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1 Some rates of growth of running time T (n) and
corresponding rates of growth of max input’s
size Max(t) and its derivative Max′(t)

Let T (n) be a running time of some program P. Let us assert that T (n) is a
growing function. This assertion holds in what may be considered a typical
situation: the larger the input to program P the longer it takes to process it.

Under the above assertion, Max(t), defined as the maximum size n of input
for which T (n) ≤ t, is the inverse of T (n), that is,

t = T (n) iff n = Max(t). (1)

In particular, Max(t) is a growing function as well. (Proof left as an easy
exercise for the reader.)
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The following fact holds for every differentiable growing function f :

(finverse)′(x) = 1
f ′(finverse(x)), (2)

where finverse is the inverse of f (it exists since f is a growing function) and
f ′ is the derivative of f . (Proof left as an intermediate exercise for the reader
- requires calculus. Hint: Use the geometric/trigonometric interpretation of
derivative.)

In particular,
Max′(t) = 1

T ′(Max(t)). (3)

The derivative Max′(t) of Max(t) seems like a good measure of return on
investment of a faster computer (or - equivalently - longer wait) for program P.
It tells how fast (or slow) the maximum size of tractable input to P will grow
with the increase of the computer’s speed. So, the larger Max′(t) the more
cost effective it is at point t to run P on a faster computer. And vice versa: the
smaller Max′(t) the more wasteful it is at point t to run P on a faster computer.

When the measure Max′(t) is decreasing then it might be insightful to con-
sider also the reciprocal 1

Max′(t) of Max′(t) as a measure of the cost of enlarge-
ment of maximum size Max(t) of tractable input to program P . In such a case,
it seems easier to evaluate visually the rate of growth of 1

Max′(t) than the rate of
decline of Max′(t) based on their graphs. The measure 1

Max′(t) tells how much
faster (or longer) the program P must be executed in order to accomplish the
unit increase of tractable input to P . So, the larger the 1

Max′(t) the more costly
it is at point t to run P on even a slightly larger input.

By (3),

1
Max′(t) = T ′(Max(t)). (4)
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Finding the Θ characterization of f ′(t) and of 1
f ′(t) from the Θ character-

ization of f(t) requires some extra assumption that f and its Θ benchmark
(representative) satisfy assumptions of the de l’Hôpital rule.

Theorem 1.1 Let f and g be positive, increasing, differentiable functions that
both converge to 0 or both diverge to∞ as their arguments diverge to∞. Assume
that limx→∞

f ′(x)
g′(x) exists. Then

f ∈ Θ(g) ≡ f ′ ∈ Θ(g′) ≡ 1
f ′
∈ Θ( 1

g′
).

Proof (optional for all students). f ′ ∈ Θ(g′) iff [because limx→∞
f ′(x)
g′(x)

exists] 0 < limx→∞
f ′(x)
g′(x) < ∞ iff (by de l’Hôpital rule) 0 < limx→∞

f(x)
g(x) < ∞

iff [because limx→∞
f(x)
g(x) exists] iff f ∈ Θ(g). This completes the proof of the

first equivalence.

f ′ ∈ Θ(g′) iff [because limx→∞
f ′(x)
g′(x) exists] 0 < limx→∞

f ′(x)
g′(x) < ∞ iff 0 <

limx→∞
g′(x)
f ′(x) < ∞ iff 0 < limx→∞

1
f′(x)

1
g′(x)

< ∞ iff [because limx→∞
1

f′(x)
1

g′(x)
< ∞

exists] 1
f ′ ∈ Θ( 1

g′ ). This completes the proof of the second equivalence. This
completes the proof. �

Below, several examples of T (n) and corresponding Max(t) and the deriva-
tive Max′(t) are described. For the cases 8 through 13 the reciprocals 1

Max′(t)
are included. All cases 1 through 13 may be considered benchmark cases.

Particularly important are cases: 1, 3, 7, 8, 9, 11, and 12.

Note different scales used in graphs of sample functions below.
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1.
T (n) ∈ Θ(log log n) . . . Max(t) ∈ Θ(abt

); for some a, b > 1

Here are graphs of ln ln n and eet :
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Here is a graph of eet

et = eet+t:
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In this case, the larger t the (dramatically) more it pays off to run P on a
faster computer.
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2.

T (n) ∈ Θ( log n

log log n
) . . . Max(t) ∈ Ω(at)at) ∩O((bt)bt); for some a, b > 1

Here are graphs of log n
log log n and tt:
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Here is a graph of tt ln t:
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In this case, the larger t the (significantly) more it pays off to run P on a
faster computer.

3.
T (n) ∈ Θ(log n) . . . Max(t) ∈ Θ(at); for some a > 1

Here are graphs of ln n and et:
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See above for a graph of et.

In this case, the larger t the (significantly) more it pays off to run P on a
faster computer.

4.
T (n) ∈ Θ( 3

√
n) . . . Max(t) ∈ Θ(t3)

Here are graphs of 3
√

n and t3:
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Here is a graph of t2:
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In this case, the larger t the more it pays off to run P on a faster computer.

5.
T (n) ∈ Θ(

√
n) . . . Max(t) ∈ Θ(t2)
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Here are graphs of
√

n and t2:
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Here is a graph of t:
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In this case, the larger t the more it pays off to run P on a faster computer.
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6.
T (n) ∈ Θ( n

log n
) . . . Max(t) ∈ Θ(t log t)

Here are graphs of of n
log n and t ln t:
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Here is a graph of ln n:
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In this case, the larger t the (moderately) more it pays off to run P on a
faster computer.

7.
T (n) ∈ Θ(n) . . . Max(t) ∈ Θ(t)

Here is a graphs of n and t:
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Here is a graph of 1:
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In this case, the increase of the maximum size of input in function of speed
of the computer is constant for all t, so the payoff for running P on a faster
computer remains roughly the same for all sizes of its inputs.

8.
T (n) ∈ Θ(n log n) . . . Max(t) ∈ Θ( t

log t
)

Here are graphs of n log n and t
log t :
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Max′(t) ∈ Θ( 1
log t

); 1
Max′(t) ∈ Θ(log t)

Here are graphs of 1
log t and log t:
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In this case, the larger t the less it pays off to run P on a faster com-
puter. More insightfully, the larger the t the (slightly) more does it cost
to accomplish the unit increase of the tractable input to P .

9.
T (n) ∈ Θ(n2) . . . Max(t) ∈ Θ(

√
t)

Here are graphs of n2 and
√

t:
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Max′(t) ∈ Θ( 1√
t
); 1

Max′(t) ∈ Θ(
√

t)

Here are graphs of 1√
t
and
√

t:
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In this case, the larger t the less it pays off to run P on a faster computer.
More insightfully, the larger the t the (moderately) more does it cost to
accomplish the unit increase of the tractable input to P .

10.
T (n) ∈ Θ(n3) . . . Max(t) ∈ Θ( 3

√
t)

Here are graphs of n3 and 3
√

t:
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Max′(t) ∈ Θ( 1
3
√

t2
); 1

Max′(t) ∈ Θ( 3√
t2)

Here are graphs of 1
3√

t2 and 3
√

t2:
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In this case, the larger t the less it pays off to run P on a faster computer.
More insightfully, the larger the t the (moderately) more does it cost to
accomplish the unit increase of the tractable input to P .

11.
T (n) ∈ Θ(an) . . . Max(t) ∈ Θ(log t); for all a > 1

Here are graphs of en and ln t:
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Max′(t) ∈ Θ(1
t
); 1

Max′(t) ∈ Θ(t)

Here are graphs of 1
t and t:
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In this case, the larger t the less it pays off to run P on a faster computer.
More insightfully, the larger the t the (significantly) more does it cost to
accomplish the unit increase of the tractable input to P .

12.
T (n) ∈ Θ((an)bn) . . . Max(t) ∈ Θ( log t

log log t
); for all a, b > 1

Here are graphs of nn and log t
log log t :
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Max′(t) ∈ Θ( 1
t ln ln t

− 1
t(ln ln t)2 ) = Θ( 1

t ln ln t
); 1

Max′(t) ∈ Θ(t ln ln t)

Here are graphs of 1
t ln ln t −

1
t(ln ln t)2 and t ln ln t:

40 60 80 100

0.001

0.002

0.003

0.004

0.005

20 40 60 80 100

50

100

150

In this case, the larger t the (dramatically) less it pays off to run P on
a faster computer. More insightfully, the larger the t the (significantly)
more does it cost to accomplish the unit increase of the tractable input to
P .

13.
T (n) ∈ Θ(abn

) . . . Max(t) ∈ Θ(log log t); for all a, b > 1

Here are graphs of een and log log t:
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Max′(t) ∈ Θ( 1
t ln t

); 1
Max′(t) ∈ Θ(t ln t)

Here are graphs of 1
t ln t and t ln t:
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In this case, the larger t the (dramatically) less it pays off to run P on a
faster computer.More insightfully, the larger the t the (significantly) more
does it cost to accomplish the unit increase of the tractable input to P .

1.1 Proofs (optional for all students)
1. The inverse function of the function

n = abt

is

t = logb loga n.

Since for every a, b > 0,
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lim
n→∞

logb loga n

ln ln n

exists and is between 0 and ∞,

Θ(logb loga n) = Θ(log log n).

2. The inverse function of the function

n = (at)at

is

t = ln n

aW (ln n)

where W (x) is the Lambert’s W function approximated by:

W (x) = ln x− ln ln x±O( ln ln x

ln x
).

Therefore, the inverse function of the function

n = (at)at

is in

Θ( ln n

ln ln n− ln ln ln n
).

Since
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lim
n→∞

ln n
ln ln n−ln ln ln n

ln n
ln ln n

exists and is between 0 and ∞,

Θ( ln n

ln ln n− ln ln ln n
) = Θ( ln n

ln ln n
).

For 0 < a < b we have (at)at < (bt)at < (at)bt < (bt)bt. Hence, for
each increasing function f ∈ Θ( ln n

ln ln n ), and some a > 0, f−1 ∈ Ω((at)at).
Similarily, for some b > 0, f−1 ∈ O((bt)bt).

3. The inverse function of the function

n = at

is

t = loga n.

Since for every a > 0,

lim
n→∞

loga n

ln n

exists (it’s 1
ln a ) and is between 0 and ∞,

Θ(loga n) = Θ(log n).

4. Left as an exercise.
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5. Left as an exercise.

6. The inverse function of the function

n = t loga t

is

t = n ln a ln n

W (n ln a ln n)

where W (x) is the Lambert’s W function approximated by:

W (x) = ln x− ln ln x±O( ln ln x

ln x
).

Therefore, the inverse function of the function

t = n loga n

is in

Θ( n ln a ln n

ln(n ln a ln n)− ln ln(n ln a ln n) ).

Since

lim
n→∞

n ln a ln n
ln(n ln a ln n)−ln ln(n ln a ln n)

n
ln n

exists and is between 0 and ∞,
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Θ( n ln a ln n

ln(n ln a ln n)− ln ln(n ln a ln n) ) = Θ( n

ln n
).

7. Left as an exercise.

8. The inverse function of the function

t = n loga n

is

n = t ln a ln t

W (t ln a ln t)

where W (x) is the Lambert’s W function approximated by:

W (x) = ln x− ln ln x±O( ln ln x

ln x
).

Therefore, the inverse function of the function

n = t loga t

is in

Θ( t ln a ln t

ln(t ln a ln t)− ln ln(t ln a ln t) ).

Since
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lim
t→∞

t ln a ln t
ln(t ln a ln t)−ln ln(t ln a ln t)

t
ln t

exists and is between 0 and ∞,

Θ( t ln a ln t

ln(t ln a ln t)− ln ln(t ln a ln t) ) = Θ( t

ln t
).

9. Left as an exercise.

10. Left as an exercise.

11. The inverse function of the function

t = an

is

n = loga t.

Since for every a > 0,

lim
t→∞

loga t

ln t

exists (it’s 1
ln a ) and is between 0 and ∞,

Θ(loga t) = Θ(log t).
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12. The inverse function of the function

t = (an)an

is

n = ln t

aW (ln t)

where W (x) is the Lambert’s W function approximated by:

W (x) = ln x− ln ln x±O( ln ln x

ln x
).

Therefore, the inverse function of the function

t = (an)an

is in

Θ( ln t

ln ln t− ln ln ln t
).

Since

lim
t→∞

ln t
ln ln t−ln ln ln t

ln t
ln ln t

exists and is between 0 and ∞,

Θ( ln t

ln ln t− ln ln ln t
) = Θ( ln t

ln ln t
).
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For 0 < a < b we have (an)an < (bn)an < (an)bn < (bn)bn. Hence, for
each increasing function f ∈ Θ( ln n

ln ln n ), and some a > 0, f−1 ∈ Ω((an)an).
Similarily, for some b > 0, f−1 ∈ O((bn)bn).

13. The inverse function of the function

t = abn

is

n = logb loga t.

Since for every a, b > 0,

lim
t→∞

logb loga t

ln ln t

exists and is between 0 and ∞,

Θ(logb loga t) = Θ(log log t).

24


