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Short definition of proofShort definition of proof

1) Proofs never lie

2) Proofs are finite

3) A diligent reader can recognize any 
proof whenever he sees one (i.e., the 
question whether a finite sequence is a 
proof or not is effectively decidable)
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Proof systemsProof systems

1) Proof system is any fixed collection of 
proofs all of which satisfy the short 
definition of proof.

2) There are many proof systems.

3) Examples: the empty set,

the set of proofs in predicate calculus
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1) Find a proof system Pr such that:

every true sentence φ
has its proof in Pr.  

2) Prove all true sentences using Pr

3) Given 1), use computers to accomplish 
    2) (possible since proofs are decidable) 
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The Ambitious Goal is unattainable!

No matter how powerful computers we 
have.

Even if there were no time limitations to 
accomplish the Ambitious Goal.
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Example

Let C be some very powerful computer 
with software that can prove things 
using proof system Pr. For instance, C 
can be operated by a very clever 
professor who is the best expert in 
proving things with and without 
computers.
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with software that can prove things 
using proof system Pr.
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Computer C cannot prove this sentence.

But we can prove the above sentence!

If C can prove the above sentence then 
the above sentence is true because 
proofs never lie.

Therefore, C cannot prove it.
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Conclusion:

For every computer C there is a true 
sentence φ that C cannot prove 
even if a‏l‏l scientists of the ‏wor‏ld 
are he‏lping it.
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1) Every function computed by a Java 
program is computable.

2) No other function is computable.

3) Example: Function 

f(x) = 2x

is computable.
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 No computer can always correctly decide 
whether given Java program correctly 
computes function 

f(x) = 2x.
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LimitationsLimitations

 No computer can always correctly decide 
whether given Java program halts for 
every valid input to that program.
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 For every proof system Pr

there exists a total computable function F

such that no program that computes F(x)

can be proved to halt on every input x.  
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As a matter of fact, almost every function 
is non-computable and almost every 
problem is unsolvable.
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Here is a classic example that illustrates 
how seemingly simple programs can be 
difficult to figure out.

 



LimitationsLimitations

Here is a "simple" recursive program whose 
performance appears very hard to evaluate:

    public static int f(int n)

     {

         if (n <= 1) return n;

         if (n%2 == 0) return (f(n/2));

                else return (f(3*n + 1));

     }

 



LimitationsLimitations

 

For instance, the execution trace for n = 
15 is:

n: 15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 
20, 10, 5, 16, 8, 4, 2, 1.
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It is not known whether the above 
program always halts or falls into an 
endless loop for some integer n.
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So, if anyone tells you that there are no 
limits on computability 
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So, if anyone tells you that there are no 
limits on computability, he is flat wrong! 
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This explains why when the government 
and its bureaucracy are interfering with 
free market and competition by means 
of regulation, “rationalization”, and 
redistribution, the economy must get 
worse.
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They simply take upon the task that is 
computationally unattainable.

And they worsen the economy in the 
process, often blaming free-market 
capitalism for the problems that they 
have caused.
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algorithms that can be executed in a 
practically feasible amount of time.
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 Free market acts like a polynomially-
bound nondeterministic algorithm.

In this context, nondeterminism is a 
model of freedom.
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deterministic algorithms

NP be the class of problems that are 
solvable by polynomially-bound 
nondeterministic algorithms
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 Although every problem in P is also in 
NP,

the leading theoretical Computer 
Scientists believe that NP is larger than 
P.
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In particular, a large collection of practical 
problems like:

optimal job scheduling, optimal delivery 
routing, satisfiability of a propositional 
formula, and many more

are in NP but are not believed to be in P. 
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All such problems are solvable in a 
reasonable time by a nondeterministic 
algorithm, but all their known solutions 
by any deterministic algorithm are 
generally so slow that they are 
impractical.
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Let’s take it for granted, following the 
belief of leading theoretical Computer 
Scientists, that NP is larger than P.
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This scientifically explains why the 
Internet has dramatically more 
computing power than any centralized 
mainframe computer, no matter how 
large.
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This scientifically explains why 
governmental central planning often 
fails where free market succeeds.

If you still have doubts, just look at 
gridlocks on SoCal freeways to see the 
limitations on what a government can 
handle.
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This scientifically explains why 
governmental central planning often 
fails where free market succeeds.

Note: Freedom rules out determinism and 
makes planning generally impossible.
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Also, it rules out general practicality of 
utilitarianism which attempts to 
deterministically solve some NP-hard 
problems.

 

In particular, socialism is too simplistic to 
compete with free market.

No surprise that it doesn’t deliver!
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The above results remain true even 
without the assumption that NP is larger 
than P.
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