

Chapter 5 Productivity Applications

Objectives

- ✓ Brief intro to
 - -word processing,
 - -desktop publishing, and
 - -Web publishing.
- ✓ Impact of desktop publishing and Web publishing on the concept of freedom of the press (1st Amendment:
- ✓ http://www.usconstitution.net/const.html).

Objectives (continued)

- ✓ Intro to basic functions and applications of spreadsheets
- ✓ Indicate other types of statistical, financial, and simulation software.
- ✓ Explain how computers can be used to answer "What if?" questions.
- ✓ Explain how computers are used as tools for simulating mechanical, biological, and societal systems.

- ✓ Working with a word processor involves several steps:
 - >Entering text
 - >Editing text
 - Formatting the document
 - >Proofreading the document
 - Saving the document on disk
 - >Printing the document

- ✓ Entering, Editing, and Formatting Text
 - >Entering text
 - ☐ Text is displayed on the screen and stored in the computer's RAM.
 - □Save your work periodically (on the disk) because RAM is not permanent memory.
 - >Editing text
 - Navigate to different parts of a document.
 - ☐ Insert or delete text at any point.
 - ☐ Move and copy text.
 - ☐ Search and replace words or phrases.

© 2008 Prentice-Hail, Inc.

Slide 6

Word Processors and Other Word Tools

- >Formatting commands
 - □ Formatting characters
 - Characters are measured by point size (one point = 1/72 inch).
 - A font is a size and style of typeface.
 - Serif fonts have serifs or fine lines at the ends of each character.
 - You can use monospaced fonts and proportionally-spaced fonts.

Word Processors and Other Word Tools

- Typical font size in a human-readable document is 10 to 12 points.
- ➤ Zoom may display font larger or smaller than the actual size.

Arial

© 2008 Prentice-Hall, Inc.

- ☐ Formatting the document
 - Stylesheets
 - Headers and footers
 - Multiple variable-width columns
 - Graphics
 - Math formulas and other special symbolics

- ☐ Formatting the document (cont'd)
 - Automatic editing features
 - Hidden comments
 - •Table of contents, (cross-)references, and indexes
 - Help features
 - Conversion to HTML for Web publishing
 - •WYSIWYG vs. the actual code

- ✓ Digital References
 - > What's available:
 - Dictionaries,
 - quotation books,
 - encyclopedias,
 - atlases,
 - almanacs, and
 - other references.

© 2008 Prentice-Hall, Inc.

- ✓ Digital References
 - The biggest advantage of the electronic form is speed of access and searchability.
 - The biggest drawback is that quick and easy copying encourages plagiarism and violations of copyright.

- ✓ Synonym Finders
 - A computerized thesaurus can provide instantaneous feedback for synonyms

- ✓ Spelling Checkers
 - Compare words in your document with words in a disk- or Web-based dictionary
 - Words might be flagged, but you make the decision to ignore or change the spelling.

Tomorrow's Technology and You 8/e Chapter 5 The Wordsmith's Toolbox

- ✓ Grammar and Style Checkers
 - ➤ Analyze each word in context, checking for errors of content
 - > Check spelling
 - ➤ Point out possible errors and suggest improvements
 - Analyze prose complexity using measurements such as sentence length and paragraph length

- ✓ Grammar and Style Checkers
 - Analyze each word in context, checking for errors of content
 - >Check spelling
 - ➤ Point out possible errors and suggest improvements
 - Analyze prose complexity using measurements such as sentence length and paragraph length

© 2008 Prentice-Hail, Inc.

Slide 21

- √ Form Letter Generators
 - ➤ Mail merge capabilities produce personalized form letters.
 - Create a database with names.
 - □Create a form letter.
 - ☐ Merge the database with the form letter to create a personalized letter.

- **✓** Collaborative Writing Tools
 - ➤ Groupware: software designed to be used by a workgroup
 - □ Provides for collaborative writing and editing
 - ☐ Tracks changes and identifies them by the originator's name
 - □Compares document versions and highlights differences in documents

Emerging Word Tools

- ✓ Processing handwritten words
- ✓ Processing words with software that can reliably recognize human speech
- ✓ Problems: Complexity and reliability

Slide 25

What Is Desktop Publishing?

- ✓ The process of producing a book, magazine, or other publication includes several steps:
 - >Writing text
 - >Editing text

- ➤ Producing drawings, photographs, and other graphics to accompany the text
- Designing a basic format for the publication
- >Typesetting text
- >Arranging text and graphics on pages
- >Typesetting and printing pages
- ➤ Binding pages into a finished publication

The Desktop Publishing Story Source docum ents Word-processed Output documents: devices Laser printer · kan "Similar mill Tectifon on-line SKOU FORS Photo-type setting. machine Computer graphics Digitaized Publication photographs WWWW server

© 2008

Slide 28

- ✓ A desktop publishing (DTP) system generally includes:
 - ➤One or more desktops
 - >A scanner
 - ☐ Transforms photographs and hand-drawn images into computer-readable documents
 - >A high-resolution printer
 - >Software

- ➤ Desktop publishing software:
 - □Image-editing software
 - ☐Page-layout software combines the various source documents into a coherent, visually appealing publication
 - QuarkXpress
 - PageMaker
 - Adobe InDesign

Pixels versus Objects How do you edit a picture? It depends on what you're doing and how the picture is stored.		
The task	Using bit-mapped graphics	Using object-oriented graphics
Moving and removing parts of pictures	Easier to work with regions rather than objects (note), especially if those objects overlap	Basier to work with individual objects or groups of objects, even if they overlap
•		
Working with shapes	Shapes stored as pixel patterns can be edited with eraser and drawing tools	Shapes stored as math formula can be transformed mathematically
Magnification	Magnifies pixels for fine detail editing	Magnifies objects, not pixels
Text handling	Text "dries" and can't be edited, but can be moved as a block of pixels When paint text "dries" it can't be edited like other text?	Textican always be edited Draw text always can be changed
Printing	Pesolution of printout can't exceed the pixel resolution of the stored pixture	Resolution is limited only by the output device
Working within the limits of the hardware	Photographic quality is possible but requires considerable memory and diskstorage	Complex drawings require considerable computational power for reasonable speed

Slide 32

- ✓ Why Desktop Publishing?
 - >Saves money
 - >Saves time
 - Breaks the monopoly of the big media

Beyond the Printed Page

- ✓ Paperless Publishing and the Web
 - ➤ Breaks the monopoly on information of the big media
- ✓ Electronic Books and Digital Paper
 - ➤ The electronic book, or ebook
 - Digital paper, or epaper, is a flexible, portable, paper-like material that can dynamically display black-and-white text and images on its surface.

LaTeX: scientific publishing software

0

$$C_{sort}(n) = 3 \times \sum_{i=1}^{n-1} \lfloor \log_2 i \rfloor + \lfloor \log_2 n \rfloor.$$

Let's compute first the sum $S_M = \sum_{i=1}^M \lfloor \log_2 i \rfloor = \sum_{i=1}^M level(i)$. This sum is adding the levels of all nodes of the heap with M nodes together, so it can be split on the sum of all levels of the nodes that are in the first D_M levels (ranging from 0 to $\lfloor \log_2 M \rfloor - 1$) plus the sum of the levels of the nodes that are in the last level $D_M = \lfloor \log_2 M \rfloor$), as the example for M = 18 on Figure 1 shows.

Figure 1: Computation of $\Sigma_{i=1}^{18} \lfloor \log_2(i) \rfloor$

There are

$$\sum_{j=0}^{\lfloor \log_2 M \rfloor - 1} 2^j = 2^{\lfloor \log_2 M \rfloor} - 1$$

nodes in the first $\lfloor \log_2 M \rfloor - 1$ levels of the heap, so the last level must contain $M - (2^{\lfloor \log_2 M \rfloor} - 1) = M - 2^{\lfloor \log_2 M \rfloor} + 1$ nodes. Therefore, we obtain:

M. A. Suchenek

Lemma 8.5 For every stable theories E, E' in L_K , and every Herbrand structures \mathfrak{M} , \mathfrak{M}' for L^H with $\mathfrak{M} \models H(E_{K_1})$ and $\mathfrak{M}' \models H(E'_{K_1})$,

$$\mathfrak{M} \leq \mathfrak{M}' \text{ iff } E \sqsubseteq E'.$$

Proof. (\Rightarrow). Assume $\mathfrak{M} \leq \mathfrak{M}'$ and $E \not\sqsubseteq E'$. Let $\varphi \in E_{Obj} \setminus E'_{Obj}$. We have: $\varphi \in E_{Obj}$ then $K\varphi \in E_{K_1}$ then $R(\varphi) \in H(E_{K_1})$ then $\mathfrak{M} \models R(\varphi)$ then $\mathfrak{M}' \models R(\varphi)$. Also, $\varphi \notin E'_{Obj}$ then $\neg K\varphi \in E_{K_1}$ then $\neg R(\varphi) \in H(E'_{K_1})$ then $\mathfrak{M}' \models \neg R(\varphi)$; a contradiction.

 (\Leftarrow) . Assume $\mathfrak{M} \nleq \mathfrak{M}'$. Let φ be in L and satisfy $\mathfrak{M} \models R(\varphi)$ and $\mathfrak{M}' \not\models R(\varphi)$. Hence $\mathfrak{M} \not\models \neg R(\varphi)$ and $\mathfrak{M}' \not\models R(\varphi)$, therefore $\mathfrak{M} \not\models H(\neg K\varphi)$ and $\mathfrak{M}' \not\models H(K\varphi)$, therefore $H(\neg K\varphi) \not\in H(E_{K1})$ and $H(K\varphi) \not\in H(E'_{K1})$, therefore $\neg K\varphi \not\in E_{K1}$ and $K\varphi \not\in E'_{K1}$, therefore (by stability of E and E', and by modal-freedom of φ) $K\varphi \in E_{K1}$ and $\neg K\varphi \in E'_{K1}$, therefore $\varphi \in E$ and $\varphi \notin E'$. Thus $E \not\sqsubseteq E'$.

To accomplish the goal of this section we need the following technical lemmas.

Lemma 8.6 For every set T of sentences of L_K ,

$$H(T_{K_1 \cap mPos}) = H(T_{K_1})_{Pos \cap QF}.$$

Proof. $H(T_{K_1} \cap mPos) = H(T_{K_1}) \cap H(mPos) = (by Leisenberg 438)$ $H(T_{K_1}) \cap Pos \cap QF \supseteq Cn(H(T_{K_1}) \cap Pos \cap QF = H(T_{K_1})_{Pos \cap QF}$. There-

where all φ_i 's and ψ_j 's are modal-free, with

$$Cn_{S5}(T) = Cn_{S5}(\Pi).$$

Proof. By Theorem 7.5 every sentence φ of L_K is S5-equivalent to a K_1 sentence of L_K , and therefore is S5-equivalent to a K_1 -sentence in conjunctive
normal form with respect to atoms of the form $K\psi$, where ψ is modal-free.
Let $\vartheta_1 \wedge ... \wedge \vartheta_n$ be such a K_1 -sentence in conjunctive normal form. Let $\kappa(\varphi) = \{\vartheta_1, ..., \vartheta_n\}$, and let $\Pi = \bigcup \{\kappa(\varphi) \mid \varphi \in T\}$. Observation that $Cn_{S5}(T) = Cn_{S5}(\Pi)$ completes the proof.

Other normal forms of autoepistemic sentences were investigated in [MaT91].

The latter result seems particularly interesting from the point of view of uniform representation of autoepistemic theories in a form of sets of clauses. This form of representation allows for transfer of methods and results of logic programming (cf. [Apt90]) into autoepistemic logic.

8 Preservation Properties

In this section we interpret in modal language L_K two classic theorems which turned out exceptionally useful in study of minimal model semantics of deductive data bases and logic programs. For this purpose we map K_1 -sentences of L_K into a first-order language L^H . This mapping allows us to reflect expressible properties of structures for L^H into the language L_K and its semantics. Theorems 7.5 and 7.6 guarantee that translating just K_1 -sentences is enough to cover entire L_K . Quite naturally, part of terminology of this se Siliden 39 from theory of minimal models (cf. [McC80, Min82, BS84, Suc90]).

37

Notes on Nonmonotonic Autoepistemic Propositional Logic

- [Suc88] Marek A. Suchenek. On generalizations of the closed world assumption in deductive data bases. In Fourth Southeastern Logic Symposium, Columbia SC, March 24-25 1988.
- [Suc90] Marek A. Suchenek. Applications of Lyndon homomorphism theorems to the theory of minimal models. International Journal of Foundations of Computer Science, 1(1):49–59, 1990.
- [Suc93] Marek A. Suchenek. First-order syntactic characterizations of minimal entailment, domain minimal entailment, and Herbrand entailment. Journal of Automated Reasoning, 10:237–263, 1993.
- [Suc94] Marek A. Suchenek. Preservation properties in deductive databases. Methods of Logic in Computer Science An International Journal, 1:315–338, 1994. An invited paper.
- [Suc97] Marek A. Suchenek. Evaluation of queries under the closed-world assumption. Journal of Automated Reasoning, 18:357–398, 1997.
- [Suc00a] Marek A. Suchenek. Evaluation of queries under the closed-world assumption II. Journal of Automated Reasoning, 25:247–289, 2000.
- [Suc00b] Marek A. Suchenek. Review of the book: G. Antoniou, "Non-monotonic Reasoning", The MIT Press. Bulletin of Symbolic Logic, 6(4):484–490, 2000.
- [Suc06] Marek A. Suchenek. On undecidability of non-monotonic logStide 40 Studia Informatica, 1/2(7):127–132, 2006.

The Malleable Matrix

- ✓ The spreadsheet consists of:
 - Cells (the intersection of a row and column)
 - Addresses (column letter and row number, e.g., A1, C12)

Slide 41

Relative address (for example, B12) will be automatically modified when the cell is moved.

Absolute address (for example, \$B12 or B\$12 or \$B\$12) will retain its portion pereceded by a \$ sign when the cell is moved.

- ✓ Spreadsheets can contain:
 - ➤ Values, such as numbers and dates
 - Labels, such as column and report headings, that explain what the values mean

	1	Д	В	С	D	Е		F	G
1	The Smart Company								
2					Payroll for the period en			• 07-Nov-93	
3									
									HOURLY
4	NL	/M	FIRST	LAST	EMP#	DIVISION	L	DATE of HIRE	RATE
5	Г	1	om	Jones	GW29	Germany		19-Dec-8	\$12.50
6	ı	2	Sean	Morris	GBW09	Great Britain		05-Jul-8(\$13.30
7	ı	3	Colleen	Wilson] CW58	Canada		26-Jul-90	\$16.75
8	I	4	eri	Smith	AW55	Australia	Π	07-Jun-88	\$8.75
9	I	5	rank	Connors	GBC07	Great Britain	Π	12-Jul-81	\$12.60
10	ı	6	Kirsten	Able	GBS45	Great Britain	Π	05-Jun-87	\$24.00
11	ı	7	loseph	Califano	CW19	Canada	Π	26-Feb-89	\$12.10
12	ı	8	Sue	Bally	GC04	Germany		15-Apr-81	\$21.50
13	L	q	Cheryl	Halal	CA26	Canada	Π	01-Feh-90	\$13.30

Ħ

Formulas allow the user to create instructions using mathematical expressions and commands.

+ (plus)
- (minus)
*(multiplication)
/ (division)
Sum
Average

5	PPE	135	120
6	IDI I	65	88
7	CUC	29	16
8			
9	Totals	=B5+B6-B7	=SUM(C5:C7)

Formulas can be:

□ Relative, so they refer to different cells when they are copied

□ **Absolute**, so the formula references never

change when they are copied

When the formula in column B is copied to column C, it changes *relative* to the new column.

- ➤ Automatic recalculation (reference)
 - Any time a change is entered into the spreadsheet, all data related to the change automatically updates.

- Functions (e.g., SUM, AVG, SQRT) automate complex calculations.
- ➤ Macros store keystrokes and commands so they can be played back automatically.
- ➤ Templates offer ready-to-use worksheets with labels and formulas already entered.

- Linking spreadsheets together
 - □Referencing across sheets
- > Relational database capabilities
 - ☐ Information storage and retrieval
 - ☐ Answers to queries (with SQL)
 - **D**Sorting
 - ☐Generation of reports

"What If?" Questions

- ✓ Spreadsheets allow you to change numbers and instantly see the effects of those changes.
 - >"What if I enter this value?"
- ✓ Equation solvers
 - Some spreadsheets generate data needed to fit a given equation and target value.

Spreadsheet Graphics: From Digits to Drawings

- Charts allow you to turn numbers into visual data.
- ➤ Pie charts may show proportions relative to the whole.
- Line charts may show trends or relationships over time.

- Use bar charts if data falls into a few categories.
- Use scatter charts to discover, rather than to display, a
 relationship between two variables.

Statistical Software: Beyond Spreadsheets Money Managers

- ✓ **Accounting** and **Financial Management** software allows you to electronically handle routine transactions such as:
 - Writing checks
 - Balancing accounts
 - Creating budgets
 - Using online banking

services

Preparing taxes

Computer Mathematics

- ✓ Mathematics processing software
 - Software may turn abstract mathematical relationships into visual objects (Example: Mathematica by Wolfram).

Statistical Software: Beyond Spreadsheets

Statistics and Data Analysis

- ✓ Statistical and data analysis software
 - Collects and analyzes data that tests hypotheses
 - Can produce graphs showing how two or more variables relate to each other
 - Can uncover trends by browsing through two- and three-dimensional graphs of data.

Statistical Software: Beyond Spreadsheets

© 2008 Prentice-Hall, Inc.

Slide 60

Calculated Risks: Computer Modeling and Simulation

Tomorrow's Technology and You 8/e Chapter 5 Lesson Summary

- ✓ Even though the computer was designed to work with numbers, it can be an important tool for working with words as well.
- ✓ Word processing software enables you to use commands to edit text on screen, without having to retype messages.
- ✓ Outlining software, spell checkers, and online references can be very helpful.
- ✓ Desktop publishing produces professional-quality text-and-graphics documents.
- ✓ Spreadsheets can be used for tracking, calculating, forecasting, and almost any other task that involves repetitive numeric calculations. Most spreadsheet programs have charting capabilities.

Tomorrow's Technology and You 8/e Chapter 5 Lesson Summary (continued)

- ✓ Specialized software allows you to perform accounting tasks, tax preparation, and a variety of business functions without the aid of spreadsheets.
- ✓ Symbolic mathematic and statistical-analysis software can help present data in meaningful ways.
- ✓ Scientific visualization software can help us understand relationships that are invisible to the naked eye.
- ✓ Computer modeling and simulation can be powerful tools for understanding the world and making better decisions.

