Tomorrow's Technology and You

8th Edition

Chapter 2

Hardware Basics: Inside the Box

Objectives

- ✓ Explain how computers store and manipulate information.
- ✓ Describe the basic organization of a computer.
- ✓ Discuss the functions and interactions of computer's internal components.
- ✓ Explain the need for different types of memory and storage devices.

What Computers Do

Basic Functions of a Computer

- ✓ Receive input: Accept data from the outside world
- ✓ Process data: Perform arithmetic or logical operations on data
- ✓ Produce output: Communicate data to the outside world
- ✓ Store data: Move and store data in long-term memory (a.k.a. storage)

Basic Components of a Computer

- ✓ Input devices
 - Keyboards and pointing devices (mouse)
- ✓ Output devices
 - Display or video monitor
 - **Printer**
 - > Speakers
- ✓ Central Processing Unit (CPU)

Basic Components of a Computer

- ✓ Memory and storage devices
 - ➤ Primary storage: RAM (Random Access Memory) (volatile)
 - Secondary storage: Storage devices that serve as long-term repositories for data:
 - ☐ Hard disk drives
 - ☐ Recordable CD and DVD drives
 - ☐ Tape drives
 - ☐Flash memory (non-volatile)
 - USB flash memory

Basic Components of a Computer

- ✓ Memory and storage devices
 - Read-only storage:
 - □ROM (Read-Only Memory)
 - □Non-Recordable CD-ROM DVD-ROM

and

✓ Information

- ► Interpretation of data
- Anything that can be communicated, whether it has value or not

Information comes from:

- > Data
- ➤ Words, numbers, pictures
- Sound, movies, etc.
- ✓ FALSE: In computer terminology the terms data and information are more or less interchangeable.

✓ Measure of information

- p probability that the information is true
- >-log, p the measure of information

A Bit About Bits

- ✓ Computer's data are digital
 - Bit, or binary digit
 - The unit of information
 - □Can have one of two values: 1 or 0
 - □ Sequences of bits can represent data

(numbers, codes) or instructions

> Byte: a sequence of 8 bits

© 2008 Prentice-Hall, Inc.

- ✓ All numbers can be represented using bits
 - Each number is a sum of its positional values (each being a power of 2).
 - ▶ 19 is represented as 00010011.
- ✓ Binary arithmetic

Bits as Numbers

- ✓ Binary number system
 - ➤ Binary numbers use digits 0 and 1 (bits) only.
 - Decimal numbers are automatically converted into binary numbers and vice versa.
 - ➤ Binary number processing in a computer is usually hidden from the user.

Bits as Codes

- **✓ ASCII** code
 - The most widely used code
 - An abbreviation of American Standard Code for Information Interchange
 - Typically supports up to 256 characters
- **✓** Unicode
 - Supports 65,000 unique characters

Bits as Instructions in Programs

- ✓ Programs are stored as sequences of bits.
 - ➤ Program instructions are represented in binary notation through the use of codes.

http://richardbowles.trippd.com/surham/comparch/archil.htm

http://focus.ti.com/vf/docs/blockdiagram.tsp?family=vf8cblockDiagramId=6944

http://www.vaughns-fl-pagers.som/computer/pc-block-diagram.htm

http://www.hitequest.com/Kiss/computer_arch.htm

Bits, Bytes, and Buzzwords

Bit-related terminology

- Byte = 8 bits
- -Kilobyte (KB) ≈ 1 Thousand Bytes
- − Megabytes ≈ 1 Million Bytes(MB)
- Gigabytes ≈ 1 Billion Bytes(GB)
- Terabytes ≈ 1 Trillion Bytes(TB)

Bits, Bytes, and Buzzwords

Bit-related terminology

$$-$$
Kilo (K) $\approx 10^3$

- Mega (M) ≈
$$10^6$$

$$-$$
 Giga (G) ≈ 10^9

- Tera (T) ≈
$$10^{12}$$

- Peta (P) ≈
$$10^{15}$$

Bits, Bytes, and Buzzwords

Bit-related terminology (for binary arithmetics only)

$$= 2^{10} = 1.024$$

$$= 2^{20} = 1,048,576$$

$$= 2^{30} = 1,073,741,824$$

$$= 2^{40} =$$

$$= 2^{50} =$$

Bits, Bytes, and Buzzwords Bit-related terminology (for binary arithmetic only)

$$-$$
 milli (m) = $2^{-10} = 1/1,024 \gg 10^{-3}$

(one-thousandth)

$$-$$
 micro (μ) = $2^{-20} = 1/1,048,576$

$$\approx 10^{-6}$$
 (one-millionth)

$$-$$
 nano (n) = $2^{-30} = 1/1,073,741,824$

$$\approx 10^{-9}$$
 (one-billionth)

$$-pico(p) = 2^{-40} =$$

$$\approx 10^{-12}$$
 (one-trillionth)

"Green" Computing

The manufacture and use of hardware and software can have an impact on the environment.

- ✓ "Green" equipment (e.g., Energy Star but beware of absurdities).
- ✓ Solar batteries
- ✓ Energy-saving features.

Tips:

- ✓ Turn off the computer when you're away.
- ✓ Screen Savers don't save energy.
- ✓ Print only once.
- ✓ Recycle waste products.

The Computer's Core: The CPU and Memory

The CPU: The Real Computer

- ✓ CPU (microprocessor)
 - Interprets and executes the instructions in each program
 - Performs arithmetic and logical operations on data

CPU

- ✓ Prefetch unit
- Decoding unit
- ✓ Arithmetic-logic unit (ALU)
- ✓ Control unit
- **✓** Cache
- ✓ Bus interface unit
- ✓ (Network interface unit)
- ✓ Registers

CPU

CPU cycles

- ✓ Fetch instruction
- **✓** Decode
- ✓ Fetch operands (arguments) *
- **✓** Execute
- ✓ Writeback *
- * if
- registers
- are not
- used

CPU

- ✓ Instructions and arguments may be fetched from RAM or from cache (fast, small memory on the chip)
- ✓ Arguments may also be kept in registers from where they are available without fetching.
- ✓ The results are typically stored in registers, but can also be stored in (written back to) RAM.
- ✓ Pipeline allows for simultaneous execution of up to 5 instructions each in different cycle.

CPU

- ✓ Typical instructions:
- ✓ http://www.jegerlehner.ch/intel/opcode.htm

- ✓ CPU (microprocessor)
 - Communicates with and supervises all other components of the computer system
 - ➤ Is an extraordinarily complex system of electronic circuits

© 2008 Prentice-Hall,

✓ CPU is housed along with other chips and electronic components on the motherboard

http://www.gup20.com/images/motherboardypg

http://focus.ti.com/vf/docs/blockdiagram.tsp?fantily=vf&blockDiagramId=6044

http://www.yanghns-1-pagers.com/computer/pc-block-draepam.htm

http://www.hiteguest.com/Kiss/combuter_arch.htm

© 2008 Prentice-Hall, Inc.

Slide 28

Compatibility

- ✓ All software is not necessarily compatible with every CPU.
 - Software written for the RISC processors used in mobile and low-end computers won't run on Intel processors used in laptops.
 - -System Programs written for Linux can't run on Windows.
 - CPUs in the same family (like Intel) are generally designed to be **backward compatible.**
 - Newer processors can process all of the instructions handled by (most recent) earlier models.

Compatibility

- ✓ That was a few years ago ...
- ✓ Today:
 - ➤ Windows, Mac OS, and Linux can be installed on PCs and Macintosh computers.
 - ➤ One can have any two of the above and decide which one to run at the time of booting.

Performance

- ✓ Time-consuming applications require faster machines to produce results on time.
- ✓ A computer hardware's overall performance is determined by:
 - ► Its microprocessor's internal clock speed
 - ☐ Measured in units called gigahertz (GHz) for billions of clock cycles per second
 - The architecture and word size of the processor
 - ☐ Most PCs and Macintoshes use 64-bit processors.
 - Some embedded and special-purpose computers still use 16-bit and 32-bit processors.

- ✓ Techniques for speeding up computer hardware's performance:
 - Pipelining (scalar processors)
 - > Multicore processors
 - Parallel processing (supercomputers)
 - ➤ Server clusters

The Computer's Memory

- ✓ RAM (random access memory)
 - Used to store program instructions and data temporarily
 - ➤ Instructions and data can be stored in any locations (addresses)
 - Can quickly retrieve what's stored (in nanoseconds)
 - ► Will not retain data if power goes off (volatile)

The Computer's Memory

- ✓ **ROM** (read-only memory, permanent)
 - ➤ Data and/or instructions stored permanently on a chip
 - Contains startup instructions and permanent data
- ✓ CMOS (complementary metal oxide semiconductor)
 - ➤ Special low-energy kind of RAM
 - Stores date, time, and calendar on PC
- ✓ Flash memory (non-volatile)
 - ➤ Used for phones, pagers, portable computers, handheld computers, and PDAs, and removable memory devices (USB) ____

Buses, Bays, Ports, and Peripherals

- ✓ Information travels between components on the motherboard through groups of wires called buses.
- Each bus follows a protocol for data transfer.

- ✓ Internal (system) buses
 - Typically, 32 or 64 wires with protocols for data transfers
 - Connect to storage devices in bays
 - Connect to expansion slots
 - Connect to external buses and ports
- ✓ Slots and ports
 - Make it easy to add external devices, called **peripherals**.

Inventing the Future

- ✓ New laser etching technology called extreme ultraviolet lithography (EUVL) could reduce chip size and increase performance radically.
- ✓ Superconductors that transmit electricity without heat could increase computer speed a hundredfold.
- ✓ The optical computer transmits information in light waves rather than electrical pulses.

Slide 39

© 2008 Prentice-Hall, Inc.

Lesson Summary

- ✓ A computer manipulates patterns of bits—binary digits of data.
- ✓ The CPU follows software instructions, reduced to strings of bits, to perform the calculations and logical manipulations that transform input data into output.
- ✓ Not all CPUs are compatible with each other. MOST ARE NOT.

The great Information Age is really an explosion of non-information; it is an explosion of data. To deal with the increasing onslaught of data, it is imperative to distinguish between the two; information is that which leads to understanding.

—Richard Saul Wurman, in Information Anxiety

Lesson Summary (continued)

- ✓ The CPU uses:
 - RAM (random access memory) as a temporary storage area for instructions and data
 - ➤ ROM (read-only memory), which contains unchangeable information (e.g., startup instructions)
- ✓ The CPU and main memory are housed in silicon chips on the motherboard.

