Appendix B
Excerpts and Comments
For classroom use in CSC 311 Data
Structures

Copyright by Adisson-Wesley and Dr. Marek A. Suchenek
September 5, 2012

For classroom use and home viewing only. No copying, sharing, or printing
of any kind is allowed without written permission of the copyright holder or
holders. However, you can take notes for use in this course.

Copyrighted material by
Adisson-Wesley

The Language
f _

0
Efficiency

Infroducfion and Mofivation

. What Do We Use for a Yardstick?

void SelectionSort(int[] A){
int maxPosition, temp, i, j;
for (i = Adength — 17> 0 i—) {
maxPosition = 1;
for(j=0; j < i i#+){ .-
| 1 maxPosition=]; |
¥
| }

[

[

I

|

|

|

I

I

| .
I | f (Al]] > AlmexPosltion]) {
i

I

I

|

I

il "/l exchanie

i

i

|

|

el --Typé_i:.f'CorﬁpU.er iy __: “Time: |

Homeegmputer,” " © ; =51:915. ‘

b D_éskfo'p _cbrhpcﬁe__r we] ATTL508¢
i Minicompuier ko - | 12382

i Mainframie computer- [04317
" -Supercomputer. [+ 0.087.

Teble B.2 Running Times in Seconds to Sorf
an Array of 2000 Integers

o Deskfop —‘

Ali] and A[lmaxPosition]
temp = A [; A[i] = AlmaxPosition]; AjmaxPosition] = temp;

‘ '-Ar.rc":y Size: < Hofie _.
Uy iR Computer, s Compufer |

3950 l_:'i_:. i |

e T IR B o A
TLEQSE L AT
< TO I DO R o~ S
S48 | 6905

Table 8.3 SelectiorSurt Run~irg
Times in Milliseconds on Twa Tyoss
or Computers

i/ sorts an array of integers, A,
#into Increasing order

i for eachiin 1:Alength — 1
/f in decreasing order of i

/ find the position, maxPosition, of

[the largest integer in AfG:]
/f then exchange
Afi] and AlmaxPosition]

Copyrighted material
b

Adisson-Wesley and
Dr. Marek A. Suchenek

Copyrighted material by
Adisson-Wesley

r

fluia/y
v L
=0 £y = 0000777252 + 0.00305 5 + 0007 2 /
ol = 000097241 +0.00040 7 + 0300 P
20 /.z‘//
o0 - ~ o e
—
B I
2006

Copyrighted material by
Adisson-Wesley

Table B.7 Some Common Complexity Clas

Algorithm A stops in f{n} microseconds
n=2 n=16 . £=256 ° n=1024 .
P e
e i 1 | 1.00%700 "
i d g, 1.00% 100
2 1.6 % 10! 2.56 %102 1.02 x 103 .
i3 6.4 x 101 2,05 % 103 1.02 % 104
e 2.56x102 | 655% 104 1.05% 108
8 4.10%10% 1:68 5 107 1.07 % 10% ..
4 | 685%104 [FT16% 1077 | 1.80 x 10308

n=.18
1 1 psec* 1 psec 1 psec. 1 pssc 1 psec
lagg n Tjmee=7 4 psecs |- -8 psecs - 10 psecs 20 psecs
2 2 psecs 16 psecs .. 256 psecs 1.02 msecs 1.05 secs
nlogy n 2 psecy 64 psecs 2.05 msecs 10.2 msecs 21 secs
n? 4 psecs 25.6 psecs 7 65.5 msecs 1.05 secs 1.8 wks
nd 8 psecs 4.1 msecs 16.8 secs 17.9 mins 36,559 yrs
- 2n 4 psecy ¢ | 65.5 msecs | 3.7x1003yrs 5.7%10294 yrs - 2.1x 10315639 yrs

1 usec = one microsecond = one millionth of 4 second; 1 msee = one millisecond = ane thousandth of a second; sec = one see-
nel; min = one minute; wk = one week; and yr = one year.

chls B.9 Running Times for Algorithm A in Different Time Units

Talhr S F=lday TaTwhk. L
B 5% 107 B6% 107 | B.édx 1010 6.05 % 1011 ’ 3,15 % 1017,
nlogs n 2.Bx 106 1.3% 108 2.75 %107 1.77 x 1010 7.97 x 1000 2
n? 7.75x 103 6.0x 104 294x105 |- 7.78x 105 5.62x% 106
3 . 3.91x102 1.53x108 442x103 | 8.46x103 3.16% 104
20 25 31 138 39 44
10 AR 13

Lmn' o 9

Table B.10 Size of Largest Prablem That Algerithm A Cen Solve if Selution Is Compuled in Time < T ot 1
sl

Microsecond per Step

i
i e

r"'l Ly -

Table B.10 Size of Largest Problem That Algorithm A Can Solve if Solution Is Computed in Time < T at 1

Microsecond per Step

@t -
PR T R R LI OV L
g e

Copyrighted material by
Adisson-Wesley

void SelectionSort(int[] A){ {/ sorts an amay of integers, A,
#into Increasing order

|

|

| int maxPosition, temp, i, j;

| o | e— - —

| for (i =Alength—1;i>0;i—){. {i for each i in 1:A.length — 1 |
I — i in decreasing order of i |
| maxPosition = 1; i
i |
[for(j=0:] < i j+){ .- . !
\ . R | - >
] if (Alj] QﬂﬁaaxPoﬁtJén]x{ # find the position, maxPaosition, of

I s 1 maxPositon =] | % i/ the largest integer in A{C:]

| 1 - // then exchange

[{ # Afi] and AlmaxPosition]

|| }

| _

Cl |" i exchane Ali] and A[maxPosition] % C-?

| 'L , lemp = A [; Ali] = A[maxPosition]; A[maxPosition] = temp;. h {
i " s - 4
6] S - Ju
I} e e —

Copyrighted material
b

Adisson-Wesley and
Dr. Marek A. Suchenek

You are allowed to make a copy of two images (handwritten notes) below,

pages 3 and 3, for use in this course only.

l' 3:’\1 s Af‘ ."/)s.rr, /7 f!
Tl R S IR A .
The.. /é‘@oggf o X%Z'{f« Ay éfé’{ﬁ.
| of— Aiwme i fre At Case

j_) /W»;';f"

T B execofe e Lwnts_Aosp | papess Vebue

eﬂé 0

b Al
fimes

e Sl |
Yo, -érﬂofn’} (‘9?/ 'ﬁfﬁ 673?/5@“‘? r/{*ﬁ?ﬁfj.?!
b,
T b epecnte Wt omfe, oo
Wl fiwi el
S {i+3) = Z 4 o+ 23 T
.(':; ¢t =1
:([4—2.»'5-1.,,‘4«(;4,,)\; {'éf?*"“"g_ 5
R B 10

=1
= .2 i - =
2z 3 . & o~ I
= jf‘!/g,?“ 1'2‘5'4,\, —'@

Copyrighted material by [
Dr. Marek A. Suchenek

:ﬁ.! ;1%’!'1‘

o Fabogrrcip iy el n s prapies,

. Tl {mf&i.. (owpln Bt et wet s 50d
fw <lov A £

o The ot g fose s ﬁd,?a..a_:.,;%,,
Canse. Mol pompitnAon Bl fue |
Jreezises betrorrs o @ foor opd &
44.1».4-%: " fff/ slt Ly \jl Ao o
R s -;'U"'Mf . o '

/

O-Notation—Definition and Manipulation

Figure B.12 Graphical Meaning of O-Notafion

What O-Notation Doesn’t Tell You

Copyrighted material by
Adisson-Wesley

i K

Neasuring the running time of a program

Copyrighted material by
Dr. Marek A. Suchenek

T(n) - the running time of a program on “worst”
input of size n

¥

Tavgln) - the average time of a program on
g - = inputs of size n

Time is mesured in some @bstract units, independent
of particular computer, compiler, and similar factors.

Rule of composition and product
. pa ¥ Copyrighted material by
Dr. Marek A. Suchenek

- ri -

Suppose that T{(n) and T2(n) are the running times
of two program fragments Py and P2, and that Tq(n)
is O(f(n)) and T2(n) is O(g(n}). Then Ty(n) + T2(n),
the running time of Pq followed by P2, is

To see why, observe that for some constants ¢, c2, nq,
and njp, if nznq then T1(n)g cq1*f(n), and if n2n3
then Ta(n)<ca*g(n).

Let ng = max(ny, n2). ¥ n>ng, then

T1(n) + T2(n) < cq*f(n) + c2*g(n).

From this we conclude that if n>=ng, then

T1(n) + T2(n) < (c7 + c2)*max (f(n), g(n)).
Thefare, the combined running time Tq(n) + T2(n)
is Otmax(f{n), g(n)l).

.

The rule for products is the following. If T{(n) ;':d“ Ta(n)
are Olfini and O(g(n)), respectively, then T{(n)*T2(n)
is
as in the proof of the sum rule. it follows from the product
rule that O(c*f(n)) means the same ihing as Off{n)) if c is 5
positive constant. For example, O(n“/2) is the same asO(n

e

/ Tyt

T‘“’ih.lul - "

One can prove this fact using the same ideas

_/\./ "~ Q,B'(T(u]

ﬁ,,}

Example of calculating the running time of program with procedure calls

Copyrighted material by

Dr. Marek A. Suchenek

functionl n: integer): integer;
{ fact(n) computes n! }
begin

flnput size measure: n.[-
“Running time: T{n).

o

T(n) is a linear function for n > 1, because .
T(n) = T{n - 1) = constant. Thercfore
{We may even solve the above equation:

T(n) is linear, so it must be of the form
An + B. Easy calculus gives us T(n) = c*n + (d - c)).

10

Algorithm analysis technigques (1) Copynighted material by
= = - Dr. Marek A. Suchenek

Analysis of recursive programs - efficiency.

function mergesort (L: LIST; n: integer) : LIST; e, = ak
{ L is alist of length n. A sorted version of L
i returned. We assumes 1. power of 2}

var
Ly, Ly: LIST

end {mrge.mﬂ} .
NPT s 268 HEA’SURE"

Estimate the complexity of mergesort.

Assume that ‘and merge take
will guess an asymptotic upper bound of the worst case

running time T(n} of mergesort and prove it by induction.

< Claim. For some constant d and eachm k=1

(which implies ng = 2), IT(n) £ d*n*logn,)

that is to say,

It is sufficient to prove that for all k€@ , thene M“;ts C: ..mﬂ\
" T2y ed k=2

1° Fork=1, T(Zkl 9-'4«: thus (*) holds if d > 2c.
20 Assume that “1’ holds for all k < m (the induction hypothesis).
2™ < 2(T(2™ <
(by induction hvpolheﬁl
2 g m=1)*2" " + ¢+ 2M = gm-1) * 2™ + 2™ =
=c * m * 2™ which means that (*) holds also for k = m.
analys.l

11

Seoeral cules Copyrighted material by
Dr. Marek A. Suchenek

1]

1. The FiififiingMtimesaf sachtassigniment, read, and write statement
can usually be taken to be D{Ij There are a few exceptions,
such as in PL/l, where assignments can involve arbitrarily large
arrays, and in any language that allows function calls in
assignement statements.

uni of 8 sequi of ‘statements is determined by
tha sum rule That is, the runnmg tlme of the sequence is,
to within a constant factor, thé largest running time of any
statement in the sequence.

3. The [finAIng may be estimated as the

running time of the cuudiﬂonal!y executed statements, plus
the time for evaluating the condition. The time 1o evaluate
the condltlon is normall\,r 0(1)

0 en- ict may be estimated as
the time to evalu:aa the cnndi!ion ‘plus the larger of the
time needed for the statements executed when the condition
is true and the time for the statements executed when the
condition is false.

4, The is the sum, over all times around
the Ioop, of the time t to execute the body and the time to
evaluate the condition for termination (usually the latter
is O{1)). Often this time is, neglecting constant factors,
the product of the number of times around the loop and the
largest possible time for one execution of the body, but we
must consider each loop separately to make sure. The number
of iterations around a loop is usually clear, but there are
times when the number of iterations cannot be computed
precisely.

{

12

