreeMap<>(); 
         Map<Integer, Set<Integer>> tempadj = new LinkedHashMap<>(); 
         HashMap<Integer, List<Integer>> tempclose = new HashMap<>(); 
         double[] tempvalues = new double[8]; 
         double[] values = new double[8]; 
 
         values[0] = i; 
         Row energyrow = energysheet.createRow(rowcounter); 
 
         Cell node = energyrow.createCell(0); 
         node.setCellValue((int) values[0]); 
         for(int k: adjacencyList1.keySet()) { 
            if(!adjacencyList1.isEmpty()){ 
               tempadj.put(k, new HashSet<Integer>()); 
               for(Integer j : adjacencyList1.get(k)) { 
                  tempadj.get(k).add(j); 
               } 
            } 
         } 
 
         for(int k: close.keySet()) { 
            if(!close.isEmpty()){ 
               tempclose.put(k, new ArrayList<Integer>()); 
               for(Integer j : close.get(k)) { 
                  tempclose.get(k).add(j); 
               } 
            } 
         } 
 



  86 

 

  

         // change current edge cost (lying) -> only change Tcost 
         if (method == 1) { 
            for (Link link : treeMap.values()) { 
               // calculating new cost for amp = 1 
               double dis = link.getDistance(); 
               double newTcost = getTCostOther(dis, amp); 
               // only change the cost of i (if edge form ) 
               // Tail = sender, Head = receiver 
               if (link.getEdge().getTail() == i) { 
                  Link templink = new Link(link.getEdge(), link.getDistance(),  
 link.getRCost(), newTcost,  
 link.getSCost(), link.getEnergy()); 
                  newtreeMap.put("(" + link.getEdge().getTail() + ", " +  
 link.getEdge().getHead() + ")", templink); 
               } else { 
                  Link templink = new Link(link.getEdge(), link.getDistance(),  
 link.getRCost(), link.getTCost(),  
 link.getSCost(), link.getEnergy()); 
                  newtreeMap.put("(" + link.getEdge().getTail() + ", " +  
 link.getEdge().getHead() + ")", templink); 
               } 
            } 
         } else if (method == 2){ 
            for (Link link : treeMap.values()) { 
               // calculating new cost for amp = 1 
               double dis = link.getDistance(); 
               double newRcost = getRCostOther(dis, amp); 
               // only change the cost of i (if edge form ) 
               // Tail = sender, Head = receiver 
               if (link.getEdge().getHead() == i) { 
                  // when change receive cost, we needs to change the transfer cost 
                  double newTcost = link.getTCost() - link.getRCost() + newRcost; 
                  Link templink = new Link(link.getEdge(), link.getDistance(),  
 newRcost, newTcost, link.getSCost(),  
 link.getEnergy()); 
                  newtreeMap.put("(" + link.getEdge().getTail() + ", " +  
 link.getEdge().getHead() + ")", templink); 
               } else { 
                  Link templink = new Link(link.getEdge(), link.getDistance(),  
 link.getRCost(), link.getTCost(),  
 link.getSCost(), link.getEnergy()); 
                  newtreeMap.put("(" + link.getEdge().getTail() + ", " +  
 link.getEdge().getHead() + ")", templink); 
               } 
            } 



  87 

 

  

         } else if (method == 3) { 
            for (Link link : treeMap.values()) { 
               // calculating new cost for amp = 1 
               double dis = link.getDistance(); 
               double newScost = getSCostOther(dis, amp); 
               // only change the cost of i (if edge form ) 
               // Tail = sender, Head = receiver 
               if (link.getEdge().getHead() == i) { 
                  Link templink = new Link(link.getEdge(), link.getDistance(),  
 link.getRCost(), link.getTCost(),  
 newScost, link.getEnergy()); 
                  newtreeMap.put("(" + link.getEdge().getTail() + ", " +  
 link.getEdge().getHead() + ")", templink); 
               } else { 
                  Link templink = new Link(link.getEdge(), link.getDistance(),  
 link.getRCost(), link.getTCost(),  
 link.getSCost(), link.getEnergy()); 
                  newtreeMap.put("(" + link.getEdge().getTail() + ", " +  
 link.getEdge().getHead() + ")", templink); 
               } 
            } 
         } 
 
         // save the edge cost as a file 
         StringBuilder totalenergycost = new StringBuilder(); 
         totalenergycost.append("Sensor Network Edges with Distance, Cost and Capacity:\n"); 
         for (Link link : newtreeMap.values()){ 
            for (Link innerlink : newtreeMap.values()) { 
               if ((link.getEdge().getHead() == innerlink.getEdge().getHead()) 
 && (link.getEdge().getTail() == innerlink.getEdge().getTail())) { 
                  totalenergycost.append(innerlink.toString() + "\n"); 
               } 
            } 
         } 
         // calculate not yet remove part 
         ArrayList<Integer> tempdeadNodes = new ArrayList<>(); 
 
 // for max function to find the min off load electricity 
         IloCplex tempCpFirst = new IloCplex(); 
 // for calculating optimized path 
         IloCplex tempCpObject = new IloCplex(); 
 
         // use newtreeMap when remove nodes 
         Map<String, IloNumVar> tempFirstname = varName(tempCpFirst, newtreeMap,  



  88 

 

  

 dataGens, storageNodes); 
         Map<String, IloNumVar> tempObjtname = varName(tempCpObject, newtreeMap,  
 dataGens, storageNodes); 
 
         ArrayList<Double> newstorage = new ArrayList<>(); 
         ArrayList<Double> originalstorage = new ArrayList<>(); 
         ArrayList<Double> newCalenergy = new ArrayList<>(); 
 
         double[] trueDataSend = new double[3]; 
         double[] fakeDataSend = new double[3]; 
         // fake 
         claculateLp(newtreeMap, adjacencyList1, close, tempFirstname, 
 tempObjtname, tempCpFirst, tempCpObject, storageNodes,  
 tempvalues, tempdeadNodes, newstorage, originalstorage,  
 newCalenergy, trueDataSend, fakeDataSend,"c" +  
 String.valueOf(i), "c" + String.valueOf(i)); 
 
         // fake obj 
         Cell fakeObjvalue = energyrow.createCell(7); 
         fakeObjvalue.setCellValue((double) tempvalues[1]); 
 
         // total cost 
         double trueEnergyPath = 0; 
         for (double D : originalstorage) { 
            trueEnergyPath += D; 
         } 
         Cell trueEfakeObjvalue = energyrow.createCell(21); 
         trueEfakeObjvalue.setCellValue(trueEnergyPath); 
 
         // fake energy cost 
         Cell fakecost = energyrow.createCell(9); 
         fakecost.setCellValue((double) newstorage.get(i - 1)); 
 
         Cell deadNodeList = energyrow.createCell(6); 
         deadNodeList.setCellValue(tempdeadNodes.toString()); 
 
         // new dead nodes 
         Cell deadnodes = energyrow.createCell(4); 
         deadnodes.setCellValue(tempdeadNodes.size()); 
 
         // true energy cost (fake path) 
         Cell truecost = energyrow.createCell(22); 
         truecost.setCellValue((double) newCalenergy.get(i - 1)); 
 
         Cell originalEnergy = energyrow.createCell(10); 



  89 

 

  

         originalEnergy.setCellValue((double) originalstorage.get(i - 1)); 
 
         Cell trueDataIn = energyrow.createCell(13); 
         trueDataIn.setCellValue((double) trueDataSend[0]); 
         Cell trueDataOut = energyrow.createCell(14); 
         trueDataOut.setCellValue((double) trueDataSend[1]); 
         Cell trueDataSave = energyrow.createCell(15); 
         trueDataSave.setCellValue((double) trueDataSend[2]); 
 
         Cell fakeDataIn = energyrow.createCell(16); 
         fakeDataIn.setCellValue((double) fakeDataSend[0]); 
         Cell fakeDataOut = energyrow.createCell(17); 
         fakeDataOut.setCellValue((double) fakeDataSend[1]); 
         Cell fakeDataSave = energyrow.createCell(18); 
         fakeDataSave.setCellValue((double) fakeDataSend[2]); 
 
         // check die 
         // current energy + energy cost of saving one data item > minCapacity , or 
         // current energy + energy cost to rely (transfer + receive) data to closest node  >  the 
minCapacity 
         if (originalstorage.get(i - 1) + treeMap.get("(" + close.get(i).get(0) + 
  ", " + i + ")").getSCost() > minCapacity || 
 originalstorage.get(i - 1) + treeMap.get("(" + i + ", " +  
 close.get(i).get(0) + ")").getTCost() + 
 treeMap.get("(" + i + ", " + close.get(i).get(0) + 
 ")").getRCost() > minCapacity) { 
 
            Cell deadornot = energyrow.createCell(12); 
            deadornot.setCellValue("Dead"); 
 
         } else { 
            Cell deadornot = energyrow.createCell(12); 
            deadornot.setCellValue("OK"); 
         } 
 
         System.out.println("Removing " + i + " :"); 
         // remove treeMap which contains the target node 
         for (Link link : treeMap.values()){ 
            if (link.getEdge().getTail() == i) { 
               temptreeMap.remove("(" + link.getEdge().getHead() + ", " +  
 link.getEdge().getTail() + ")"); 
            } else if (link.getEdge().getHead() == i) { 
               temptreeMap.remove("(" + link.getEdge().getHead() + ", " +  
 link.getEdge().getTail() + ")"); 
            } 



  90 

 

  

         } 
 
         // remove adjacent list which contains the target node 
         Set<Integer> set = tempadj.remove(i); 
         for (Integer target : set) { 
            Integer obj = i; 
            // test the removing lists 
            // System.out.println(target + " " + obj); 
            tempadj.get(target).remove(obj); 
         } 
 
         // removing node in closest list 
         tempclose.remove(i); 
         for (Integer j : tempclose.keySet()) { 
            // if node j's closest node in tempclose is i (the removed node) change  
 it 
            if (tempclose.get(j).get(0) == i) { 
 // find a new closest node, so change the distance to max 
               tempclose.get(j).set(1, Integer.MAX_VALUE);  
 // get the new adjacent list form tempadj 
               Set<Integer> tempset = tempadj.get(j);  
               for (int k : tempset) { 
                  if (temptreeMap.get("(" + j + ", " + k + ")").distance < 
 tempclose.get(j).get(1)) { 
                     tempclose.get(j).set(0, k); // change node 
                     tempclose.get(j).set(1, 
 (int) temptreeMap.get("(" + j + 
  ", " + k + ")").distance); //change distance 
                  } 
               } 
            } 
         } 
 
         // DG will not change 
         int[] tempDG = dataGens; 
         // storage will be take out 1 every time 
         int[] tempSN = new int[storageNodes.length - 1]; 
         int incounter = 0; 
         int outcounter = 0; 
 
         while (incounter < storageNodes.length) { 
            if (storageNodes[incounter] == i) { 
               incounter++; 
            } else { 
               tempSN[outcounter++] = storageNodes[incounter++]; 



  91 

 

  

            } 
         } 
 
         // use to test the current storage Nodes 
 
 // for max function to find the min off load electricity 
         IloCplex CpFirst = new IloCplex(); 
         IloCplex CpObject = new IloCplex(); // for calculating optimized path 
 
         // use newtreeMap when remove nodes 
         Map<String, IloNumVar> Firstname = varName(CpFirst, temptreeMap, 
 tempDG, tempSN); 
         Map<String, IloNumVar> Objtname = varName(CpObject, temptreeMap, 
 tempDG, tempSN); 
 
         ArrayList<Integer> deadNodes = new ArrayList<>(); 
         ArrayList<Double> newtotalenergy = new ArrayList<>(); 
         ArrayList<Double> dumtotalenergy = new ArrayList<>(); 
         ArrayList<Double> dumnewCalenergy = new ArrayList<>(); 
         // remove 
         boolean flag = claculateLp(temptreeMap, tempadj, tempclose, Firstname, 
 Objtname, CpFirst, CpObject, tempSN, values,  
 deadNodes, newtotalenergy, dumtotalenergy,  
 dumnewCalenergy, trueDataSend, fakeDataSend, 
 "r" + String.valueOf(i), 
 "r" + String.valueOf(i)); 
 
         // new Obj 
         Cell Objvalue = energyrow.createCell(1); 
         Objvalue.setCellValue((double) values[1]); 
 
         // old Obj is the same as non removed result 
         double original = energysheet.getRow(1).getCell(2).getNumericCellValue(); 
         Cell Originalvalue = energyrow.createCell(2); 
         Originalvalue.setCellValue(original); 
 
         //new data items 
         Cell dataitems = energyrow.createCell(3); 
         dataitems.setCellValue(values[3]); 
 
         // old dead node is same as non removed result 
         double originaldead = energysheet.getRow(1) 
 .getCell(4).getNumericCellValue(); 
         Cell originaldeadnodes = energyrow.createCell(5); 
         originaldeadnodes.setCellValue(originaldead); 



  92 

 

  

 
         Cell utiliyTure = energyrow.createCell(8); 
         double util = (double) values[1] - original; 
         if (util < 0.01) { 
            utiliyTure.setCellValue((double) 0); 
         } else { 
            utiliyTure.setCellValue((double) util); 
         } 
 
         // calculate the fake utility 
         double fakeUtility = energysheet.getRow(rowcounter) 
 .getCell(1).getNumericCellValue() –  
 energysheet.getRow(rowcounter) 
 .getCell(7).getNumericCellValue() +  
 energysheet.getRow(rowcounter) 
 .getCell(9).getNumericCellValue() – 
 energysheet.getRow(rowcounter) 
 .getCell(10).getNumericCellValue(); 
 
         Cell fakeUcell = energyrow.createCell(11); 
         fakeUcell.setCellValue((double) fakeUtility); 
 
         double diff = energysheet.getRow(rowcounter) 
 .getCell(11).getNumericCellValue() –  
 energysheet.getRow(rowcounter) 
 .getCell(8).getNumericCellValue(); 
         Cell originaldata = energyrow.createCell(19); 
         originaldata.setCellValue((double) diff); 
 
         double discardData = 0; 
         if (energysheet.getRow(rowcounter).getCell(10).getNumericCellValue() >  
 minCapacity) { 
            double trueData = energysheet.getRow(rowcounter) 
 .getCell(14).getNumericCellValue() +  
 energysheet.getRow(rowcounter) 
 .getCell(15).getNumericCellValue(); 
            double fakeData = energysheet.getRow(rowcounter) 
 .getCell(17).getNumericCellValue() +  
 energysheet.getRow(rowcounter) 
 .getCell(18).getNumericCellValue(); 
            discardData = fakeData - trueData; 
         } 
 
         Cell discard = energyrow.createCell(20); 
         discard.setCellValue((double) discardData); 



  93 

 

  

 
         // after writing one row, row++; 
         rowcounter++; 
 
         if(!flag) { 
            System.out.println("having some problem!"); 
            return; 
         } 
 
         newtreeMap.clear(); 
         temptreeMap.clear(); 
         tempadj.clear(); 
         tempclose.clear(); 
      } 
 
   } 
 
   static boolean claculateLp(Map<String, Link> treeMap, Map<Integer, 
 Set<Integer>> adjacencyList1, HashMap<Integer,  
 List<Integer>> tempclose,  
 Map<String, IloNumVar> nameFirst, 
 Map<String, IloNumVar> nameObj, IloCplex CpFirst,  
 IloCplex CpObj, int[] storges, double[] exldata,  
 ArrayList<Integer> deadNodes, 
 ArrayList<Double> faketotalenergy, 
 ArrayList<Double> truetotalenergy, 
 ArrayList<Double> newCalenergy, 
 double[] trueDataSend, double[] fakeDataSend, 
 String removed, String Lpfilename) throws IOException,  
 IloException { 
 
      List<IloRange> constraintsFirst = new ArrayList<IloRange>(); 
      List<IloRange> constraintsObj = new ArrayList<IloRange>(); 
 
 
      // adding first constrain 
      for(int i: adjacencyList1.keySet()) { 
 
         IloLinearNumExpr exprFirst = CpFirst.linearNumExpr(); 
         IloLinearNumExpr exprObj = CpObj.linearNumExpr(); 
 
         // if is generators add the source sink 
         if (i <= dataGens.length) { 
            String dir = "x0" + i + "'"; 
            // for first 



  94 

 

  

            exprFirst.addTerm(1, nameFirst.get(dir)); 
            // for obj 
            exprObj.addTerm(1, nameObj.get(dir)); 
         } 
 
         // + part 
         for(int j : adjacencyList1.get(i)) { 
            String dir = "x" + j + "''" + i + "'"; 
            exprFirst.addTerm(1, nameFirst.get(dir)); 
            // for obj 
            exprObj.addTerm(1, nameObj.get(dir)); 
         } 
 
         // - part 
         for(int j : adjacencyList1.get(i)) { 
            String dir = "x" + i + "''" + j + "'"; 
            exprFirst.addTerm(-1, nameFirst.get(dir)); 
            // for obj 
            exprObj.addTerm(-1, nameObj.get(dir)); 
         } 
 
         // if is storages add the storage sink 
         if (i > dataGens.length) { 
            String dir = "x" + i + "''51"; 
            exprFirst.addTerm(-1, nameFirst.get(dir)); 
            // for obj 
            exprObj.addTerm(-1, nameObj.get(dir)); 
         } 
 
         // add constrain 
         constraintsFirst.add(CpFirst.addEq(exprFirst, 0)); 
         constraintsObj.add(CpObj.addEq(exprObj, 0)); 
      } 
 
      // adding second constrain 
      for(int i: adjacencyList1.keySet()) { 
         IloLinearNumExpr exprFirst = CpFirst.linearNumExpr(); 
         IloLinearNumExpr exprObj = CpObj.linearNumExpr(); 
 
         // in part 
         for(int j : adjacencyList1.get(i)) { 
            String dir = "x" + j + "''" + i + "'"; 
            exprFirst.addTerm(treeMap.get("("+ j + ", " +  
 i +")").getRCost(), nameFirst.get(dir)); 
            exprObj.addTerm(treeMap.get("("+ j + ", " + 



  95 

 

  

 i +")").getRCost(), nameObj.get(dir)); 
         } 
         // out part 
         for(int j : adjacencyList1.get(i)) { 
            String dir = "x" + i + "''" + j + "'"; 
            // when calculating transfer cost, we need to take out the receive cost  
 (from sender) 
            double temp = (double)Math.round((treeMap.get("(" + i + ", 
 " + j + ")").getTCost() –  
 treeMap.get("(" + o + ", " + j + ")") 
 .getRCost()) * 10000) / 10000; 
            exprFirst.addTerm(temp, nameFirst.get(dir)); 
            exprObj.addTerm(temp, nameObj.get(dir)); 
         } 
 
         // if is storages add the storage sink 
         if (i > dataGens.length) { 
            String dir = "x" + i + "''51"; 
            exprFirst.addTerm(treeMap.get("("+ adjacencyList1.get(i).iterator().next() + ", " + i + 
")").getSCost(), nameFirst.get(dir)); 
            exprObj.addTerm(treeMap.get("("+ adjacencyList1.get(i).iterator().next() + ", " + i + 
")").getSCost(), nameObj.get(dir)); 
         } 
 
         // add constrain 
         constraintsFirst.add(CpFirst.addLe(exprFirst, minCapacity)); 
         constraintsObj.add(CpObj.addLe(exprObj, minCapacity)); 
      } 
 
      // add constrains for single node ** only firstObj 
      // objective needs to be separate since the data is possible to be discarded by  
 the data generators (after remove nodes) 
      for (Integer i : adjacencyList1.keySet()) { 
         IloLinearNumExpr exprFirst = CpFirst.linearNumExpr(); 
 
         if (i <= dataGens.length) { 
            String dir = "x0" + i + "'"; 
            exprFirst.addTerm(1, nameFirst.get(dir)); 
            constraintsFirst.add(CpFirst.addLe(exprFirst, numberOfDataItemsPerDG)); 
         } else { 
            String dir = "x" + i + "''51"; 
            exprFirst.addTerm(1, nameFirst.get(dir)); 
            constraintsFirst.add(CpFirst.addLe(exprFirst, numberOfStoragePerSN)); 
         } 
      } 



  96 

 

  

 
 
      // add first obj objective function 
      IloLinearNumExpr objectiveFirst = CpFirst.linearNumExpr(); 
 
      for (int i = 0; i < dataGens.length; i++) { 
         int temp = i + 1; 
         String dir = "x0" + temp + "'"; 
         objectiveFirst.addTerm(1, nameFirst.get(dir)); 
      } 
 
      CpFirst.addMaximize(objectiveFirst); 
 
      // only see important messages on screen while solving 
      // CpFirst.setParam(IloCplex.Param.Simplex.Display, 0); 
 
      //start solving 
      // check if the problem is solvable 
      if (CpFirst.solve()) { 
         // objective value of min, x, and y 
//       System.out.println("obj = " + CpFirst.getObjValue()); 
//       for (Map.Entry<String, IloNumVar> entry : nameFirst.entrySet()) { 
//          System.out.println(entry.getKey() + "  = " + CpFirst.getValue(entry.getValue())); 
//       } 
//       System.out.println(objectiveFirst.toString()); 
//       for (int i = 0; i < constraintsFirst.size(); i++) { 
//          System.out.println(constraintsFirst.get(i).toString()); 
//       } 
 
      } else { 
         System.out.println("Model not solved"); 
      } 
 
      // initial data items to offload 
      int[] dataIn = new int[numberOfDG]; 
 
      Arrays.fill(dataIn, 100); 
 
      // objective value 
      System.out.println("Objective value: " + CpFirst.getObjValue()); 
      if (CpFirst.getObjValue() < 999.999) { 
         System.out.println("Can not distribute all data!"); 
         // single generator constrains start at index 98 
 
         for (int i = 1; i <= dataGens.length; i++) { 



  97 

 

  

            // get generator's value 
            if (CpFirst.getValue(nameFirst.get("x0" + i + "'")) < 99.999) { 
 
               System.out.println("x0" + i + "'" + ": " +  
 CpFirst.getValue(nameFirst.get("x0" + i + "'"))); 
               System.out.println("Flag!: "); 
 
               dataIn[i - 1] = (int) CpFirst.getValue(nameFirst.get("x0" + i + "'")); 
               System.out.println("change to"+ dataIn[i - 1]); 
            } 
         } 
      } else { 
         System.out.println("Success!"); 
      } 
 
      System.out.println(Arrays.toString(dataIn)); 
 
      /*------------ Obj's signal node constrains-------------------*/ 
      for (Integer i : adjacencyList1.keySet()) { 
         IloLinearNumExpr exprObj = CpObj.linearNumExpr(); 
 
         // dataIn[i] may change if FirstObj is not solvable (DG discard data) 
         if (i <= dataGens.length) { 
            String dir = "x0" + i + "'"; 
            exprObj.addTerm(1, nameObj.get(dir)); 
            constraintsObj.add(CpObj.addEq(exprObj, dataIn[i - 1])); 
         } else { 
            String dir = "x" + i + "''51"; 
            exprObj.addTerm(1, nameObj.get(dir)); 
            constraintsObj.add(CpObj.addLe(exprObj, numberOfStoragePerSN)); 
         } 
      } 
 
      // add sencond objective function 
      IloLinearNumExpr objectiveObj = CpObj.linearNumExpr(); 
 
      for (Link link : treeMap.values()){ 
         String dir = "x" + link.getEdge().getTail() + "''" + 
 link.getEdge().getHead() + "'"; 
         objectiveObj.addTerm(link.getTCost(), nameObj.get(dir)); 
      } 
      for (int i = 0; i < storges.length; i++) { 
         String dir = "x" + storges[i] + "''51"; 
         int n2 = adjacencyList1.get(storges[i]).iterator().next(); 
         objectiveObj.addTerm(treeMap.get("("+ n2 + ", " + 



  98 

 

  

 storges[i] +")").getSCost(), nameObj.get(dir)); 
      } 
 
      // write objective function 
      CpObj.addMinimize(objectiveObj); 
 
      // only see important messages on screen while solving 
 
      // start solving 
      // check if the problem is solvable 
      if (CpObj.solve()) { 
//       // objective value of min, x, and y 
//       System.out.println("obj = " + CpObj.getObjValue()); 
//       for (Map.Entry<String, IloNumVar> entry : nameObj.entrySet()) { 
//          System.out.println(entry.getKey() + "  = " + CpObj.getValue(entry.getValue())); 
//       } 
// 
//       System.out.println(objectiveObj.toString()); 
//       for (int i = 0; i < constraintsObj.size(); i++) { 
//          System.out.println(constraintsObj.get(i).toString()); 
//       } 
 
      } 
      else { 
         System.out.println("Model not solved"); 
      } 
      System.out.println("Second Objective value: " + CpObj.getObjValue()); 
      // file for path 
      StringBuilder dataTpath = new StringBuilder(); 
 
      dataTpath.append("Second Obj Value: "+ CpObj.getObjValue() + "\n"); 
      //      double[] tempresult1 = lpObj.getPtrVariables(); 
 
      for (Map.Entry<String, IloNumVar> entry : nameObj.entrySet()) { 
         dataTpath.append(entry.getKey() + " : " + CpObj.getValue(entry.getValue()) + "\n"); 
      } 
      //getMinFile 
 
      ArrayList<Double> tempp = new ArrayList<>(); 
 
      Map<String, Link> originaltreeMap = new TreeMap<String, Link>(linkstest); 
      // calculate the true cost 
      if (removed.charAt(0) == 'c' && Lpfilename.charAt(0) == 'c') { 
         tempp = getMinFile(originaltreeMap, tempclose, CpObj, nameObj, storges, exldata, 
trueDataSend, fakeDataSend, 



  99 

 

  

 deadNodes, "O" + removed, 0); 
         truetotalenergy.addAll(tempp); 
         tempp.clear(); 
      } 
 
      tempp = getMinFile(originaltreeMap, tempclose, CpObj, nameObj, storges, 
 exldata, trueDataSend, fakeDataSend, deadNodes, removed, 1); 
      newCalenergy.addAll(tempp); 
      tempp.clear(); 
 
      // calculate the fake cost or remove cost 
      tempp = getMinFile(treeMap, tempclose, CpObj, nameObj, storges, exldata, 
 trueDataSend, fakeDataSend, deadNodes, removed, 0); 
      faketotalenergy.addAll(tempp); 
 
      exldata[1] = CpObj.getObjValue(); 
      exldata[3] = (int) CpFirst.getObjValue(); 
      // clean up memory used 
      CpFirst.end(); 
      CpObj.end(); 
 
      return true; 
   } 
 
   /** 
    * treemap contains the cost of each edge use to calculate total cost 
    * @param treeMap : contains the edge cost 
    * @throws IOException 
    * @throws IloException 
    * @throws UnknownObjectException 
    */ 
   static ArrayList<Double> getMinFile(Map<String, Link> treeMap,  
 HashMap<Integer, List<Integer>> tempclose,  
 IloCplex CpIn, Map<String, IloNumVar> cpresult,  
 int[] storages, double[] exldata, 
 double[] trueDataSend, double[] fakeDataSend,  
 ArrayList<Integer> deadNodes, String removed, 
 int method) throws IOException,  
 UnknownObjectException, IloException { 
      //treeMap.get("("+j+", "+i+")").getRCost() <- format to get cost 
      /* 
       * getRcost() = receive cost 
       * getTcost() = transmit cost 
       * getScost() = save cost 
       */ 



  100 

 

  

      // this map contains cost for each node 
      ArrayList<Double> back = new ArrayList<>(); 
      HashMap<Integer,List<Double>> map = new HashMap<>(); 
      deadNodes.clear(); 
 
      // this map contains Scost for each non-generator node (since save cost cannot be retrieve 
from itself) 
      HashMap<Integer,Double> nodeScost = new HashMap<>(); 
      for (Map.Entry<Integer, List<Integer>> pair : tempclose.entrySet()) { 
         nodeScost.put(pair.getKey(), treeMap.get("(" + pair.getValue().get(0) + 
 ", "+pair.getKey()+")").getSCost()); 
      } 
 
      // output for each node List: receive cost, transmit cost, store cost; 
      // get information form the file (file contains: [transfer node, direction node, how many data 
items]) 
      List<List<Double>> res = new ArrayList<>(); 

// temp is for numbers at a line from input file 
      List<Double> tempres = new ArrayList<>();  
      for (Map.Entry<String, IloNumVar> entry : cpresult.entrySet()){ 
         String curname = entry.getKey(); 
         // take out the nodes' lable form name 
         // for example curname = x12''11', take out node 12 and 11 
         for(int j = 0; j < curname.length(); j++) { 
            // check when char is digit 
            if (Character.isDigit(curname.charAt(j))) { 
               if(curname.charAt(j) == '0'){ 
                  tempres.add((double) 0); 
               } else { 
                  int num = curname.charAt(j) - '0'; 
                  while(j + 1 < curname.length() && 
 Character.isDigit(curname.charAt(j + 1))) { 
                     num = num * 10 + curname.charAt(j + 1) - '0'; 
                     j++; 
                  } 
                  tempres.add((double) num); 
               } 
            } 
         } 
         // add result value to the last element in tempres and add to res 
         tempres.add(CpIn.getValue(entry.getValue())); 
         res.add(new ArrayList<>(tempres)); 
         tempres.clear(); 
      } 
 



  101 

 

  

      //initial map 
      for (int i = 1; i <= numberOfNodes; i++) { 
         List<Double> initial = new ArrayList<>(); 
         initial.add(0.0); // 0 Tcost 
         initial.add(0.0); // 1 Rcost 
         initial.add(0.0); // 2 Scost 
         initial.add(0.0); // 3 total 
         map.put(i, initial); 
      } 
 
      // use to check if data items transfered exceed energy capacity 
      double tempCapaRS = 0.0; 
      double tempCapaSave = 0.0; 
 
      double expectRS = 0.0; 
      double expectSave = 0.0; 
 
      double tempenergy = 0.0; 
      boolean flag = false; 
      String tempremoved = removed; 
      int targetnode = tempremoved.equals("original") ? 0 : 
 Integer.parseInt(tempremoved.replaceAll("[^\\d.]", "")); 
 
      // calculate target node's energy cost 
      for (int i = 0; i < res.size(); i++){ 
         int transNode = (int) Math.floor(res.get(i).get(0)); 
         int disNode = (int) Math.floor(res.get(i).get(1)); 
         double items =  res.get(i).get(2); 
 
         if (removed.equals("original")) { 
            totaldataitems.put(transNode,  
 totaldataitems.getOrDefault(transNode, 0.0) + items); 
         } 
 
         if (transNode == 0) { 
            continue; 
         } 
         // System.out.println(transNode + " " + disNode); debug 
         // calculate non storage node 
         if (disNode != numberOfNodes + 1) { 
            // case transfer / receive data 
            // T cost = sender's transmit cost - receiver's receive cost 
            double totalTcost = (treeMap.get("(" + transNode + ", "+  
 disNode+")").getTCost() – 
 treeMap.get("(" + transNode +", "+  



  102 

 

  

 disNode+")").getRCost()) * items; 
            double totalRcost = treeMap.get("(" + transNode +", " +  
 disNode +")").getRCost() * items; 
            // record the energy cost 
 // tansferNode's Tcost 
            map.get(transNode).set(0, map.get(transNode).get(0) + totalTcost); 
 
 // receiveNode's Rcost 
            map.get(disNode).set(1, map.get(disNode).get(1) + totalRcost);  
            /*-------------------- calculate data items ------------------------*/ 
            // when in is our target node 
            if (transNode == targetnode && targetnode != 0) { 
               // cost for receive + out 
               double inoutcost = treeMap.get("(" + transNode+", "+ 
 disNode+")").getTCost() * items; 
               // still have energy 
               if (tempenergy + inoutcost < minCapacity) { 
                  tempenergy += inoutcost; 
                  tempCapaRS += items; 
               } else { // no energy 
                  double remainenergy = minCapacity - tempenergy; 
                  double transfercost = treeMap.get("("+ transNode+", "+ 
 disNode+")").getTCost(); 
                  double cansend = remainenergy / transfercost; 
                  tempCapaRS += cansend; 
                  if (method == 1 && !flag) { 
                     trueDataSend[0] = tempCapaRS; 
                     trueDataSend[1] = tempCapaRS; 
                     flag = true; 
                  } 
                  tempenergy = minCapacity; 
               } 
               expectRS += items; 
            } 
         } else { 
            // case save data 
            // record energy 
            map.get(transNode) 
 .set(2, nodeScost.getOrDefault(transNode, 0.0) * items); 
 
            /* ------------------ calculate data items ------------------------ */ 
            // when in is our target node 
            if (transNode == targetnode && targetnode != 0) { 
               // cost for receive + out 
               double tempcost = nodeScost.getOrDefault(transNode, 0.0) * items; 



  103 

 

  

               // still have energy 
               if (tempenergy + tempcost < minCapacity) { 
                  tempenergy += tempcost; 
                  tempCapaSave += items; 
               } else { // no energy 
                  double remainenergy = minCapacity - tempenergy; 
                  double transfercost = nodeScost.getOrDefault(transNode, 0.0); 
                  double cansend = remainenergy / transfercost; 
                  tempCapaSave += cansend; 
                  if (method == 1 && !flag) { 
                     trueDataSend[2] = tempCapaSave; 
                     flag = true; 
                  } 
                  tempenergy = minCapacity; 
               } 
               expectSave += items; 
            } 
         } 
      } 
 
      // if not reach the max energy capacity, save the data item 
      if (method == 1 && !flag) { 
         trueDataSend[0] = tempCapaRS; 
         trueDataSend[1] = tempCapaRS; 
         trueDataSend[2] = tempCapaSave; 
      } 
      fakeDataSend[0] = expectRS; 
      fakeDataSend[1] = expectRS; 
      fakeDataSend[2] = expectSave; 
 
      // output file 
      StringBuilder energy_mincostoutput = new StringBuilder(); 
      energy_mincostoutput.append("The order of the cost: Transfer cost, Receive cost, Save 
cost, total cost, node status").append("\r\n"); 
 
      //combine DG and storages 
      int[] combine = new int[dataGens.length + storages.length]; 
      for (int i = 0; i < combine.length; i++) { 
         if (i < dataGens.length) { 
            combine[i] = dataGens[i]; 
         } else { 
            combine[i] = storages[i - dataGens.length]; 
         } 
      } 
 



  104 

 

  

      // calculate total cost (0 + 1 + 2) 
      int deadcounter = 0; 
      for (int i : combine) { 
         double totalcost = map.get(i).get(0) +map.get(i).get(1) + map.get(i).get(2); 
         map.get(i).set(3, totalcost); 
         energy_mincostoutput.append("Node "+ i + ": ["+ map.get(i).get(0) + ", " + 
 map.get(i).get(1) + ", " + 
 map.get(i).get(2) + ", " 
 map.get(i).get(3)) 
 .append("], closest node: ") 
 .append(tempclose.get(i).get(0)); 
         // add the energy cost result to send back 
         if (method == 1) { 
            if (map.get(i).get(3) > minCapacity) { 
               back.add((double) minCapacity); 
            } else { 
               back.add(map.get(i).get(3)); 
            } 
         } else { 
            back.add(map.get(i).get(3)); 
         } 
         // calculate weather the node is dead 
         if (i <= numberOfDG) { // source nodes 
            //  current energy    +   energy cost to rely (transfer + receive) data to closest node  >   
the minCapacity user identified 
            if (Math.round((map.get(i).get(3) + 
 treeMap.get("(" + i + ", " + 
 tempclose.get(i).get(0) + ")").getTCost() + 
 treeMap.get("(" + i + ", " + tempclose.get(i).get(0) + 
 ")").getRCost()) * 100) >= 100 * treeMap.get("(" + 
 tempclose.get(i).get(0) + ", " + i + ")").getEnergy()) { 
               energy_mincostoutput.append(", status: DEAD!").append(";\r\n"); 
               deadcounter++; 
               deadNodes.add(i); 
            } else { 
               energy_mincostoutput.append(", status: Good").append(";\r\n"); 
            } 
         } else { // storage nodes 
            // current energy + energy cost of saving one data item > minCapacity , or 
            // current energy + energy cost to rely (transfer + receive) data to closest node  >  the 
minCapacity 
            if (Math.round((map.get(i).get(3) + treeMap.get("(" + 
 tempclose.get(i).get(0) + ", " + i + ")").getSCost()) * 100) >= 
 100 * treeMap.get("(" + tempclose.get(i).get(0) + 
 ", " + i + ")").getEnergy() || Math.round((map.get(i).get(3) + 



  105 

 

  

 treeMap.get("(" + i + ", " + 
 tempclose.get(i).get(0) + ")").getTCost() + 
 treeMap.get("(" + i + ", " + 
 tempclose.get(i).get(0) + ")").getRCost()) * 100) >= 
 100 * treeMap.get("(" + tempclose.get(i).get(0) + 
 ", " + i + ")").getEnergy()) { 
               energy_mincostoutput.append(", status: DEAD!").append(";\r\n"); 
               deadcounter++; 
               deadNodes.add(i); 
            } else { 
               energy_mincostoutput.append(", status: Good").append(";\r\n"); 
            } 
         } 
      } 
      exldata[4] = deadcounter; 
 
      totaldataitems.clear(); 
      return back; 
   } 
 
   /* for different cost analysis */ 
   // receive and save cost 
   double getRSCost(double l){ 
      final int K = 512; // k = 512B (from paper0) 
      final double E_elec = 100 * Math.pow(10,-9); // E_elec = 100nJ/bit (from paper1) 
      double Erx = 8 * E_elec * K; // Receiving energy consumption assume is same as saving 
      //return Math.round(Erx*100)/100.0; // return the sum of sending and receiving energy 
      return Erx*1000; // make it milli J now for better number visualization during calculation 
   } 
 
   // transfer cost -> ORIGINAL 
   static double getTCost(double l) { 
      final int K = 512; // k = 512B (from paper0) 
      final double E_elec = 100 * Math.pow(10,-9); // E_elec = 100nJ/bit (from paper1) 
      final double Epsilon_amp = 100 * Math.pow(10,-12); // Epsilon_amp = 100 
pJ/bit/squared(m) (from paper1) 
//      double Etx = E_elec * K + Epsilon_amp * K * l * l; // Transfer energy consumption 
      double Etx = E_elec * K * 8 + Epsilon_amp * K * 8 * l * l; // 
      //return Math.round(Etx*100)/100.0; // return the sum of sending and receiving energy 
      return Math.round(Etx*1000*10000)/10000.0; // make it milli J now for better number 
visualization during calculation 
   } 
 
   static double getTCostOther(double l, double amp){ 
      final int K = 512; // k = 512B (from paper0) 



  106 

 

  

      final double E_elec = 100 * Math.pow(10,-9); // E_elec = 100nJ/bit (from paper1) 
      final double Epsilon_amp = 100 * amp * Math.pow(10,-12); // Epsilon_amp = 100 
pJ/bit/squared(m) (from paper1) 
      double Etx = E_elec * K * 8 + Epsilon_amp * K * 8 * l * l; // 
      //return Math.round(Etx*100)/100.0; // return the sum of sending and receiving energy 
      return Math.round(Etx*1000*10000)/10000.0; // make it milli J now for better number 
visualization during calculation 
   } 
 
   static double getRCostOther(double l, double amp){ 
      final int K = 512; // k = 512B (from paper0) 
      final double E_elec = 100 * amp * Math.pow(10,-9); // E_elec = 100nJ/bit (from paper1) 
      double Erx = 8 * E_elec * K; // Receiving energy consumption assume is same as saving 
      //return Math.round(Erx*100)/100.0; // return the sum of sending and receiving energy 
      return Erx*1000; // make it milli J now for better number visualization during calculation 
   } 
 
   static double getSCostOther(double l, double amp){ 
      final int K = 512; // k = 512B (from paper0) 
      final double E_elec = 100 * amp * Math.pow(10,-9); // E_elec = 100nJ/bit (from paper1) 
      double Erx = 8 * E_elec * K; // Receiving energy consumption assume is same as saving 
      //return Math.round(Erx*100)/100.0; // return the sum of sending and receiving energy 
      return Erx*1000; // make it milli J now for better number visualization during calculation 
   } 
 
   //for the original graphic 
   void executeDepthFirstSearchAlg(double width, double height, 
 Map<Integer, Set<Integer>> adjList) { 
      s.clear(); 
      explored.clear(); 
      discovered.clear(); 
      parent.clear(); 
      List<Set<Integer>> connectedNodes = new ArrayList<Set<Integer>>(); 
      for(int node: adjList.keySet()) { 
         Set<Integer> connectedNode = new LinkedHashSet<Integer>(); 
         recursiveDFS(node, connectedNode, adjList); 
 
         if(!connectedNode.isEmpty()) { 
            connectedNodes.add(connectedNode); 
         } 
      } 
 
      if(connectedNodes.size() == 1) { 
         //System.out.println("Graph is fully connected with one connected component."); 
      } else { 



  107 

 

  

         System.out.println("Graph is not fully connected"); 
      } 
 
 
      //Draw first sensor network graph 
      SensorNetworkGraph graph = new SensorNetworkGraph(dataGens); 
      graph.setGraphWidth(width); 
      graph.setGraphHeight(height); 
      graph.setNodes(nodes); 
      graph.setAdjList(adjList); 
      graph.setPreferredSize(new Dimension(960, 800)); 
      Thread graphThread = new Thread(graph); 
      graphThread.start(); 
 
   } 
 
   //for the new graphic (delete nodes to test) 
   void executeDepthFirstSearchAlgbi(double width, double height, Map<Integer, 
Set<Integer>> adjList) { 
      //System.out.println("\nExecuting DFS Algorithm"); 
      //these have to be clear since they already have elements and values after running the 
algorithm 
      s.clear(); 
      explored.clear(); 
      discovered.clear(); 
      parent.clear(); 
 
      // 
      List<Set<Integer>> connectedNodes = new ArrayList<Set<Integer>>(); 
      for(int node: adjList.keySet()) { 
         Set<Integer> connectedNode = new LinkedHashSet<Integer>(); 
         recursiveDFS(node, connectedNode, adjList); 
 
         if(!connectedNode.isEmpty()) { 
            connectedNodes.add(connectedNode); 
         } 
      } 
 
      if(connectedNodes.size() == 1) { 
         //ystem.out.println("Graph is fully connected with one connected component."); 
      } else { 
         biconnectcounter = biconnectcounter + 1; 
         System.out.println("Graph is not fully connected"); 
      } 
   } 



  108 

 

  

 
   void recursiveDFS(int u, Set<Integer> connectedNode, 
 Map<Integer, Set<Integer>> adjList) { 
 
      if(!s.contains(u) && !explored.containsKey(u)) { 
         s.add(u); 
         discovered.put(u, true); 
      } 
      while(!s.isEmpty()) { 
         if(!explored.containsKey(u)) { 
            List<Integer> list = new ArrayList<Integer>(adjList.get(u)); 
            for(int v: list) { 
 
               if(!discovered.containsKey(v)) { 
                  s.add(v); 
                  discovered.put(v, true); 
 
                  if(parent.get(v) == null) { 
                     parent.put(v, u); 
                  } 
                  recursiveDFS(v, connectedNode, adjList); 
               } else if(list.get(list.size()-1) == v) { 
                  if( parent.containsKey(u)) { 
                     explored.put(u, true); 
                     s.removeElement(u); 
 
                     connectedNode.add(u); 
                     recursiveDFS(parent.get(u), connectedNode, adjList); 
                  } 
               } 
            } 
            if(!explored.containsKey(u)) 
               explored.put(u, true); 
            s.removeElement(u); 
            connectedNode.add(u); 
         } 
      } 
   } 
 
   void populateNodes(int nodeCount, double width, double height) { 
      // if user want to fix the graphic, enter a number in Random() 
      Random random = new Random(); 
 
      for(int i = 1; i <= nodeCount; i++) { 
         Axis axis = new Axis(); 



  109 

 

  

         int scale = (int) Math.pow(10, 1); 
         double xAxis =(0 + random.nextDouble() * (width - 0)); 
         double yAxis = 0 + random.nextDouble() * (height - 0); 
         int capa = random.nextInt(10) + 1; 
 
         xAxis = (double)Math.floor(xAxis * scale) / scale; 
         yAxis = (double)Math.floor(yAxis * scale) / scale; 
 
 
         axis.setxAxis(xAxis); 
         axis.setyAxis(yAxis); 
         axis.setcapa(capa); //each nodes energy capacity 
 
         nodes.put(i, axis); 
      } 
   } 
 
   static void readfileNodes(File file) throws IOException { 
      // if user want to fix the graphic, enter a number in Random() 
      Random random = new Random(); 
      // original 1312 
      Scanner scan = new Scanner(System.in); 
      System.out.println("Please enter the energy capacity:"); 
      minCapacity = scan.nextInt(); //max energy 
 
      FileReader fileReader = new FileReader(file); 
      BufferedReader bufferedReader = new BufferedReader(fileReader); 
      String line; 
 
      while ((line = bufferedReader.readLine()) != null) { 
         Axis axis = new Axis(); 
         String[] words = line.split("  "); 
         int scale = (int) Math.pow(10, 1); 
         double xAxis = Double.parseDouble(words[1]); 
         double yAxis =Double.parseDouble(words[2]); 
 
         axis.setxAxis(xAxis); 
         axis.setyAxis(yAxis); 
         axis.setcapa(minCapacity); //each nodes energy capacity 
 
         nodes.put(Integer.parseInt(words[0]) + 1, axis); 
      } 
 
      fileReader.close(); 
 



  110 

 

  

   } 
 
   void populateAdjacencyList(int nodeCount, int tr, 
 Map<Integer, Set<Integer>> adjList) { 
      for(int i = 1; i <= nodeCount; i++) { 
         adjList.put(i, new HashSet<Integer>()); 
      } 
 
      for(int node1: nodes.keySet()) { 
         Axis axis1 = nodes.get(node1); 
         for(int node2: nodes.keySet()) { 
            Axis axis2 = nodes.get(node2); 
 
            if(node1 == node2) { 
               continue; 
            } 
            double xAxis1 = axis1.getxAxis(); 
            double yAxis1 = axis1.getyAxis(); 
 
            double xAxis2 = axis2.getxAxis(); 
            double yAxis2 = axis2.getyAxis(); 
 
            double distance =  Math.sqrt(((xAxis1-xAxis2)*(xAxis1-xAxis2)) + 
 ((yAxis1-yAxis2)*(yAxis1-yAxis2))); 
 
            double energy = minCapacity; 
 
            if(distance <= tr) { 
               linkstest.put(new String("(" + node2 + ", " + node1 + ")"), 
 new Link(new Edge(node2, node1, 0), distance, 
 getRSCost(distance), getTCost(distance), 
 getRSCost(distance), energy)); 
               if (!close.containsKey(node2)) { 
                  List<Integer> list = new ArrayList<>(); 
                  list.add(node1); 
                  list.add((int) distance); 
                  close.put(node2, list); 
               } else { 
                  if (close.get(node2).get(1) > distance) { 
                     close.get(node2).set(0, node1); 
                     close.get(node2).set(1, (int) distance); 
                  } 
               } 
               Set<Integer> tempList = adjList.get(node1); 
               tempList.add(node2); 



  111 

 

  

               adjList.put(node1, tempList); 
 
               tempList = adjList.get(node2); 
               tempList.add(node1); 
               adjList.put(node2, tempList); 
               if (node1 > node2){ 
                  links.put(new String("(" + node2 + ", " + node1 + ")"), 
 new Link(new Edge(node2, node1, 1), distance, 
 getRSCost(distance), getTCost(distance), 
 getRSCost(distance), energy)); 
               } else { 
                  links.put(new String("(" + node1 + ", " + node2 + ")"), 
 new Link(new Edge(node1, node2, 1), distance, 
 getRSCost(distance), getTCost(distance), 
 getRSCost(distance), energy)); 
               } 
            } 
         } 
      } 
   } 
 
   //similar as populateAdjacencyList but the number of source nodes are different 
   void checkbiconnect(int removeconter,int nodeCount, int tr, Map<Integer, Set<Integer>> 
adjList) { 
      int j = 1; 
      for(int i=1; i < nodeCount; i++) { 
         if (j != removeconter) { 
            adjList.put(j, new HashSet<Integer>()); 
            j++; 
         } else { 
            j++; 
            i=i-1; 
         } 
      } 
 
      for(int node1: nodes2.keySet()) { 
         Axis axis1 = nodes2.get(node1); 
         for(int node2: nodes2.keySet()) { 
 
            Axis axis2 = nodes2.get(node2); 
 
            if(node1 == node2) { 
               continue; 
            } 
            double xAxis1 = axis1.getxAxis(); 



  112 

 

  

            double yAxis1 = axis1.getyAxis(); 
 
            double xAxis2 = axis2.getxAxis(); 
            double yAxis2 = axis2.getyAxis(); 
 
            double distance =  Math.sqrt(((xAxis1-xAxis2)*(xAxis1-xAxis2)) + 
 ((yAxis1-yAxis2)*(yAxis1-yAxis2))); 
 
            double energy = minCapacity; 
 
            if(distance <= tr) { 
               Set<Integer> tempList = adjList.get(node1); 
               tempList.add(node2); 
               adjList.put(node1, tempList); 
 
               tempList = adjList.get(node2); 
               tempList.add(node1); 
               adjList.put(node2, tempList); 
               if (node1 > node2){ 
    links2.put(new String("(" + node2 + ", " + node1 + ")"), 
          new Link(new Edge(node2, node1, 1), distance, 
 getRSCost(distance), getTCost(distance), 
  getRSCost(distance), energy)); 
 } else { 
 links2.put(new String("(" + node1 + ", " + node2 + ")"),  
 new Link(new Edge(node1, node2, 1), distance,  
 getRSCost(distance), getTCost(distance),  
 getRSCost(distance), energy)); 
 } 
            } 
         } 
      } 
   } 
} 
 


