
Heaps and Balanced Trees
For in-class use only in CSC 311 course

Dr. Marek A. Suchenek ©

April 28, 2014

1 Heaps and Balanced Trees

1.1 Binary representations of positive natural num-
bers

This section has already been presented in class. It is included here for
students’ convenience.

1



How many bits are needed to repre-
sent a number M > 0 in binary?
Say, it’s n.

2



The greatest binary number that may
be represented on n bits is n 1s.

3



The greatest binary number that may
be represented on n bits is n 1s.
2n−1 = 1 00 . . . 0︸ ︷︷ ︸

n−1
= 100 . . . 0︸ ︷︷ ︸

n
≤M ≤ 11 . . . 1︸ ︷︷ ︸

n
.

4



The greatest binary number that may
be represented on n bits is n 1s.
2n−1 = 1 00 . . . 0︸ ︷︷ ︸

n−1
= 100 . . . 0︸ ︷︷ ︸

n
≤M ≤ 11 . . . 1︸ ︷︷ ︸

n
.

2n−1 ≤M ≤ 11 . . . 1︸ ︷︷ ︸
n

.

5



The greatest binary number that may
be represented on n bits is n 1s.

2n−1 ≤M ≤ 11 . . . 1︸ ︷︷ ︸
n

.

11 . . . 1︸ ︷︷ ︸
n

+1 = 1 00 . . . 0︸ ︷︷ ︸
n

= 2n.

6



11 . . . 1︸ ︷︷ ︸
n

+1 = 1 00 . . . 0︸ ︷︷ ︸
n

= 2n.

11 . . . 1︸ ︷︷ ︸
n

= 2n − 1.

7



11 . . . 1︸ ︷︷ ︸
n

= 2n − 1.

2n−1 ≤M ≤ 2n − 1

8



2n−1 ≤M ≤ 2n − 1

2n−1 ≤M < 2n

9



2n−1 ≤M < 2n

log2 2n−1 ≤ log2M < log2 2n

10



log2 2n−1 ≤ log2M < log2 2n

n− 1 ≤ log2M < n.

11



n− 1 ≤ log2M < n.

n− 1 = blog2Mc

12



n− 1 = blog2Mc

n = blog2Mc + 1.

13



n = blog2Mc + 1.

So, blog2Mc + 1 bits are needed to
represent number M > 0 in binary.

14



Here is an important equality that I
recommend you try to memorize:

blog2Mc + 1 = dlog2(M + 1)e,

for any integer M ≥ 1.

15



1.2 Heaps

16



0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17

Figure 1: A heap with 17 nodes showing nodes’ ordinal numbers in decimal.

17



Figure 2: A really large heap on a small picture.

18



Figure 3: Ancestral information translated onto ordinal numbers.

19



j =



2i if j is the left child of i

2i + 1 if j is the right child of i.

20



0 1

0 1 0 1

0 1 0

Λ

0 1

00 01 10 11

000 001 010

0 1

0 1 0 1

0 1 0

1

10 11

100 101 110 111

1000 1001 1010

Figure 4: Two visualizations of a heap with 10 nodes: on the left showing
binary sequences that represent the nodes (with λ being the empty sequence),
on the right showing their ordinal numbers in binary, and edges’ labels on
both showing suffixes (the last digit that makes the difference between a child
and its parent).

21



1

2 3

4 5 6 7

8 9 10

Figure 5: A heap with 10 nodes showing their ordinal numbers in decimal.

22



0 1

0 1 0 1

0 1 0

10

9 3

8 6 1 2

7 4 5

Figure 6: A heap with 10 nodes showing their values and not the ordinal
numbers.

23



1 2 3 4 5 6 7 8 9 10
10 9 3 8 6 1 2 7 4 5

Figure 7: Array representation of the heap of Figure 6.

.

24



1.3 The height (or depth) of a
heap

25



The depthDn of the heap with n nodes
is equal to the length of the longest path
from its root to any other node.

26



The depthDn of the heap with n nodes
is equal to the length of the longest path
from its root to any other node.
The path from the root to the node n

is a longest such path.

27



The depthDn of the heap with n nodes
is equal to the length of the longest path
from its root to any other node.
The path from the root to the node n

is a longest such path.
So, the depth Dn of the heap with

n nodes is equal to the length of the
longest path from its root to the node
n.

28



So, the depth Dn of the heap with
n nodes is equal to the length of the
longest path from its root to the node
n.

29



So, the depth Dn of the heap with
n nodes is equal to the length of the
longest path from its root to the node
n.
It is the length of the binary sequence

that comprises the node n.

30



0 1

0 1 0 1

0 1 0

Λ

0 1

00 01 10 11

000 001 010

31



So, the depth Dn of the heap with n
nodes is equal to the number of bits in
the binary sequence that comprises the
node n.

32



So, the depth Dn of the heap with n
nodes is equal to the number of bits in
the binary sequence that comprises the
node n.
And that is one less than the number

of bits needed to represent n.

33



0 1

0 1 0 1

0 1 0

1

10 11

100 101 110 111

1000 1001 1010

34



The depthDn of the heap with n nodes
is one less than the number of bits needed
to represent n.

35



The depthDn of the heap with n nodes
is one less than the number of bits needed
to represent n.

Dn = (blog2 nc + 1)− 1 = blog2 nc.

36



The depthDn of the heap with n nodes
is one less than the number of bits needed
to represent n.

Dn = blog2 nc.

37



1.4 The running time of H.remove()
and H.insert(x)

38



Let H be a heap with n nodes.
The number of comparisonsCremove(n)

done in the worst case by H.remove()

39



Let H be a heap with n nodes.
The number of comparisonsCremove(n)

done in the worst case by H.remove()

2×Dn−1−1 ≤ Cremove(n) ≤ 2×Dn−1,

40



2×Dn−1−1 ≤ Cremove(n) ≤ 2×Dn−1,

2× blog2(n− 1)c − 1 ≤ Cremove(n),

41



2×Dn−1−1 ≤ Cremove(n) ≤ 2×Dn−1,

Cremove(n) ≤ 2× blog2(n− 1)c,

42



2× blog2(n− 1)c − 1 ≤ Cremove(n),

Cremove(n) ≤ 2× blog2(n− 1)c,

43



2× blog2(n− 1)c − 1 ≤ Cremove(n),

Cremove(n) ≤ 2× blog2(n− 1)c,

Cremove(n) ∈ Θ(log n).

44



Cremove(n) ∈ Θ(log n).

45



The number of comparisonsCinsert(n)
done in the worst case by H.insert(x)

46



The number of comparisonsCinsert(n)
done in the worst case by H.insert(x)

Cinsert(n) = Dn+1 = blog2(n + 1)c.

47



The number of comparisonsCinsert(n)
done in the worst case by H.insert(x)

Cinsert(n) = blog2(n + 1)c.

48



Cinsert(n) = blog2(n + 1)c.

Cinsert(n) ∈ Θ(log n).

49



Cinsert(n) ∈ Θ(log n).

50



1.5 The running time of PriorityQueue-
Sort, a.k.a. HeapSort

51



Figure 8: A simple HeapSort.

52



Csort(n) ∈ O(n×max(Cinsert(n), Cremove(n)).

53



Csort(n) ∈ O(n×max(Cinsert(n), Cremove(n)).

Csort(n) ∈ O(n×max(log n, log n).

54



Csort(n) ∈ O(n×max(log n, log n).

Csort(n) ∈ O(n log n).

55



1.6 A more accurate computation
of the running time of Priori-
tyQueueSort, a.k.a. HeapSort

56



Figure 9: A simple HeapSort.

57



Assume that the array to be sorted
has n elements. The worst-case number
of comparisons in the first for-loop is

58



Assume that the array to be sorted
has n elements. The worst-case number
of comparisons in the first for-loop is

59



Σn−1
i=0 Cinsert(i)

60



Assume that the array to be sorted
has n elements. The worst-case number
of comparisons in the first for-loop is

Σn−1
i=0 Cinsert(i) = Σn−1

i=0 blog2(i + 1)c

61



Σn−1
i=0 Cinsert(i) = Σn−1

i=0 blog2(i + 1)c

Σn−1
i=0 Cinsert(i) = Σni=1blog2 ic

62



Σn−1
i=0 Cinsert(i) = Σni=1blog2 ic

Σn−1
i=0 Cinsert(i) ≤ nblog2 nc.

63



Σn−1
i=0 Cinsert(i) = Σni=1blog2 ic

Σn−1
i=0 Cinsert(i) ≤ nblog2 nc.

because blog2 ic ≤ blog2 nc and there
are n terms to add in Σni=1blog2 ic.

64



The number of comparisons in the sec-
ond for-loop is

65



The number of comparisons in the sec-
ond for-loop is

66



Σn−1
i=0 Cremove(i + 1)

67



Σn−1
i=0 Cremove(i + 1)

Σnk=1Cremove(k), where k = i + 1

68



Σnk=1Cremove(k)

Σnk=2Cremove(k)

69



Σnk=2Cremove(k)

Σni=2Cremove(i)

70



Σni=2Cremove(i) ≤ Σni=22×blog2(i−1)c

71



Σni=2Cremove(i) ≤ Σni=22×blog2(i−1)c

Σni=2Cremove(i) ≤ Σni=22×blog2 nc = 2(n−1)blog2 nc.

72



Σni=2Cremove(i) ≤ Σni=22×blog2(i−1)c

Σni=2Cremove(i) ≤ Σni=22×blog2 nc = 2(n−1)blog2 nc.

because blog2(i− 1)c ≤ blog2 nc and
there are n−1 terms to add in Σn−1

i=2 blog2 ic.

73



Σni=2Cremove(i) ≤ 2(n− 1)blog2 nc.

74



Σni=2Cremove(i) ≤ 2(n− 1)blog2 nc.

The worst-case number of comparisons
in the first for-loop was estimated as:

Σn−1
i=0 Cinsert(i) ≤ nblog2 nc.

75



Adding them together, we obtain the
number Csort(n) of comparisons per-
formed in both loops

76



Adding them together, we obtain the
number Csort(n) of comparisons per-
formed in both loops

Csort(n) = Σn−1
i=0 Cinsert(i)+Σni=2Cremove(i)

77



Adding them together, we obtain the
number Csort(n) of comparisons per-
formed in both loops

Csort(n) = Σn−1
i=0 Cinsert(i)+Σni=2Cremove(i) ≤

≤ nblog2 nc + 2(n− 1)blog2 nc.

78



Adding them together, we obtain the
number Csort(n) of comparisons per-
formed in both loops

Csort(n) ≤ nblog2 nc+2(n−1)blog2 nc.

79



Adding them together, we obtain the
number Csort(n) of comparisons per-
formed in both loops

Csort(n) ≤ nblog2 nc+2(n−1)blog2 nc.

Csort(n) ≤ (3n− 2)blog2 nc.

80



Note
It is known that the first for-loop may

be replaced by a heap-construction pro-
gram that performs the same task as the
first for-loop while performing no more
than 2n− 2 comparisons.

81



This allows to decrease the number of
comparisons while sorting down to no
more than:

Csort(n) ≤ 2n− 2 + 2(n− 1)blog2 nc.

82



This allows to decrease the number of
comparisons while sorting down to no
more than:

Csort(n) ≤ 2n− 2 + 2(n− 1)blog2 nc.

Csort(n) ≤ 2(n− 1)(blog2 nc + 1).

83



This allows to decrease the number of
comparisons while sorting down to no
more than:

Csort(n) ≤ 2n− 2 + 2(n− 1)blog2 nc.

Csort(n) ≤ 2(n− 1)(blog2 nc + 1).

Recall that blog2 nc + 1 is the num-
ber of bits necessary to represent n in
binary.

84



How interesting!

85



1.7 Even more accurate compu-
tation of the running time of
PriorityQueueSort, a.k.a. Heap-
Sort

86



Figure 10: A simple HeapSort.

87



Assume that the array to be sorted
has n elements. The number of com-
parisons in the first for-loop is

88



Assume that the array to be sorted
has n elements. The number of com-
parisons in the first for-loop is

89



Σn−1
i=0 Cinsert(i)

90



Assume that the array to be sorted
has n elements. The number of com-
parisons in the first for-loop is

Σn−1
i=0 Cinsert(i) = Σn−1

i=0 blog2(i + 1)c

91



Σn−1
i=0 Cinsert(i) = Σn−1

i=0 blog2(i + 1)c

Σn−1
i=0 Cinsert(i) = Σni=1blog2 ic

92



Σn−1
i=0 Cinsert(i) = Σni=1blog2 ic

Σn−1
i=0 Cinsert(i) ≤ Σni=1blog2 ic+blog2 nc.

93



Σn−1
i=0 Cinsert(i) = Σn−1

i=1 blog2 ic+blog2 nc.

Σn−1
i=0 Cinsert(i) = Σni=2blog2(i−1)c+blog2 nc.

94



The number of comparisons in the first
for-loop is

Σn−1
i=0 Cinsert(i) = Σni=2blog2(i−1)c+blog2 nc.

95



The number of comparisons in the first
for-loop is

Σni=2blog2(i− 1)c + blog2 nc.

96



The number of comparisons in the sec-
ond for-loop is

97



The number of comparisons in the sec-
ond for-loop is

98



Σn−1
i=0 Cremove(i + 1)

99



Σn−1
i=0 Cremove(i + 1)

Σnk=1Cremove(k), where k = i + 1

100



Σnk=1Cremove(k)

Σnk=2Cremove(k)

101



Σnk=2Cremove(k)

Σni=2Cremove(i)

102



Σni=2(2×blog2(i−1)c−1) ≤ Σni=2Cremove(i)

Σni=2Cremove(i) ≤ Σni=22×blog2(i−1)c

103



2×Σni=2blog2(i−1)c−(n−1) ≤ Σni=2Cremove(i)

Σni=2Cremove(i) ≤ 2×Σni=2blog2(i−1)c

104



Adding them together, we obtain the
number Csort(n) of comparisons per-
formed in both loops

105



Adding them together, we obtain the
number Csort(n) of comparisons per-
formed in both loops

Σni=2blog2(i− 1)c + blog2 nc+

+2×Σni=2blog2(i−1)c−(n−1) ≤ Csort(n)

106



Σni=2blog2(i− 1)c + blog2 nc+

+2×Σni=2blog2(i−1)c−(n−1) ≤ Csort(n)

3×Σni=2blog2(i−1)c−n+blog2 nc+1 ≤ Csort(n)

107



Adding them together, we obtain the
number Csort(n) of comparisons per-
formed in both loops

Csort(n) ≤ Σni=2blog2(i−1)c+blog2 nc+

+2× Σni=2blog2(i− 1)c

108



Csort(n) ≤ Σni=2blog2(i−1)c+blog2 nc+

+2× Σni=2blog2(i− 1)c

Csort(n) ≤ 3×Σni=2blog2(i−1)c+blog2 nc.

109



3×Σni=2blog2(i−1)c−n+blog2 nc+1 ≤

≤ Csort(n) ≤ 3×Σni=2blog2(i−1)c+blog2 nc.

110



Let’s compute

Σni=2blog2(i− 1)c

111



Σni=2blog2(i− 1)c ≈ n lg n− 1.9n+ 4.7

10 15 20

10

20

30

40

50

112



Here is how to compute the exact value
of

Σni=2blog2(i− 1)c

113



Σ17
i=2blog2 ic =

= Σblog2 17c−1
i=1 i×2i+(17−2blog2 17c+1)blog2 17c

114



Σ17
i=2blog2 ic =

= Σblog2 17c−1
i=1 i×2i+(17−2blog2 17c+1)blog2 17c

In general,

Σni=2blog2 ic =

= Σblog2 nc−1
i=1 i×2i+(n−2blog2 nc+1)blog2 nc

115



In general,

Σni=2blog2 ic =

= Σblog2 nc−1
i=1 i×2i+(n−2blog2 nc+1)blog2 nc

ΣMi=1i× 2i = (M − 1)× 2M+1 + 2

116



ΣMi=1i× 2i = (M − 1)× 2M+1 + 2

Σblog2 nc−1
i=1 i× 2i =

= (blog2 nc− 1− 1)× 2blog2 nc−1+1 + 2

117



Σblog2 nc−1
i=1 i× 2i =

= (blog2 nc− 1− 1)× 2blog2 nc−1+1 + 2

Σblog2 nc−1
i=1 i× 2i =

= (blog2 nc − 2)× 2blog2 nc + 2

118



Σblog2 nc−1
i=1 i× 2i =

= (blog2 nc − 2)× 2blog2 nc + 2

Σblog2 nc−1
i=1 i× 2i =

= blog2 nc× 2blog2 nc− 2× 2blog2 nc+ 2

119



Σblog2 nc−1
i=1 i× 2i =

= blog2 nc× 2blog2 nc− 2× 2blog2 nc+ 2

We had:

Σni=2blog2 ic =

= Σblog2 nc−1
i=1 i×2i+(n−2blog2 nc+1)blog2 nc

120



Σblog2 nc−1
i=1 i× 2i =

= blog2 nc× 2blog2 nc− 2× 2blog2 nc+ 2

We had:

Σni=2blog2 ic =

= Σblog2 nc−1
i=1 i×2i+(n−2blog2 nc+1)blog2 nc

Σni=2blog2 ic =
= blog2 nc×2blog2 nc−2×2blog2 nc+2+

121



+(n− 2blog2 nc + 1)blog2 nc

122



Σni=2blog2 ic =
= blog2 nc×2blog2 nc−2×2blog2 nc+2+

+(n− 2blog2 nc + 1)blog2 nc

Σni=2blog2 ic =
= blog2 nc×2blog2 nc−2blog2 nc+1 +2+
+nblog2 nc−blog2 nc×2blog2 nc+blog2 nc

123



Σni=2blog2 ic =
= blog2 nc×2blog2 nc−2blog2 nc+1 +2+
+nblog2 nc−blog2 nc×2blog2 nc+blog2 nc

Σni=2blog2 ic =
= −2blog2 nc+1+2+nblog2 nc+blog2 nc

124



Σni=2blog2 ic =
= −2blog2 nc+1+2+nblog2 nc+blog2 nc

Σni=2blog2 ic =
= (n + 1)blog2 nc − 2blog2 nc+1 + 2

125



Σni=2blog2 ic =
= (n + 1)blog2 nc − 2blog2 nc+1 + 2

126



Σni=2blog2 ic =
= (n + 1)blog2 nc − 2blog2 nc+1 + 2

Σni=2blog2(i− 1)c = Σn−1
i=1 blog2 ic =

127



Σni=2blog2 ic =
= (n + 1)blog2 nc − 2blog2 nc+1 + 2

Σni=2blog2(i− 1)c = Σn−1
i=1 blog2 ic =

Σni=2blog2 ic − blog2 nc =

128



Σni=2blog2 ic =
= (n + 1)blog2 nc − 2blog2 nc+1 + 2

Σni=2blog2(i− 1)c = Σn−1
i=1 blog2 ic =

Σni=2blog2 ic − blog2 nc =
= nblog2 nc − 2blog2 nc+1 + 2

129



Σni=2blog2(i− 1)c = Σn−1
i=1 blog2 ic =

Σni=2blog2 ic − blog2 nc =
= nblog2 nc − 2blog2 nc+1 + 2

Σni=2blog2(i− 1)c =
= nblog2 nc − 2blog2 nc+1 + 2

130



Σni=2blog2(i− 1)c =
= nblog2 nc − 2blog2 nc+1 + 2

We had:

3×Σni=2blog2(i−1)c−n+blog2 nc+1 ≤
≤ Csort(n) ≤ 3×Σni=2blog2(i−1)c+blog2 nc.

3×(nblog2 nc−2blog2 nc+1+2)−n+blog2 nc+1 ≤

131



≤ Csort(n) ≤
≤ 3×(nblog2 nc−2blog2 nc+1+2)+blog2 nc.

132



3×(nblog2 nc−2blog2 nc+1+2)−n+blog2 nc+1 ≤
≤ Csort(n) ≤

≤ 3×(nblog2 nc−2blog2 nc+1+2)+blog2 nc.

(3n+1)blog2 nc−3×2blog2 nc+1+6−n+1 ≤
≤ Csort(n) ≤

≤ (3n+1)blog2 nc−3×2blog2 nc+1 +6.

133



(3n+1)blog2 nc−3×2blog2 nc+1+6−n+1 ≤
≤ Csort(n) ≤

≤ (3n+1)blog2 nc−3×2blog2 nc+1 +6.

(3n+ 1)blog2 nc− 3× 2n+ 6−n+ 1 ≤
≤ Csort(n) <

< (3n + 1)blog2 nc − 3× 2n
2

+ 6.

134



(3n+ 1)blog2 nc− 3× 2n+ 6−n+ 1 ≤
≤ Csort(n) <

< (3n + 1)blog2 nc − 3× 2n
2

+ 6.

(3n + 1)blog2 nc − 7n + 7 ≤
≤ Csort(n) <

< (3n + 1)blog2 nc − 3n + 6.

135



(3n + 1)blog2 nc − 7n + 7 ≤
≤ Csort(n) <

< (3n + 1)blog2 nc − 3n + 6.

(3n + 1)(blog2 nc − 21
3

) + 91
3
≤

≤ Csort(n) <
< (3n + 1)(blog2 nc − 1) + 5.

136



One can show

(3n + 1) log2 n− 7n + 5 < Csort(n) <
< (3n + 1) log2 n− 5.73n + 6.

137



1.8 The running time of MakeHeap

Here is a faster Heapsort.

138



139



CMakeHeap(n) =
bn2c∑
i=1

CFixHeap(i)(n)

140



CMakeHeap(n) =
bn2c∑
i=1

CFixHeap(i)(n)

Recall

2×Dn−1 ≤ Cremove(n+1) ≤ 2×Dn,

141



CMakeHeap(n) =
bn2c∑
i=1

CFixHeap(i)(n)

2×Dn−1 ≤ Cremove(n+1) ≤ 2×Dn,

CFixHeap(i)(n) ≤
≤ Cremove(n + 1)− 2×Di ≤

≤ 2× (Dn −Di),

142



CMakeHeap(n) =
bn2c∑
i=1

CFixHeap(i)(n)

CFixHeap(i)(n) ≤ 2(Dn −Di)

143



CMakeHeap(n) =
bn2c∑
i=1

CFixHeap(i)(n)

CFixHeap(i)(n) ≤ 2(Dn −Di)

CFixHeap(i)(n) ≤ 2(blog2 nc−blog2 ic)

144



CMakeHeap(n) =
bn2c∑
i=1

CFixHeap(i)(n)

CFixHeap(i)(n) ≤ 2(blog2 nc−blog2 ic)

CMakeHeap(n) ≤
bn2c∑
i=1

2(blog2 nc−blog2 ic)

145



CMakeHeap(n) ≤
bn2c∑
i=1

2(blog2 nc−blog2 ic)

CMakeHeap(n) ≤ 2(bn
2
cblog2 nc−

bn2c∑
i=1
blog2 ic)

146



CMakeHeap(n) ≤ 2(bn
2
cblog2 nc−

bn2c∑
i=1
blog2 ic)

bn2c∑
i=1
blog2 ic =

147



CMakeHeap(n) ≤ 2(bn
2
cblog2 nc−

bn2c∑
i=1
blog2 ic)

bn2c∑
i=1
blog2 ic =

= bn
2
cblog2 nc−b

n

2
c−2blog2 nc+blog2 nc+1

148



CMakeHeap(n) ≤ 2(bn
2
cblog2 nc−

bn2c∑
i=1
blog2 ic)

bn2c∑
i=1
blog2 ic =

= bn
2
cblog2 nc−b

n

2
c−2blog2 nc+blog2 nc+1

Exercise: Prove it using the previous
formula for ∑n

i=1blog2 ic.

149



CMakeHeap(n) ≤ 2(bn
2
cblog2 nc−

bn2c∑
i=1
blog2 ic)

bn2c∑
i=1
blog2 ic =

= bn
2
cblog2 nc−b

n

2
c−2blog2 nc+blog2 nc+1

CMakeHeap(n) ≤
2(bn

2
cblog2 nc+

−(bn
2
cblog2 nc−b

n

2
c−2blog2 nc+blog2 nc+1))

150



CMakeHeap(n) ≤

2(bn
2
cblog2 nc+

−(bn
2
cblog2 nc−b

n

2
c−2blog2 nc+blog2 nc+1))

CMakeHeap(n) ≤

2(bn
2
c + 2blog2 nc − blog2 nc − 1)

151



CMakeHeap(n) ≤

2(bn
2
c + 2blog2 nc − blog2 nc − 1)

CMakeHeap(n) ≤ 2n
2

+2×2log2 n−2 log2 n−2

152



CMakeHeap(n) ≤ 2n
2

+2×2log2 n−2 log2 n−2

CMakeHeap(n) ≤ n + 2n− 2 log2 n− 2

153



CMakeHeap(n) ≤ n + 2n− 2 log2 n− 2

CMakeHeap(n) ≤ 3n− 2 log2 n− 2

154



CMakeHeap(n) ≤ 3n− 2 log2 n− 2

155



Note. The exact worst-case number
of comparisons of MakeHeap is given by
this formula:

CMakeHeap(n) = 2n− 2s2(n)− e2(n),

where s2(n) is the sum of all digits
of the binary representation of n and
e2(n) is the exponent of 2 in the prime
factorization of n.

156



It satisfies this inequality:

2n−2 lg(n+1) ≤ CMakeHeap(n) ≤ 2n−4
for n ≥ 3.

157



Below is a graph of 2n−2s2(n)−e2(n)
plotted below an upper bound 3n−2 lg n+
2.

158



1.9 The speed-up while using Make-
Heap instead of H.insert() in a
for-loop

The speed-up is equal to approximately
33%. Additional speed-up cuts theCremove
roughly by 50%, thus resulting in the
total speed-up of HeapSort by about a
factor of two. This brings the worst-
case number of comparisons of key of
HeapSort down to n log2 n+o(n), that
is, in par with MergeSort.

159



5 10 15

1

2

3

4

0 ´ 2 0

1 ´ 2 1
2 ´ 2 2

3 ´ 2 3

Figure 11: Computation of Σ17
i=2blog2 ic (the

colored area) as Σblog2 17c−1
i=1 i × 2i (the

reddish area) + (17 − 2blog2 17c +
1)blog2 17c (the cyan area).

160



10 15 20

10

20

30

40

50

Figure 12: Functions ∑n
i=2blg ic and (n+ 1)blg nc − 2blg nc+1 + 2.

161



5 10 15 20

50

100

150

Figure 13: Graph of Csort(n) and its upper and lower bounds.

162



50 100 150 200

100

200

300

400

500

Figure 14: A graph of 2n − 2s2(n) − e2(n) plotted below an upper bound
3n− 2 lg n+ 2.

163


