
Copyrighted materialCopyrighted material

These slides contain copyrighted material
for exclusive use by the students
currently enrolled in this course and for
the duration of current semester only.

No other use or access, or use or access
by other persons is allowed.

CSC 301CSC 301

A classroom presentation on

Limits of Computability
by

Dr. Marek A. Suchenek ©

Computer Science

CSUDH

Copyrighted materialCopyrighted material
RestrictedRestricted

All rights reserved

Copyright by Dr. Marek A. Suchenek ©

and by other parties

when the source is indicated

RESTRICTION: This is a restricted presentation.
It has been provided exclusively for non-profit

educational use by the students currently
enrolled in this course and for the duration of
this semester only. Any other use, disclosure,

or any use by others (for example but not
limited to: private use, news reporting,

educating, criticism, research, reviewing,
discussing, evaluating, copying, storing,

distributing, circulating, posting and publishing)
for whatever purpose is prohibited unless with

prior authorization of the professor in this
course and the copyright holder or holders.

Short definition of proofShort definition of proof

Short definition of proofShort definition of proof

1) Proofs never lie

Short definition of proofShort definition of proof

1) Proofs never lie

2) Proofs are finite

Short definition of proofShort definition of proof

1) Proofs never lie

2) Proofs are finite

3) A diligent reader can recognize any
proof whenever he sees one

Short definition of proofShort definition of proof

1) Proofs never lie

2) Proofs are finite

3) A diligent reader can recognize any
proof whenever he sees one (i.e., the
question whether a finite sequence is a
proof or not is effectively decidable)

Proof systemsProof systems

Proof systemsProof systems

1) Proof system is any fixed collection of
proofs all of which satisfy the short
definition of proof.

Proof systemsProof systems

1) Proof system is any fixed collection of
proofs all of which satisfy the short
definition of proof.

1) There are many proof systems.

Proof systemsProof systems

1) Proof system is any fixed collection of
proofs all of which satisfy the short
definition of proof.

2) There are many proof systems.

3) Examples:

Proof systemsProof systems

1) Proof system is any fixed collection of
proofs all of which satisfy the short
definition of proof.

2) There are many proof systems.

3) Examples: the empty set

Proof systemsProof systems

1) Proof system is any fixed collection of
proofs all of which satisfy the short
definition of proof.

2) There are many proof systems.

3) Examples: the empty set,

the set of proofs in predicate calculus

Ambitious goa‏lAmbitious goa‏l

Ambitious goa‏lAmbitious goa‏l

1) Find a proof system Pr such that:

Ambitious goa‏lAmbitious goa‏l

1) Find a proof system Pr such that:

every true sentence φ

Ambitious goa‏lAmbitious goa‏l

1) Find a proof system Pr such that:

every true sentence φ
has its proof in Pr.

Ambitious goa‏lAmbitious goa‏l

1) Find a proof system Pr such that:

every true sentence φ
has its proof in Pr.

2) Prove all true sentences using Pr

Ambitious goa‏lAmbitious goa‏l

1) Find a proof system Pr such that:

every true sentence φ
has its proof in Pr.

2) Prove all true sentences using Pr

3) Given 1), use computers to accomplish
 2)

Ambitious goa‏lAmbitious goa‏l

1) Find a proof system Pr such that:

every true sentence φ
has its proof in Pr.

2) Prove all true sentences using Pr

3) Given 1), use computers to accomplish
 2) (possible since proofs are decidable)

A fata‏l fla‏wA fata‏l fla‏w

A fata‏l fla‏wA fata‏l fla‏w

The Ambitious Goal is unattainable!

A fata‏l fla‏wA fata‏l fla‏w

The Ambitious Goal is unattainable!

No matter how powerful computers we
have.

A fata‏l fla‏wA fata‏l fla‏w

The Ambitious Goal is unattainable!

No matter how powerful computers we
have.

Even if there were no time limitations to
accomplish the Ambitious Goal.

A fata‏l fla‏wA fata‏l fla‏w

Example

A fata‏l fla‏wA fata‏l fla‏w

Example

Let C be some very powerful computer
with software that can prove things
using proof system Pr.

A fata‏l fla‏wA fata‏l fla‏w

Example

Let C be some very powerful computer
with software that can prove things
using proof system Pr. For instance, C
can be operated by a very clever
professor who is the best expert in
proving things

A fata‏l fla‏wA fata‏l fla‏w

Example

Let C be some very powerful computer
with software that can prove things
using proof system Pr. For instance, C
can be operated by a very clever
professor who is the best expert in
proving things with and without
computers.

A fata‏l fla‏wA fata‏l fla‏w

Example

Let C be some very powerful computer
with software that can prove things
using proof system Pr.

A fata‏l fla‏wA fata‏l fla‏w

Example

Let C be some very powerful computer
with software that can prove things
using proof system Pr.

Computer C cannot prove this sentence.

A fata‏l fla‏wA fata‏l fla‏w

Kurt Gödel

Computer C cannot prove this sentence.

A fata‏l fla‏wA fata‏l fla‏w

Example

Let C be some very powerful computer
with software that can prove things
using proof system Pr.

Computer C cannot prove this sentence.

A fata‏l fla‏wA fata‏l fla‏w

Example

Let C be some very powerful computer
with software that can prove things
using proof system Pr.

Computer C cannot prove this sentence.

But we can prove the above sentence!

A fata‏l fla‏wA fata‏l fla‏w

Computer C cannot prove this sentence.

But we can prove the above sentence!

A fata‏l fla‏wA fata‏l fla‏w

Computer C cannot prove this sentence.

But we can prove the above sentence!

If C can prove the above sentence

A fata‏l fla‏wA fata‏l fla‏w

Computer C cannot prove this sentence.

But we can prove the above sentence!

If C can prove the above sentence then
the above sentence is true

A fata‏l fla‏wA fata‏l fla‏w

Computer C cannot prove this sentence.

But we can prove the above sentence!

If C can prove the above sentence then
the above sentence is true because
proofs never lie.

A fata‏l fla‏wA fata‏l fla‏w

Computer C cannot prove this sentence.

But we can prove the above sentence!

If C can prove the above sentence then
the above sentence is true because
proofs never lie.

Therefore, C cannot prove it.

A fata‏l fla‏wA fata‏l fla‏w

Conclusion:

A fata‏l fla‏wA fata‏l fla‏w

Conclusion:

For every computer C

A fata‏l fla‏wA fata‏l fla‏w

Conclusion:

For every computer C there is a true
sentence φ

A fata‏l fla‏wA fata‏l fla‏w

Conclusion:

For every computer C there is a true
sentence φ that C cannot prove

A fata‏l fla‏wA fata‏l fla‏w

Conclusion:

For every computer C there is a true
sentence φ that C cannot prove
even if a‏l‏l scientists of the ‏wor‏ld
are he‏lping it.

Computab‏le functionsComputab‏le functions

Computab‏le functionsComputab‏le functions

1) Every function computed by a Java
program is computable.

Computab‏le functionsComputab‏le functions

1) Every function computed by a Java
program is computable.

2) No other function is computable.

Computab‏le functionsComputab‏le functions

1) Every function computed by a Java
program is computable.

2) No other function is computable.

3) Example

Computab‏le functionsComputab‏le functions

1) Every function computed by a Java
program is computable.

2) No other function is computable.

3) Example: Function

f(x) = 2x

Computab‏le functionsComputab‏le functions

1) Every function computed by a Java
program is computable.

2) No other function is computable.

3) Example: Function

f(x) = 2x

is computable.

LimitationsLimitations

LimitationsLimitations

 No computer can always correctly decide

LimitationsLimitations

 No computer can always correctly decide
whether given Java program

LimitationsLimitations

 No computer can always correctly decide
whether given Java program correctly
computes function

LimitationsLimitations

 No computer can always correctly decide
whether given Java program correctly
computes function

f(x) = 2x.

LimitationsLimitations

LimitationsLimitations

 No computer can always correctly decide
whether given Java program halts for
every valid input to that program.

LimitationsLimitations

 Alan Turing

LimitationsLimitations

LimitationsLimitations

 For every proof system Pr

LimitationsLimitations

 For every proof system Pr

there exists a total computable function F

LimitationsLimitations

 For every proof system Pr

there exists a total computable function F

such that no program that computes F(x)

LimitationsLimitations

 For every proof system Pr

there exists a total computable function F

such that no program that computes F(x)

can be proved

LimitationsLimitations

 For every proof system Pr

there exists a total computable function F

such that no program that computes F(x)

can be proved (in Pr)

LimitationsLimitations

 For every proof system Pr

there exists a total computable function F

such that no program that computes F(x)

can be proved

LimitationsLimitations

 For every proof system Pr

there exists a total computable function F

such that no program that computes F(x)

can be proved to halt on every input x.

LimitationsLimitations

And there are many more examples ...

LimitationsLimitations

As a matter of fact, almost every function
is non-computable

LimitationsLimitations

As a matter of fact, almost every function
is non-computable and almost every
problem is unsolvable.

LimitationsLimitations

Here is a classic example that illustrates
how seemingly simple programs can be
difficult to figure out.

LimitationsLimitations

Here is a "simple" recursive program whose
performance appears very hard to evaluate:

 public static int f(int n)

 {

 if (n <= 1) return n;

 if (n%2 == 0) return (f(n/2));

 else return (f(3*n + 1));

 }

LimitationsLimitations

For instance, the execution trace for n =
15 is:

n: 15, 46, 23, 70, 35, 106, 53, 160, 80, 40,
20, 10, 5, 16, 8, 4, 2, 1.

LimitationsLimitations

It is not known whether the above
program always halts or falls into an
endless loop for some integer n.

Conc‏lusionsConc‏lusions

Conc‏lusionsConc‏lusions

So, if anyone tells you

Conc‏lusionsConc‏lusions

So, if anyone tells you that there are no
limits on computability

Conc‏lusionsConc‏lusions

So, if anyone tells you that there are no
limits on computability, he is flat wrong!

Conc‏lusionsConc‏lusions

This explains why

Conc‏lusionsConc‏lusions

This explains why when the government
and its bureaucracy

Conc‏lusionsConc‏lusions

This explains why when the government
and its bureaucracy are interfering with
free market and competition

Conc‏lusionsConc‏lusions

This explains why when the government
and its bureaucracy are interfering with
free market and competition by means
of regulation

Conc‏lusionsConc‏lusions

This explains why when the government
and its bureaucracy are interfering with
free market and competition by means
of regulation, “rationalization”

Conc‏lusionsConc‏lusions

This explains why when the government
and its bureaucracy are interfering with
free market and competition by means
of regulation, “rationalization”, and
redistribution

Conc‏lusionsConc‏lusions

This explains why when the government
and its bureaucracy are interfering with
free market and competition by means
of regulation, “rationalization”, and
redistribution, the economy must get
worse.

Conc‏lusionsConc‏lusions

They simply take upon the task that is
computationally unattainable.

Conc‏lusionsConc‏lusions

They simply take upon the task that is
computationally unattainable.

And they worsen the economy in the
process

Conc‏lusionsConc‏lusions

They simply take upon the task that is
computationally unattainable.

And they worsen the economy in the
process, often blaming free-market
capitalism for the problems that they
have caused.

Conc‏lusionsConc‏lusions

 There is more Computer Science to it.

Conc‏lusionsConc‏lusions

 There is more Computer Science to it.

The government, its bureaucracy, and
central planners act like a polynomially-
bound deterministic algorithm.

Conc‏lusionsConc‏lusions

 There is more Computer Science to it.

The government, its bureaucracy, and
central planners act like a polynomially-
bound deterministic algorithm.

Note: “Polynomially-bound” includes all
algorithms that can be executed in a
practically feasible amount of time.

Conc‏lusionsConc‏lusions

 There is more Computer Science to it.

The government, its bureaucracy, and
central planners act like a polynomially-
bound deterministic algorithm.

Conc‏lusionsConc‏lusions

 There is more Computer Science to it.

The government, its bureaucracy, and
central planners act like a polynomially-
bound deterministic algorithm.

Free market acts like a polynomially-
bound nondeterministic algorithm.

Conc‏lusionsConc‏lusions

 Free market acts like a polynomially-
bound nondeterministic algorithm.

In this context, nondeterminism is a
model of freedom.

Conc‏lusionsConc‏lusions

 Let

P be the class of problems that are
solvable by polynomially-bound
deterministic algorithms

Conc‏lusionsConc‏lusions

 Let

P be the class of problems that are
solvable by polynomially-bound
deterministic algorithms

NP be the class of problems that are
solvable by polynomially-bound
nondeterministic algorithms

Conc‏lusionsConc‏lusions

 Although every problem in P is also in
NP,

Conc‏lusionsConc‏lusions

 Although every problem in P is also in
NP,

the leading theoretical Computer
Scientists believe that NP is larger than
P.

Conc‏lusionsConc‏lusions

In particular, a large collection of practical
problems like:

Conc‏lusionsConc‏lusions

In particular, a large collection of practical
problems like:

optimal job scheduling,

Conc‏lusionsConc‏lusions

In particular, a large collection of practical
problems like:

optimal job scheduling, optimal delivery
routing,

Conc‏lusionsConc‏lusions

In particular, a large collection of practical
problems like:

optimal job scheduling, optimal delivery
routing, satisfiability of a propositional
formula,

Conc‏lusionsConc‏lusions

In particular, a large collection of practical
problems like:

optimal job scheduling, optimal delivery
routing, satisfiability of a propositional
formula, and many more

Conc‏lusionsConc‏lusions

In particular, a large collection of practical
problems like:

optimal job scheduling, optimal delivery
routing, satisfiability of a propositional
formula, and many more

are in NP but are not believed to be in P.

Conc‏lusionsConc‏lusions

All such problems are solvable in a
reasonable time by a nondeterministic
algorithm,

Conc‏lusionsConc‏lusions

All such problems are solvable in a
reasonable time by a nondeterministic
algorithm, but all their known solutions
by any deterministic algorithm are
generally so slow that they are
impractical.

Conc‏lusionsConc‏lusions

All such problems are solvable in a
reasonable time by a nondeterministic
algorithm, but all their known solutions
by any deterministic algorithm are
generally so slow that they are
impractical.

Conc‏lusionsConc‏lusions

Let’s take it for granted, following the
belief of leading theoretical Computer
Scientists, that NP is larger than P.

Conc‏lusionsConc‏lusions

This scientifically explains why the
Internet has dramatically more
computing power than any centralized
mainframe computer, no matter how
large.

Conc‏lusionsConc‏lusions

This scientifically explains why
governmental central planning often
fails where free market succeeds.

Conc‏lusionsConc‏lusions

This scientifically explains why
governmental central planning often
fails where free market succeeds.

Conc‏lusionsConc‏lusions

This scientifically explains why
governmental central planning often
fails where free market succeeds.

Conc‏lusionsConc‏lusions

This scientifically explains why
governmental central planning often
fails where free market succeeds.

If you still have doubts, just look at
gridlocks on SoCal freeways to see the
limitations on what a government can
handle.

Conc‏lusionsConc‏lusions

This scientifically explains why
governmental central planning often
fails where free market succeeds.

Conc‏lusionsConc‏lusions

This scientifically explains why
governmental central planning often
fails where free market succeeds.

Note: Freedom rules out determinism and
makes planning generally impossible.

Conc‏lusionsConc‏lusions

Also, it rules out general practicality of
utilitarianism which attempts to
deterministically solve some NP-hard
problems.

Conc‏lusionsConc‏lusions

Also, it rules out general practicality of
utilitarianism which attempts to
deterministically solve some NP-hard
problems.

Thus utilitarianism is too simplistic to
compete with free market.

Conc‏lusionsConc‏lusions

Also, it rules out general practicality of
utilitarianism which attempts to
deterministically solve some NP-hard
problems.

In particular, socialism is too simplistic to
compete with free market.

Conc‏lusionsConc‏lusions

Also, it rules out general practicality of
utilitarianism which attempts to
deterministically solve some NP-hard
problems.

In particular, socialism is too simplistic to
compete with free market.

No surprise that it doesn’t deliver!

Conc‏lusionsConc‏lusions

The above results remain true even
without the assumption that NP is larger
than P.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121

