
CSC 311 DATA STRUCTURES Sp ’13
Dr. Marek A. Suchenek ©

February 5, 2014

1 Some rates of growth of running time T (n) and
corresponding rates of growth of max input’s
size Max(t) and its derivative Max′(t)

Let T (n) be a running time of some program P. Let us assert that T (n) is a
growing function. This assertion holds in what may be considered a typical
situation: the larger the input to program P the longer it takes to process it.

Under the above assertion, Max(t), defined as the maximum size n of input
for which T (n) ≤ t, is the inverse of T (n), that is,

t = T (n) iff n = Max(t). (1)

In particular, Max(t) is a growing function as well. (Proof left as an easy
exercise for the reader.)

1



The following fact holds for every differentiable growing function f :

(finverse)′(x) = 1
f ′(finverse(x)), (2)

where finverse is the inverse of f (it exists since f is a growing function) and
f ′ is the derivative of f . (Proof left as an intermediate exercise for the reader
- requires calculus. Hint: Use the geometric/trigonometric interpretation of
derivative.)

In particular,
Max′(t) = 1

T ′(Max(t)). (3)

The derivative Max′(t) of Max(t) seems like a good measure of return on
investment of a faster computer (or - equivalently - longer wait) for program P.
It tells how fast (or slow) the maximum size of tractable input to P will grow
with the increase of the computer’s speed. So, the larger Max′(t) the more
cost effective it is at point t to run P on a faster computer. And vice versa: the
smaller Max′(t) the more wasteful it is at point t to run P on a faster computer.

When the measure Max′(t) is decreasing then it might be insightful to con-
sider also the reciprocal 1

Max′(t) of Max′(t) as a measure of the cost of enlarge-
ment of maximum size Max(t) of tractable input to program P . In such a case,
it seems easier to evaluate visually the rate of growth of 1

Max′(t) than the rate of
decline of Max′(t) based on their graphs. The measure 1

Max′(t) tells how much
faster (or longer) the program P must be executed in order to accomplish the
unit increase of tractable input to P . So, the larger the 1

Max′(t) the more costly
it is at point t to run P on even a slightly larger input.

By (3),

1
Max′(t) = T ′(Max(t)). (4)

2



Finding the Θ characterization of f ′(t) and of 1
f ′(t) from the Θ character-

ization of f(t) requires some extra assumption that f and its Θ benchmark
(representative) satisfy assumptions of the de l’Hôpital rule.

Theorem 1.1 Let f and g be positive, increasing, differentiable functions that
both converge to 0 or both diverge to∞ as their arguments diverge to∞. Assume
that limx→∞

f ′(x)
g′(x) exists. Then

f ∈ Θ(g) ≡ f ′ ∈ Θ(g′) ≡ 1
f ′
∈ Θ( 1

g′
).

Proof (optional for all students). f ′ ∈ Θ(g′) iff [because limx→∞
f ′(x)
g′(x)

exists] 0 < limx→∞
f ′(x)
g′(x) < ∞ iff (by de l’Hôpital rule) 0 < limx→∞

f(x)
g(x) < ∞

iff [because limx→∞
f(x)
g(x) exists] iff f ∈ Θ(g). This completes the proof of the

first equivalence.

f ′ ∈ Θ(g′) iff [because limx→∞
f ′(x)
g′(x) exists] 0 < limx→∞

f ′(x)
g′(x) < ∞ iff 0 <

limx→∞
g′(x)
f ′(x) < ∞ iff 0 < limx→∞

1
f′(x)

1
g′(x)

< ∞ iff [because limx→∞
1

f′(x)
1

g′(x)
< ∞

exists] 1
f ′ ∈ Θ( 1

g′ ). This completes the proof of the second equivalence. This
completes the proof. �

Below, several examples of T (n) and corresponding Max(t) and the deriva-
tive Max′(t) are described. For the cases 8 through 13 the reciprocals 1

Max′(t)
are included. All cases 1 through 13 may be considered benchmark cases.

Particularly important are cases: 1, 3, 7, 8, 9, 11, and 12.

Note different scales used in graphs of sample functions below.

3



1.
T (n) ∈ Θ(log log n) . . . Max(t) ∈ Θ(abt

); for some a, b > 1

Here are graphs of ln ln n and eet :

400 600 800 1000

1.7

1.8

1.9

2 4 6 8 10

2.0 ´ 1097

4.0 ´ 1097

6.0 ´ 1097

8.0 ´ 1097

1.0 ´ 1098

1.2 ´ 1098

1.4 ´ 1098

Max′(t) ∈ Θ(abt

bt)

Here is a graph of eet

et = eet+t:

4 6 8 10

5.0 ´ 10 139

1.0 ´ 10 140

1.5 ´ 10 140

2.0 ´ 10 140

2.5 ´ 10 140

3.0 ´ 10 140

In this case, the larger t the (dramatically) more it pays off to run P on a
faster computer.

4



2.

T (n) ∈ Θ( log n

log log n
) . . . Max(t) ∈ Ω(at)at) ∩O((bt)bt); for some a, b > 1

Here are graphs of log n
log log n and tt:

400 600 800 1000

3.2

3.3

3.4

3.5

4 6 8 10

2.0 ´ 107

4.0 ´ 107

6.0 ´ 107

8.0 ´ 107

1.0 ´ 108

1.2 ´ 108

1.4 ´ 108

Max′(t) ∈ Ω((at)at ln t) ∩O((bt)bt ln t)

Here is a graph of tt ln t:

4 6 8 10

2 ´ 10 8

4 ´ 10 8

6 ´ 10 8

8 ´ 10 8

5



In this case, the larger t the (significantly) more it pays off to run P on a
faster computer.

3.
T (n) ∈ Θ(log n) . . . Max(t) ∈ Θ(at); for some a > 1

Here are graphs of ln n and et:

400 600 800 1000

5.5

6.0

6.5

10 15 20

1 ´ 107

2 ´ 107

3 ´ 107

4 ´ 107

Max′(t) ∈ Θ(at)

See above for a graph of et.

In this case, the larger t the (significantly) more it pays off to run P on a
faster computer.

4.
T (n) ∈ Θ( 3

√
n) . . . Max(t) ∈ Θ(t3)

Here are graphs of 3
√

n and t3:

6



1000 2000 3000 4000 5000

6

8

10

12

14

16

10 15 20

2000

4000

6000

8000

Max′(t) ∈ Θ(t2)

Here is a graph of t2:

10 15 20

100

200

300

400

In this case, the larger t the more it pays off to run P on a faster computer.

5.
T (n) ∈ Θ(

√
n) . . . Max(t) ∈ Θ(t2)

7



Here are graphs of
√

n and t2:

1000 2000 3000 4000 5000

20

30

40

50

60

70

10 15 20

100

200

300

400

Max′(t) ∈ Θ(t)

Here is a graph of t:

4 6 8 10

4

6

8

10

In this case, the larger t the more it pays off to run P on a faster computer.

8



6.
T (n) ∈ Θ( n

log n
) . . . Max(t) ∈ Θ(t log t)

Here are graphs of of n
log n and t ln t:

20 30 40 50

6

8

10

12

20 30 40 50

50

100

150

200

Max′(t) ∈ Θ(log t)

Here is a graph of ln n:

400 600 800 1000

5.5

6.0

6.5

9



In this case, the larger t the (moderately) more it pays off to run P on a
faster computer.

7.
T (n) ∈ Θ(n) . . . Max(t) ∈ Θ(t)

Here is a graphs of n and t:

4 6 8 10

4

6

8

10

Max′(t) ∈ Θ(1)

Here is a graph of 1:

10



20 40 60 80 100

0.5

1.0

1.5

2.0

In this case, the increase of the maximum size of input in function of speed
of the computer is constant for all t, so the payoff for running P on a faster
computer remains roughly the same for all sizes of its inputs.

8.
T (n) ∈ Θ(n log n) . . . Max(t) ∈ Θ( t

log t
)

Here are graphs of n log n and t
log t :

20 30 40 50

50

100

150

200

20 30 40 50

6

8

10

12

11



Max′(t) ∈ Θ( 1
log t

); 1
Max′(t) ∈ Θ(log t)

Here are graphs of 1
log t and log t:

20 40 60 80 100

0.25

0.30

0.35

0.40

0.45

0.50

200 400 600 800 1000

4

5

6

In this case, the larger t the less it pays off to run P on a faster com-
puter. More insightfully, the larger the t the (slightly) more does it cost
to accomplish the unit increase of the tractable input to P .

9.
T (n) ∈ Θ(n2) . . . Max(t) ∈ Θ(

√
t)

Here are graphs of n2 and
√

t:

10 15 20

100

200

300

400

1000 2000 3000 4000 5000

20

30

40

50

60

70

12



Max′(t) ∈ Θ( 1√
t
); 1

Max′(t) ∈ Θ(
√

t)

Here are graphs of 1√
t
and
√

t:

20 40 60 80 100
0.05

0.10

0.15

0.20

1000 2000 3000 4000 5000

20

30

40

50

60

70

In this case, the larger t the less it pays off to run P on a faster computer.
More insightfully, the larger the t the (moderately) more does it cost to
accomplish the unit increase of the tractable input to P .

10.
T (n) ∈ Θ(n3) . . . Max(t) ∈ Θ( 3

√
t)

Here are graphs of n3 and 3
√

t:

10 15 20

2000

4000

6000

8000

1000 2000 3000 4000 5000

6

8

10

12

14

16

13



Max′(t) ∈ Θ( 1
3
√

t2
); 1

Max′(t) ∈ Θ( 3√
t2)

Here are graphs of 1
3√

t2 and 3
√

t2:

20 40 60 80 100

0.04

0.06

0.08

20 40 60 80 100

5

10

15

20

In this case, the larger t the less it pays off to run P on a faster computer.
More insightfully, the larger the t the (moderately) more does it cost to
accomplish the unit increase of the tractable input to P .

11.
T (n) ∈ Θ(an) . . . Max(t) ∈ Θ(log t); for all a > 1

Here are graphs of en and ln t:

10 15 20

1 ´ 107

2 ´ 107

3 ´ 107

4 ´ 107

200 400 600 800 1000

4

5

6

14



Max′(t) ∈ Θ(1
t
); 1

Max′(t) ∈ Θ(t)

Here are graphs of 1
t and t:

20 40 60 80 100

0.04

0.06

0.08

0.10

0.12

4 6 8 10

4

6

8

10

In this case, the larger t the less it pays off to run P on a faster computer.
More insightfully, the larger the t the (significantly) more does it cost to
accomplish the unit increase of the tractable input to P .

12.
T (n) ∈ Θ((an)bn) . . . Max(t) ∈ Θ( log t

log log t
); for all a, b > 1

Here are graphs of nn and log t
log log t :

4 6 8 10

2.0 ´ 107

4.0 ´ 107

6.0 ´ 107

8.0 ´ 107

1.0 ´ 108

1.2 ´ 108

1.4 ´ 108

200 400 600 800 1000

2.8

3.0

3.2

3.4

3.6

3.8

4.0

15



Max′(t) ∈ Θ( 1
t ln ln t

− 1
t(ln ln t)2 ) = Θ( 1

t ln ln t
); 1

Max′(t) ∈ Θ(t ln ln t)

Here are graphs of 1
t ln ln t −

1
t(ln ln t)2 and t ln ln t:

40 60 80 100

0.001

0.002

0.003

0.004

0.005

20 40 60 80 100

50

100

150

In this case, the larger t the (dramatically) less it pays off to run P on
a faster computer. More insightfully, the larger the t the (significantly)
more does it cost to accomplish the unit increase of the tractable input to
P .

13.
T (n) ∈ Θ(abn

) . . . Max(t) ∈ Θ(log log t); for all a, b > 1

Here are graphs of een and log log t:

2 4 6 8 10

2.0 ´ 1097

4.0 ´ 1097

6.0 ´ 1097

8.0 ´ 1097

1.0 ´ 1098

1.2 ´ 1098

1.4 ´ 1098

400 600 800 1000

1.7

1.8

1.9

16



Max′(t) ∈ Θ( 1
t ln t

); 1
Max′(t) ∈ Θ(t ln t)

Here are graphs of 1
t ln t and t ln t:

200 400 600 800 1000

0.02

0.03

0.04

0.05

20 30 40 50

50

100

150

200

In this case, the larger t the (dramatically) less it pays off to run P on a
faster computer.More insightfully, the larger the t the (significantly) more
does it cost to accomplish the unit increase of the tractable input to P .

1.1 Proofs (optional for all students)
1. The inverse function of the function

n = abt

is

t = logb loga n.

Since for every a, b > 0,

17



lim
n→∞

logb loga n

ln ln n

exists and is between 0 and ∞,

Θ(logb loga n) = Θ(log log n).

2. The inverse function of the function

n = (at)at

is

t = ln n

aW (ln n)

where W (x) is the Lambert’s W function approximated by:

W (x) = ln x− ln ln x±O( ln ln x

ln x
).

Therefore, the inverse function of the function

n = (at)at

is in

Θ( ln n

ln ln n− ln ln ln n
).

Since

18



lim
n→∞

ln n
ln ln n−ln ln ln n

ln n
ln ln n

exists and is between 0 and ∞,

Θ( ln n

ln ln n− ln ln ln n
) = Θ( ln n

ln ln n
).

For 0 < a < b we have (at)at < (bt)at < (at)bt < (bt)bt. Hence, for
each increasing function f ∈ Θ( ln n

ln ln n ), and some a > 0, f−1 ∈ Ω((at)at).
Similarily, for some b > 0, f−1 ∈ O((bt)bt).

3. The inverse function of the function

n = at

is

t = loga n.

Since for every a > 0,

lim
n→∞

loga n

ln n

exists (it’s 1
ln a ) and is between 0 and ∞,

Θ(loga n) = Θ(log n).

4. Left as an exercise.

19



5. Left as an exercise.

6. The inverse function of the function

n = t loga t

is

t = n ln a ln n

W (n ln a ln n)

where W (x) is the Lambert’s W function approximated by:

W (x) = ln x− ln ln x±O( ln ln x

ln x
).

Therefore, the inverse function of the function

t = n loga n

is in

Θ( n ln a ln n

ln(n ln a ln n)− ln ln(n ln a ln n) ).

Since

lim
n→∞

n ln a ln n
ln(n ln a ln n)−ln ln(n ln a ln n)

n
ln n

exists and is between 0 and ∞,

20



Θ( n ln a ln n

ln(n ln a ln n)− ln ln(n ln a ln n) ) = Θ( n

ln n
).

7. Left as an exercise.

8. The inverse function of the function

t = n loga n

is

n = t ln a ln t

W (t ln a ln t)

where W (x) is the Lambert’s W function approximated by:

W (x) = ln x− ln ln x±O( ln ln x

ln x
).

Therefore, the inverse function of the function

n = t loga t

is in

Θ( t ln a ln t

ln(t ln a ln t)− ln ln(t ln a ln t) ).

Since

21



lim
t→∞

t ln a ln t
ln(t ln a ln t)−ln ln(t ln a ln t)

t
ln t

exists and is between 0 and ∞,

Θ( t ln a ln t

ln(t ln a ln t)− ln ln(t ln a ln t) ) = Θ( t

ln t
).

9. Left as an exercise.

10. Left as an exercise.

11. The inverse function of the function

t = an

is

n = loga t.

Since for every a > 0,

lim
t→∞

loga t

ln t

exists (it’s 1
ln a ) and is between 0 and ∞,

Θ(loga t) = Θ(log t).

22



12. The inverse function of the function

t = (an)an

is

n = ln t

aW (ln t)

where W (x) is the Lambert’s W function approximated by:

W (x) = ln x− ln ln x±O( ln ln x

ln x
).

Therefore, the inverse function of the function

t = (an)an

is in

Θ( ln t

ln ln t− ln ln ln t
).

Since

lim
t→∞

ln t
ln ln t−ln ln ln t

ln t
ln ln t

exists and is between 0 and ∞,

Θ( ln t

ln ln t− ln ln ln t
) = Θ( ln t

ln ln t
).

23



For 0 < a < b we have (an)an < (bn)an < (an)bn < (bn)bn. Hence, for
each increasing function f ∈ Θ( ln n

ln ln n ), and some a > 0, f−1 ∈ Ω((an)an).
Similarily, for some b > 0, f−1 ∈ O((bn)bn).

13. The inverse function of the function

t = abn

is

n = logb loga t.

Since for every a, b > 0,

lim
t→∞

logb loga t

ln ln t

exists and is between 0 and ∞,

Θ(logb loga t) = Θ(log log t).

24


