CSC 311 DATA STRUCTURES Sp ’13

Dr. Marek A. Suchenek ©
February 5, 2014

Copyright by Dr. Marek A. Suchenek.
This material is intended for future publication.
Absolutely positively no copying no printing

no sharing no distributing of ANY kind please.

1 Some rates of growth of running time 7'(n) and
corresponding rates of growth of max input’s
size Max(t) and its derivative Max'(t)

Let T(n) be a running time of some program P. Let us assert that T'(n) is a
growing function. This assertion holds in what may be considered a typical
situation: the larger the input to program P the longer it takes to process it.

Under the above assertion, Maz(t), defined as the maximum size n of input
for which T'(n) < t, is the inverse of T'(n), that is,

t =T(n) iff n = Max(t). (1)

In particular, Max(t) is a growing function as well. (Proof left as an easy
exercise for the reader.)

The following fact holds for every differentiable growing function f:

1
finverse) (&) = r———=
(”weTSE) (f/(finverse(m)),
where finperse is the inverse of f (it exists since f is a growing function) and
/" is the derivative of f. (Proof left as an intermediate exercise for the reader
- requires calculus. Hint: Use the geometric/trigonometric interpretation of
derivative.)

(2)

In particular,
1

Maz'(t) = T (Maz (@), (3)

The derivative Max'(t) of Maz(t) seems like a good measure of return on
investment of a faster computer (or - equivalently - longer wait) for program P.
It tells how fast (or slow) the maximum size of tractable input to P will grow
with the increase of the computer’s speed. So, the larger Maz'(t) the more
cost effective it is at point ¢ to run P on a faster computer. And vice versa: the
smaller Maa’(t) the more wasteful it is at point ¢ to run P on a faster computer.

When the measure Maz'(t) is decreasing then it might be insightful to con-

sider also the reciprocal W,(t) of Max'(t) as a measure of the cost of enlarge-

ment of maximum size Max(t) of tractable input to program P. In such a case,
1

it seems easier to evaluate visually the rate of growth of T than the rate of

decline of Maz'(t) based on their graphs. The measure m tells how much
faster (or longer) the program P must be executed in order to accomplish the
unit increase of tractable input to P. So, the larger the m the more costly
it is at point ¢ to run P on even a slightly larger input.

By (3),
1

Moo @ = T'(Maz(t)). (4)

Finding the © characterization of f’(¢) and of f%(t) from the © character-
ization of f(t) requires some extra assumption that f and its © benchmark
(representative) satisfy assumptions of the de I’'Hopital rule.

Theorem 1.1 Let f and g be positive, increasing, differentiable functions that
both converge to 0 or both diverge to oo as their arguments diverge to co. Assume

that limg_s oo g :Eig exists. Then

feodlg)=feo()= ?e@<)

Proof (optional for all students). f' € O(¢’) iff [because lim, oo %

exists] 0 < limg,_,o0 558) < oo iff (by de I'Hopital rule) 0 < limg o0 % < o0
(

iff [because limg_, o0 f;(—i) exists] iff f € ©(g). This completes the proof of the
first equivalence.

|

f' € ©(g') iff [because lim;_, £ (z) exists] 0 < limg_, o0 ,gg < o0 iff 0 <

g'(z)
1

Q

limg 00 % < 00 iff 0 < im0 L4 < 00 iff [because lim, o0 Lﬁ”) < 00
g’ (z) 9 (2)

exists] + 7 € @(%). This completes the proof of the second equivalence. This
completes the proof. O

Below, several examples of T'(n) and corresponding Max(t) and the deriva-
tive Max'(t) are described. For the cases 8 through 13 the reciprocals m
are included. All cases 1 through 13 may be considered benchmark cases.

Particularly important are cases: 1, 3, 7, 8, 9, 11, and 12.

Note different scales used in graphs of sample functions below.

T(n) € O(loglogn) ... Max(t) € @(abt); for some a,b > 1

Here are graphs of Inlnn and e

190 // 14x10% |

// 12x10% |
-

18 10x10% |

80x10% |

171 60x10% |

40x10% |

4(‘)0 6“)0 34‘)0 10‘00 20x107 |

L
/ 2 4 6 8 10
/ byt
Maz'(t) € ©(a” b")
: et t et —+t.
Here is a graph of e® e* = e :
30 x 1040 -
2.5 x 1040 -
20 x 10%
15 x 104 |-
10 x 10%° |-
50 x 101 -
L L L L L
4 6 8 10

In this case, the larger ¢ the (dramatically) more it pays off to run P on a
faster computer.

T(n) € 6(101;01%) ... Maz(t) € Q(at)™) N O((bt)"); for some a,b > 1

. logn t.
Here are graphs of Toglog and t*:

//,,/'/ 14x10° |
3s — (
12x10° | }
// i
_— |
34 // 10x10° - |
- |
|
80x107 | “‘
33fF
60x10" | |
‘/
32 40x107 |- /
L 20x107F /
400 600 800 1000 /
/ L
4 6 8 10

Maz'(t) € Q((at)* Int) N O((bt)* Int)
Here is a graph of #' Int:
8><1055
6><l05}
4><lOB;

2x 108 |

In this case, the larger ¢ the (significantly) more it pays off to run P on a
faster computer.

T(n) € O(logn) ... Maz(t) € O(a'); for some a > 1

Here are graphs of Inn and e':

. . . .
400 600 800 1000 //

Maz'(t) € ©(a")

See above for a graph of ef.

In this case, the larger ¢ the (significantly) more it pays off to run P on a
faster computer.

T(n) € ©(Y/n)... Max(t) € O(t%)

Here are graphs of ¢/n and t>:

12F

4000 -
10
sl

2000 -

of /
/ -
10‘00 20‘00 30‘00 40‘00 50‘90 1‘0 1‘5 2‘0
Max'(t) € O(t?)
Here is a graph of 2
400 -
300 |-
200 ;
100 ;
_/—(/7 I I I
10 15 20

In this case, the larger ¢ the more it pays off to run P on a faster computer.

T(n) € ©(y/n)... Mazx(t) € O(t%)

Here are graphs of y/n and t2:

400}
"I /
60 // 2001
s0f -
-
2001
“w0F
30
100
20 - -
/
/ L L L L L — L L L
1000 2000 3000 4000 5000 10 15 20

Here is a graph of ¢:

10r

In this case, the larger ¢ the more it pays off to run P on a faster computer.

T(n)

€ 6

logn

Here are graphs of of % and tInt:

-

/

20 30

Here is a graph of Inn:

)...Max(t) € ©(tlogt)

Maz'(t) € ©(logt)

400 600

800

1000

In this case, the larger ¢ the (moderately) more it pays off to run P on a
faster computer.

T(n) € O(n)... Max(t) € O(t)
Here is a graphs of n and ¢:

10r-

Here is a graph of 1:

10

15

10

05

In this case, the increase of the maximum size of input in function of speed
of the computer is constant for all £, so the payoff for running P on a faster
computer remains roughly the same for all sizes of its inputs.

t

T(n) € O(nl ... Maz(t) € ©(——

(n) € ©(nlogn) ... Mas(t) € O(1--)
t .
Here are graphs of nlogn and Togi

12 //
/
150 [-

11

/ LR
Maz'(t) € @(logt)’ Moz (1) € O(logt)

1
logt

Here are graphs of and log t:

osof “\ b _—
osf |
\ /
o4 \ 5F
\
L \

ozst — {

.
EY) & EY 100 200 400 600 800 1000

In this case, the larger ¢ the less it pays off to run P on a faster com-
puter. More insightfully, the larger the ¢ the (slightly) more does it cost
to accomplish the unit increase of the tractable input to P.

T(n) € O(n?)... Max(t) € O(V1)
Here are graphs of n? and /t:

400

300 6o

10 15 20 ! 1000 2000 3000 4000 5000

12

1 1

Maz'(t) € O(—=);

Vt© Max'(t)
Here are graphs of % and V/t:
70 /
o \\ 60 ///
_—
\ 50 //
wb —~
40
\\ wb
L L \\;7 I L / L L 1 L L
ook) 20 & T om— 10 { 1000 2000 3000 4000 5000

In this case, the larger t the less it pays off to run P on a faster computer.
More insightfully, the larger the ¢ the (moderately) more does it cost to
accomplish the unit increase of the tractable input to P.

T(n) € ©(n?)... Max(t) € O(/1)

Here are graphs of n® and /t:

8000 |-
_—
16 /"
_—
L /
6000 14l /
//
12
4000 -
10
of
2000 - /
— or /
_— /
—t — L L L L
10 15 20 1000 2000 3000 4000 5000

13

! ! c O(Vt2)

Maz'(t) € O(==); ———
(1) € O3 foe
Here are graphs of 3%/72 and Vt2:
200 ////
///
//

omr |
\

00 \
L sk
L L L L L
80 100

In this case, the larger t the less it pays off to run P on a faster computer.
More insightfully, the larger the ¢ the (moderately) more does it cost to

accomplish the unit increase of the tractable input to P.

11.
T(n) € ©(a"™)... Max(t) € ©(logt); for all a > 1

Here are graphs of e™ and Int:

2x10" |
[/

1x10" -
/
/ /
.
200 600 800 1000

20

14

Max'(t) € @(1); 1 € 0(t)

t”" Max'(t)
Here are graphs of % and ¢:
012 \ 10k
\
010 \
\ of
\\
008 - \
\\
\ 6
0.06 \
\\
004 \ 4
20 40 e 80 100
1 7 [8 10

In this case, the larger t the less it pays off to run P on a faster computer.
More insightfully, the larger the ¢ the (significantly) more does it cost to
accomplish the unit increase of the tractable input to P.

logt

T(n) € ©((an)™) ... Maz(t) € @(m); for all a,b > 1

n logt .
Here are graphs of n™ and Toglogi '

|
|
14x10° b ‘ 20
12 x10° | | 38
|
10x10° | | 36 o
80x107 [| 34 -
, f —
60x107 | / 12 /
40x10" / 30 /
/ /
/ /
20x107 |- / 28
/
L ~ L L L L L L
4 6 8 10 200 400 600 800 1000

15

13.

1 1 1 1
thnlnt t(lnlnt)2) = O Maz'(t)

Maz'(t) € ©(€ O(tlnlnt)

1 1 .
Here are graphs of fInlnt m and ¢Inlnt:
0005
// NG 150 -
0004 | I ~_
/ ~
u°°$’3 r \—\% 100 -
o.on E -
\“ 50
ogor [
| ~
| -~
|) 60 80 100 i .
| [20 0 60 80 100

In this case, the larger ¢ the (dramatically) less it pays off to run P on
a faster computer. More insightfully, the larger the ¢ the (significantly)
more does it cost to accomplish the unit increase of the tractable input to
P.

T(n) € ©(a"")... Max(t) € ©(oglogt); for all a,b > 1
Here are graphs of ¢¢" and loglog t:

10 x10% |- 181

60x10% 17+

16

, I 1
Max'(t) € @(Tnt), Maz'(D) € O(tlnt)

Here are graphs of ﬁ and tInt:

In this case, the larger ¢ the (dramatically) less it pays off to run P on a
faster computer.More insightfully, the larger the ¢ the (significantly) more
does it cost to accomplish the unit increase of the tractable input to P.

Proofs (optional for all students)

The inverse function of the function

is
t = log, log, n.

Since for every a,b > 0,

17

log; 1
Lim 0gy log, 1

n—oo Inlnn

exists and is between 0 and oo,

O (log; log, n) = O(loglogn).
. The inverse function of the function
n = (at)™
is

. Inn
~ aW(lnn)

where W (z) is the Lambert’s W function approximated by:

Inlnz

W(z)=Inz —Inlnz + O().

Inx

Therefore, the inverse function of the function

n = (at)*
is in
Inn
®(lnlnn — lnlnlnn)'
Since

18

Inn
Inlnn—Inlnlnn

lim Inn
nee Inlnn
exists and is between 0 and oo,
Inn Inn
o() =6()-

Inlnn —Inlnlnn’ ‘Inlnn
For 0 < a < b we have (at)® < (bt)* < (at)’ < (bt)**. Hence, for
each increasing function f € O(2%), and some a > 0, =1 € Q((at)™).

Inlnn

Similarily, for some b > 0, f~1 € O((bt)%).

3. The inverse function of the function

is
t = log, n.
Since for every a > 0,

. log,n
lim

n—oo Inn

exists (it’s -—) and is between 0 and oo,

O(log, n) = O(logn).

4. Left as an exercise.

19

5. Left as an exercise.

6. The inverse function of the function
n =tlog,t
is

_ nlnalnn

~ W(nlnalnn)

where W (z) is the Lambert’s W function approximated by:

Inlnz

W(z)=Inz —Inlnz + O(]

).

nx

Therefore, the inverse function of the function
t=nlog,n

is in

nlnalnn

o(

).

In(nlnalnn) —Inln(nlnalnn)

Since

nlnalnn
. In(nlnalnn)—Inln(nlnalnn
i 0)—lnla()
Inn

n—oo

exists and is between 0 and oo,

20

nlnalnn

o(

) =

In(nlnalnn) —Inln(nlnalnn)
7. Left as an exercise.

8. The inverse function of the function

t =nlog,n
is

tlnalnt
W(tlnalnt)

n =

where W (x) is the Lambert’s W function approximated by:

Inlnz

W(z) =Inz —Inlnz + O(]

nx

Therefore, the inverse function of the function

n =tlog,t
is in
o tlnalnt .
In(tlnalnt) —Inln(tlnalnt)
Since

21

O(

n

Inn

).

10.
11.

tlnalnt

In(tlnalnt)—Inln(tInalnt)

lim .
t—o00 i
exists and is between 0 and oo,
tlnalnt
o() =

In(tlnalnt) —Inln(tlnalnt)
Left as an exercise.
Left as an exercise.
The inverse function of the function
t=a"
is
n = log, t.

Since for every a > 0,

log, t

tl>oo Int

exists (it’s ;) and is between 0 and oo,

O(log, t) = ©(logt).

22

o(

t

Int

).

12.

The inverse function of the function

t = (an)™"
is

Int

aW(lnt)

where W (z) is the Lambert’s W function approximated by:

Inl
W(z) =Inz —Inlnz + O(il

).

Inx

Therefore, the inverse function of the function

t = (an)*"
is in
Int
6(lnlnt — lnlnlnt)'
Since
Int
lim Inlnt—Inlnint
t—00 Int
Inlnt
exists and is between 0 and oo,
Int Int
9(lnlnt — lnlnlnt) o @(lnlnt)'

23

13.

For 0 < a < b we have (an)®" < (bn)®™ < (an) < (bn)*™. Hence, for

each increasing function f € O({22), and some a > 0, f~! € Q((an)™).

Similarily, for some b > 0, f~1 € O((bn)*™).

The inverse function of the function
t=a
is
n = log, log, t.
Since for every a,b > 0,

log, log t
lim 0Ogp 108,

t—oo Inlnt

exists and is between 0 and oo,

O (logy log, t) = O(loglogt).

24

