
Heaps and Balanced Trees
For in-class use only in CSC 311 course

Dr. Marek A. Suchenek ©

April 28, 2014

1 Heaps and Balanced Trees

1.1 Binary representations of positive natural num-
bers

How many bits are needed to represent a number M > 0 in binary?
Let’s say it’s n. The least binary number that needs n bits for its rep-

resentation is one 1 followed by n − 1 0s. The greatest binary number that
may be represented on n bits is n 1s. Thus we have:

2n−1 = 1 00 . . . 0︸ ︷︷ ︸
n−1

= 100 . . . 0︸ ︷︷ ︸
n

≤M ≤ 11 . . . 1︸ ︷︷ ︸
n

.

Also,
11 . . . 1︸ ︷︷ ︸

n

+1 = 1 00 . . . 0︸ ︷︷ ︸
n

= 2n.

So,
11 . . . 1︸ ︷︷ ︸

n

= 2n − 1.

Therefore,
2n−1 ≤M ≤ 2n − 1 (1)

1



or
2n−1 ≤M < 2n

or, since log2 is a growing function,

log2 2n−1 ≤ log2 M < log2 2n

that is,
n− 1 ≤ log2 M < n.

Therefore, n−1 is the largest integer not larger than log2 M . By the definition
of floor function,

n− 1 = blog2 Mc
or

n = blog2 Mc+ 1. (2)
So, blog2 Mc+ 1 bits are needed to represent number M > 0 in binary.

We will derive a different form of the formula (2). Adding 1 to all sides
of inequality (1) we obtain

2n−1 + 1 ≤M + 1 ≤ 2n

that is,
2n−1 < M + 1 ≤ 2n

or, since log2 is a growing function,

log2 2n−1 < log2(M + 1) ≤ log2 2n

that is,
n− 1 < log2(M + 1) ≤ n.

Therefore, n is the least integer not lesser than log2(M+1). By the definition
of ceiling function,

n = dlog2(M + 1)e. (3)
So, dlog2(M + 1)e bits are needed to represent number M in binary. Inter-
estingly, the formula (3) holds for any integer M ≥ 0, unlike the formula (2)
that only holds for M ≥ 1 (because log2 0 does not exist).

Combining the equalities (2) and (3) yelds an important equality that I
recommend you try to memorize:

blog2 Mc+ 1 = dlog2(M + 1)e, for any integer M ≥ 1. (4)

2



Note. The argument we presented above carries on for any integer base
b ≥ 2, not just for base 2; just replace 2 with b where appropriate. It yields
the following generalization of (4):

blogb Mc+ 1 = dlogb(M + 1)e, for any integer M ≥ 1 and b ≥ 2. (5)

Example 1.1.1 Let M = 7. Binary representation of 7 is 111. It uses 3
significant bits. On the other hand, blog2 7c + 1 = b2.807354922...c + 1 =
2 + 1 = 3. Also, dlog2(7 + 1)e = dlog2 8e = d3e = 3. So far so good!

1.1.1 An exercise with the imperial ruler

Do you see a set of binary sequences on Figure 1? Do you see a complete
binary tree there? If so then explain why.

Figure 1: Do you see a set of binary sequences and a complete binary tree
here?

A sophisticated carpenter will see each notch on the imperial ruler of
Figure 1 as a binary fractional number that represents a trace of binary
search of an end point the distance to which he needs to measure. In the
case of the interval (44, 45), such a trace may be computed this way.

Beginning with k = 1, he will add to or subtract 2−k = 1
2k from the

starting value (44 in this case), depending whether he has to go to the right

3



or to the left of the current notch on the scale, incrementing the value of k
after each step.

For instance, to measure the distance to the red dot on Figure 2,

Figure 2: A red point to which the distance needs to be measured.

he will follow binary search right-left-right-left visualized on Figure 3.

Figure 3: Binary search of the red point on the imperial ruler.

This will result of this sequence of additions and subtractions to 44:

+ 2−1 − 2−2 + 2−3 − 2−1 = 0.0101

4



Thus each point on the interval (44, 45) is identified by a (not necessarily
finite) binary sequence the does not end with 0. However, some of these
points have two different binary sequences that do not end with 0, for in-
stance, the red dot is given by 0.0101 and by 0.01001 (the latter being an
abbreviation for an infinite sequence 0.0100111...1...), which peculiarity is
characteristic to any positional system of counting (for instance, base 10).

Another way of seeing a set of binary sequences on Figure 1 is to ascribe
0 for each move to the left in the binary search outlined above and 1 for each
move to the right. In the search visualized on Figure 3, the binary sequence
that identifies the red dot is 1010. Like before, some points of the interval
(44, 45) have many (up to three) different binary sequences, for instance the
red dot is identified by 1010, 101010 and 101001.

We will utilize the latter method in analysis of heaps in the sequel of this
paper.

Interestingly, both ways described above have one thing in common. If we
drop the initial digit 0, the binary dot, and the last digit 1 from the fractional
identification 0.0101 of the red point we obtain a sequence 010 that encodes
the navigation information how to get there from the point 441

2 (go to the
left, go to the right, and go to the left). And that coincides with the result of
dropping the first digit 1 in the binary-search identification 1010 of the red
dot. This, not surprisingly, defines a 1− 1 function from the set of fractional
identifications onto the set of binary-search identifications of the notches in
the interval (44, 45) of the imperial ruler: erase everything from the left of
the string up to and including the binary dot, and move the last digit 1 to
the front of the remainder sequence.

We conclude this section with an observation that the part that the above
two interpretations of the imperial ruler have in common results in the set
of binary sequences that is closed under truncation, and as such is a binary
tree. In particular, Figure 4 visualizes a complete binary tree given by the
binary sequences corresponding to the notches of the imperial ruler.

5



Figure 4: A complete binary tree.

1.2 Heaps
A heap is a contiguous, partially ordered binary tree. Contiguous means that
all levels of the tree in question, except, perhaps, for the last level, contain
the maximum number of nodes, and if the last level of the tree contains a
lesser number of nodes then they are flushed all the way to the left.

Figure 5 visualizes an example of heap with 17 nodes. It shows nodes’
ordinal numbers in decimal. Their binary representations are of the form: 1
followed by a sequence of edges’ labels along the path from the root to the
node in question. For instance, the sequence of labels along the path from
the root to node number 17 is 0001 and the binary representation of 17 is
10001. The depth of the node number 17, defined as the length of path from
the root to that node, is 4 and may be computed as one less than the length
of the binary representation of 17, that is, blog2 17c. Since it is the last node
of the heap, it is also the depth of the heap. (We will comment more on this
later.)

In addition to providing navigation information, labels of the edges indi-
cate orientation of children: an edge labeled with 0 points to the left child
and one labeled with 1 points to the right child. It so happens that the
children of node i are 2i and 2i+ 1, as it has been visualized on Figure 7.

This important fact may be easily established by looking at binary rep-
resentations of nodes’ ordinal numbers. Since each such representation is a

6



0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17

Figure 5: A heap with 17 nodes showing nodes’ ordinal numbers in decimal.

Figure 6: A really large heap on a small picture.

sequence of bits that determine the path from the root to the node in ques-
tion, the binary representation of a parent node is a result of truncating the
last bit from the binary representation of any of its children. Truncating the
last bit yields the same result as the shiftright operation, that performs
the integer division by 2. So, if j is the ordinal number of a child then the
ordinal number i of its parent is

i = bj2c,

or, in other words,

j =


2i if j is the left child of i

2i+ 1 if j is the right child of i.
(6)

7



Figure 7: Ancestral information translated onto ordinal numbers.

For example, the path from the root to node 13 in the heap on Figure 5,
is 101 which can be obtained from the binary representation of 13, that is,
from 1101, by dropping its first digit 1. So the path to the parent of 13 is 10
and the ordinal number of the node at the end of that path (the parent of
13) is 110, or in 6 in decimal. So, 6 is the parent of 13. Of course, 6 = b13

2 c.
Also, the children of 6, if it has any, must have ordinal numbers that

in binary read 1100 and 1101 since these are the only numbers that when
divided by 2 will yield 110 or 6. These are 12 and 13.

0 1

0 1 0 1

0 1 0

Λ

0 1

00 01 10 11

000 001 010

0 1

0 1 0 1

0 1 0

1

10 11

100 101 110 111

1000 1001 1010

Figure 8: Two visualizations of a heap with 10 nodes: on the left showing
binary sequences that represent the nodes (with λ being the empty sequence),
on the right showing their ordinal numbers in binary, and edges’ labels on
both showing suffixes (the last digit that makes the difference between a child
and its parent).

In a similar fashion one can determine if a node i has a child of children

8



by comparing 2i to n. If 2i ≤ n then i has a child or children and if 2i > n
then it has not (is a leaf, that is). If 2i = n then 2i + 1 > n and so node i
does not have the right child. If 2i < n then 2i + 1 ≤ n and so node i does
have the right child.

Figures 8 and 9 visualize an example of a contiguous binary with 10 nodes
with the values of the nodes shown as binary sequences, binary numbers, and
decimal numbers.

1

2 3

4 5 6 7

8 9 10

Figure 9: A heap with 10 nodes showing their ordinal numbers in decimal.

Partially ordered means that every sequence of nodes along a path from
the root to a leaf in the tree is ordered in a non-increasing order. Or, in
other words, that children, if any, of a node are not larger than their parent.
Figure 10 visualizes an example of a heap with 10 nodes of Figure 9 with the
values of the nodes shown instead of their ordinal numbers.

One of the most amazing things about contiguous trees is how cleverly
are they represented with one-dimensional arrays. An array stores the nodes
of the tree according to their level-by-level order. The root of the tree is
stored at index 1, and the children, if any, of a node stored at index i are
stored at indices 2i (the left child) and 2i + 1 (the right child). A node i
has a child j (left or right) if, and only if, j ≤ N , where N is the number of
nodes of the tree.

The table in Figure 11 shows an array that represents the heap of Fig-
ure 10 with the indicies of the array shown in the top row of the table.

9



0 1

0 1 0 1

0 1 0

10

9 3

8 6 1 2

7 4 5

Figure 10: A heap with 10 nodes showing their values and not the ordinal
numbers.

1 2 3 4 5 6 7 8 9 10
10 9 3 8 6 1 2 7 4 5

Figure 11: Array representation of the heap of Figure 10.

1.3 The height (or depth) of a heap
Each node of of a heap with n nodes is represented by a binary sequence (a
path from the root of the heap to that particular node). The depth of the
heap is equal to the maximal (over all nodes of the heap) length of such a
path. Since the last node in the heap belongs to the last level of the heap,
the length of the path from the root to that last node is maximal.

Let p be the path from the root to the last node of the heap. As we
noticed before, the binary representation of that node’s ordinal number (n,
that is) is 1 followed by p.

In other words, the depth Dn of the heap with n nodes, which is equal to
the length of p, is one less than the number of bits needed to represent n. So

Dn = blog2 nc.

Exercise Show that a heap with l leaves (not nodes) has a depth D that

10



satisfies

dlog2 le ≤ D ≤ blog2 lc+ 1.

Note Since the depth of a heap with n nodes is also the level of node n,
it follows that the level of node i is:

level(i) = blog2 ic.

To see why, remove from the heap all the nodes after i. The resulting
heap will have i nodes so its height is blog2 ic, which (by the definition of the
height of a heap) happens to be the same as the level of i.

1.4 The running time of H.remove() and H.insert(x)

Let H be a heap with n nodes. The number of comparisons Cremove(n) done
in the worst case by H.remove() is less equal to 0 if n = 1 or equal to 2×Dn−1
or 2 ×Dn−1 − 1 otherwise, where Dn−1 is the depth of the heap with n − 1
nodes (after removal, that is), and the number of comparisons Cinsert(n) done
in the worst case by H.insert(x) is less than or equal to Dn+1, where Dn+1 is
the depth of the heap with n+ 1 nodes (after inserting of x, that is).

So,

2× blog2(n− 1)c − 1 ≤ Cremove(n) ≤ 2× blog2(n− 1)c for n > 1,

and

Cinsert(n) = blog2(n+ 1)c.

Therefore,

Cremove(n) ∈ Θ(log n) and Cinsert(n) ∈ Θ(log n). (7)

1.5 The running time of PriorityQueueSort

Because of (7), taking into account that the entire sorting requires n inser-
tions followed by n removals, each of them performed on a heap with no

11



more than n elements, the worst-case number Csort(n) of comparisons by
PriorityQueueSort is

O(nmax{log n, log n}) = O(n lg n).

We will calculate a more accurate estimate of Csort(n)

1.6 More accurate estimate of the running time of Pri-
orityQueueSort

Assume that the array to be sorted has n elements. The number of compar-
isons in the first for-loop is

Σn−1
i=0 Cinsert(i) = Σn−1

i=0 blog2(i+ 1)c

and the number of comparisons in the second for-loop is

Σn
i=2(2× blog2(i− 1)c − 1) ≤ Σn

i=2Cremove(i) ≤ Σn
i=22× blog2(i− 1)c

or

Σn
i=22× blog2(i− 1)c − (n− 1) ≤ Σn

i=2Cremove(i) ≤ Σn
i=22× blog2(i− 1)c

so that the total number of comparison in both loops is

Σn−1
i=0 blog2(i+ 1)c+ Σn

i=22× blog2(i− 1)c − (n− 1) ≤ Csort(n) ≤

≤ Σn−1
i=0 blog2(i+ 1)c+ Σn

i=22× blog2(i− 1)c

that is,

Σn
i=1blog2 ic+ 2Σn−1

i=1 blog2 ic − (n− 1) ≤ Csort(n) ≤

≤ Σn
i=1blog2 ic+ 2Σn−1

i=1 blog2 ic

or

3Σn−1
i=1 blog2 ic − n+ blog2 nc+ 1 ≤ Csort(n) ≤ 3Σn−1

i=1 blog2 ic+ blog2 nc. (8)

12



Because blog2 ic is a non-decreasing function and because i < n in sum-
mation Σn−1

i=1 blog2 ic, we have:

Σn−1
i=1 blog2 ic ≤ Σn−1

i=1 blog2 nc = (n− 1)blog2 nc.

This and the right-hand side of (8) yield the following estimate (an upper
bound) on Csort(n):

Csort(n) ≤ 3(n− 1)blog2 nc+ blog2 nc = (3n− 2)blog2 nc. (9)

1.7 Even more accurate estimate of the running time
of PriorityQueueSort

Let’s compute accurately the sum SM = ΣM
i=1blog2 ic = ΣM

i=1level(i). This
sum is adding the levels of all nodes of the heap with M nodes together, so
it can be split on the sum of all levels of the nodes that are in the first DM

levels (ranging from 0 to blog2 Mc−1) plus the sum of the levels of the nodes
that are in the last level DM = blog2 Mc).

For the example of heap on Figure 5 (M = 17 in this case), Figure 12
shows how to split Σ17

i=1blog2(i)c on Σblog2 17c−1
i=1 i × 2i plus (17 − 2blog2 17c +

1)blog2(17)c.

5 10 15

1

2

3

4

0 ´ 2 0

1 ´ 2 1
2 ´ 2 2

3 ´ 2 3

Figure 12: Computation of Σ17
i=1blog2(i)c (the colored area) as Σblog2 17c−1

i=1 i×2i

(the reddish area) + (17− 2blog2 17c + 1)blog2(17)c (the cyan area).

Clearly, there are

Σblog2 Mc−1
j=0 2j = 2blog2 Mc − 1

13



nodes in the first blog2 Mc − 1 levels of the heap. (Note that 2blog2 Mc is the
largest power of 2 that is not greater thanM .) So, the last level must contain
M − (2blog2 Mc − 1) = M − 2blog2 Mc + 1 nodes. Therefore:

SM = ΣM
i=1level(i) = Σ2blog2 Mc−1

i=1 level(i) + ΣM
i=2blog2 Mclevel(M) =

Σ2blog2 Mc−1
i=1 blog2 ic+ ΣM

i=2blog2 Mcblog2 Mc =

Σblog2 Mc−1
i=1 i× 2i + blog2 Mc × (M − 2blog2 Mc + 1) =

(blog2 Mc − 2)2blog2 Mc + 2 + blog2 Mc × (M − 2blog2 Mc + 1) =

(blog2 Mc−2)×2blog2 Mc+blog2 Mc×M−blog2 Mc×2blog2 Mc+blog2 Mc+2 =

blog2 Mc×2blog2 Mc−2×2blog2 Mc+blog2 Mc×M−blog2 Mc×2blog2 Mc+blog2 Mc+2 =

−2× 2blog2 Mc + blog2 Mc ×M + blog2 Mc+ 2 =

Mblog2 Mc − 2blog2 Mc+1 + blog2 Mc+ 2 =

(M + 1)blog2 Mc − 2blog2 Mc+1 + 2.

Hence,

SM = ΣM
i=1blog2(i)c = (M + 1)blog2 Mc − 2blog2 Mc+1 + 2

.
In particular,

Sn−1 = Sn − blog2 nc = nblog2 nc − 2blog2 nc+1 + 2,

14



that is,
Σn−1

i=1 blog2 ic = nblog2 nc − 2blog2 nc+1 + 2. (10)

Combining (8) and (10), we conclude that the total number Csort(n) of
comparisons is:

Csort(n) ≤ 3×Sn−1 +blog2 nc = 3(nblog2 nc−2blog2 nc+1)+blog2 nc+6. (11)

Let x = log2 n− blog2 nc, that is,

blog2 nc = log2 n− x. (12)

Applying (12) to (11) we obtain:

Csort(n) ≤ 3(n(log2 n− x)− 2log2 n+1−x) + log2 n− x+ 6 =
3(n(log2 n−x)−n21−x)+log2 n−x+6 = 3n(log2 n−(x+21−x))+log2 n−x+6 =

(3n+ 1) log2 n− 3(x+ 21−x)n− x+ 6 = (3n+ 1) log2 n− 3αn+ β,

where α = x+ 21−x and β = 6− x, that is, 1.91 < α ≤ 2 and 5 < β ≤ 6.
The same way we compute that

(3n+ 1) log2 n− 3αn+ β − (n− 1) ≤ Csort(n),
or

(3n+ 1) log2 n− (3α + 1)n+ β + 1 ≤ Csort(n).
Hence,

(3n+ 1) log2 n− 7n+ 5 < Csort(n) < (3n+ 1) log2 n− 5.73n+ 6. (13)

Of course,
Csort(n) ∈ Θ(n log n) (14)

as both
(3n+ 1) log2 n− 7n+ 6 ∈ Θ(n log n)

and
(3n+ 1) log2 n− 5.73n+ 6 ∈ Θ(n log n).

Figure 13 visualizes Csort(n) and its upper and lower bounds
(3n+ 1) log2 n− 7n+ 6 and (3n+ 1) log2 n− 5.73n+ 6.

15



5 10 15 20

50

100

150

Figure 13: Graph of Csort(n) and its upper and lower bounds.

1.8 The running time of MakeHeap

Assume that there are n elements placed at random in an array A[1..n], so
that A, although a contiguous tree, may or may not have the heap property.
The method MakeHeap will re-heapfy A by scanning it from its last parent
bn

2 c to its first element 1, treating each of them as the root of a contiguous
subtree of A and demoting it in order re-heapify that subtree. Once this
process is complete, the resulting A has a heap property so it is a heap.

First, let’s note that

blog2 b
n

2 cc = blog2 nc − 1.

(To see that, let’s note that blog2 nc is the level of node n while blog2bn
2 cc

is the level of n’s parent, so it must be 1 less.)
Let’s compute Sbn

2 c. We have:

Sbn
2 c = Σb

n
2 c

i=1blog2 ic =

(bn2 c+ 1)blog2b
n

2 cc − 2blog2bn
2 cc+1 + 2 =

16



(bn2 c+ 1)(blog2 nc − 1)− 2blog nc−1+1 + 2 =

bn2 cblog2 nc+ blog2 nc − b
n

2 c − 1− 2blog nc + 2 =

bn2 cblog2 nc+ blog2 nc − b
n

2 c − 2blog nc + 1.

We note that the following formula gives a lower bound and an upper
bound on the number of comparisons that MakeHeap needs, in a worst case,
to re-heapify A:

CMakeHeap ≤ Σb
n
2 c

i=12× rank(i)

where rank(i) is the depth of the subheap Hi that has i as its root. In-
deed, the root i of the subheap Hi will participate in at most 2 × rank(i)
comparisons while being demoted during re-heapification of the subheap Hi

(at most two comparisons per each level of the said subheap except for the
lowest level that will admit no comparisons since there are no nodes left to
compare the demoted i with) and rank(i) > 0 if, and only if, i is a parent
or, in other words, i ≤ n

2 , that is, i ≤ b
n
2 c.

Since rank(i) = Dn − level(i) (if subheap Hi has any leaves at level Dn)
or rank(i) = Dn− level(i)−1 (if subheap Hi has leaves only at level Dn−1),
or - in other words - rank(i) ≤ Dn − level(i), we have:

CMakeHeap ≤ Σb
n
2 c

i=12× rank(i) ≤ Σb
n
2 c

i=12(Dn − level(i)) =

2Σb
n
2 c

i=1(blog2 nc − blog2 ic) =

2Σb
n
2 c

i=1blog2 nc − Σb
n
2 c

i=1blog2 ic =

2bn2 cblog2 nc − 2× Sbn
2 c =

2bn2 cblog2 nc − 2× (bn2 cblog2 nc+ blog2 nc − b
n

2 c − 2blog nc + 1) =

17



−2(blog2 nc − b
n

2 c − 2blog nc + 1) =

2bn2 c+ 2blog nc+1 − 2blog2 nc − 2 ≤

n+ 2n− 2 log2 n− 2 = 3n− 2 log2 n− 2 ∈ O(n).

One can also show that

CMakeHeap ≥ Σb
n
2 c

i=12(Dn − level(i)− 1),

or, using calculations similar to the above,

CMakeHeap ≥ 2blog nc+1 − 2blog2 nc − 2 > n− 2 log2 n− 2 ∈ Ω(n).

Thus
n− 2 log2 n− 2 < CMakeHeap ≤ 3n− 2 log2 n− 2,

that is,
CMakeHeap ∈ Θ(n).

The above approximations, visualized on Fig. 14 and Fig. 15, although
rough were good enough to establish the big-Θ characterization of CMakeHeap.

18



50 100 150 200

100

200

300

400

Figure 14: Graph of 2bn
2 c+2blog nc+1−2blog2 nc−2 (top), CMakeHeap (middle),

and 2blog nc+1 − 2blog2 nc − 2 (bottom).

1.9 The speed-up while using MakeHeap instead of H.insert()
in a for-loop

The speed-up is equal to approximately 33%. Additional speed-up cuts the
Cremove roughly by 50%, thus resulting in the total speed-up of HeapSort by
about a factor of two. This brings the worst-case number of comparisons of
key of HeapSort down to n log2 n+ o(n), that is, in par with MergeSort.

19



50 100 150 200

100

200

300

400

500

Figure 15: Graph of Fig. 14 with smooth bounds added (from the top to the
bottom): 3n− 2 log2 n− 2, 2n− 2, 2n− 2 log2 n− 2, n− 2 log2 n− 2 .

20


