anguage
of '
Efficiency

introduction and Motivation

What Do We Use for a Yardstick?

15

void SelectionSort(int]] A) {

/{ sorts an array of integers, A,
/ into increasing order
int maxPosition, temp, |, j;
.. L 5 ; 5 = —_— e rp—
for{i=Alength—1;i>0i—){ . /i foreachiin 1:A.length — 1
e /! in decreasing order of |

maxPosition =i

for(j=0;] < j++){ .~ - k
: o , ' P
i| if (Alj] > AlmaxPosition]}{ // find the position, maxPosition, of '
maxPosition = |; ~ /f the largest integer in A[C:i]
1 - // then exchange
Afi] and AlmaxPosition]
}
" // exchanie Ali] and A[maxPosition] ' m
, temp = A |} Afi] = AlmaxPosition]; Al[maxPosition] = temp; %
e = = —— — — — . .;

Table B.2 Running Times in Seconds to Sor!
an Array of 2000 Infegers

Tuble 8.3 SelectionSort Running
Times in Milliseconds on Two Types
of Computers :

filn) 4
3000
Fylr) =0.0007772n 2 4 0.00305 7 + 0.001
£l = 0.0001724 1% + 0.00040 7 + 0,100
2000
1000
U I—] I | | i

125 - 250 500 1000 2000

Figure B.4 Two Curves Fitting the Data in Toble B.3

Toble B.7 Some Common Complexity Clas

Algorithm A stops in f{n) microseconds o

f(n) n=2 n=16 h =256 n=1024 - ;
AR e e

1 1 P 1 | 1.00% 100

logy n il L 5 1.00x 101 .

n i 1.6 % 10} 9.56 % 102 1.02%103 ..,
nlogsn 2 6.4 %101 | 2.05x% 103 1.02 x 104

nZ o i 25k 108 6.55 % 104 1.05% 108
-n3’ 8 410703 | 1.68% 107 1.07 % 109. .

Sl e sl 655><10i S T6 % 1077 | 1.80 x 10308 |

Table B.8 Running Times for Different Complexify Classes

L L £ T2 e
1 1 psec* 1 psec o T e 1 psec 1 psec
lags n T psec 4 psecs - -8 psecs . 10 psecs 20 psecs
n 2 psecs 16 psecs .| 256 psecs | 1.02 msecs 1.05 secs
nlogy n 2 psecs 64 psecs 2.05 msecs | 10.2 msecs 21 sees
n? 4 psecs 25.6 psecs 65,5 msecs - 1.05 secs 1.8 whks -
n3 8 psecs 4,1 msecs 16.8 zecs ; 17.9 mins 36,559 yrs
- 2n 4 psecs 65.5 msecs 3.7x1083 yrs 5.7x10294 yrs 2.1x1031363% yrs

1 usec = ane microsecond =

nicl; tnin = one minute; wk = one weels; and yr = one year,

chle B.9 Running Times for Algorithm A in Different Time Units

o ep T= 1 in T=7hr i T oo] EiCI} ' e WL T | i Ratio
- A . 2 : - " ¢ —-:"‘,
Rt &% 107 BiE%F0% B.éd % 1010 6 05 %1 O” 3.15 % 10130 34 Ii .
nlogs n 2.8 x 108 1.3x 108 275 %107 177 % 1010 797 x 101 2+ 40
n? 7.75% 103 60x 104 2.94:x105 778 % 105 562 % 10621 4V
g 391x102 | '1.53x 103 442 %108 | 8.46x103 3.16x104 | 107
2n 25 31 T 39 44 1738
100 7 2 10 1_] S 1735
Table B.10 Size of largest Prablem That Algorithm A Can Solve if Solufion Is Compuh_.d in Time £ T af]
Micrasecond per Step b o8 -
1 5,1 \ g ."J ; IﬁLU CAS q
i daA Copyrighted matenal by { 5"'." %, >pdc?£’c?
Ay = Adisson-Wesley AT ot

eme tuillionth of o second; 1 meee = one millisecond = ane thousandth of a seconel; see = one sec-

APPENDIX B » THE LANGUAGE OF EFFICIENCY

©

P
L) >
o A

e
S
,.WWﬂ? :

N
T

o
1{;.?
o oy = T -
i : K5
ol ik, o

o :
- .-?/ q)___.___f.wnr“rfw_w.. e ﬁ
v....c.“fm..".,.m

)
ey

S 19t BN ER S
]
5 :

X

i
L) 1
.

Tatl

=<

puted in Time

10 Size of Largest Problem That Algorithm A Can Solve if Solution Is Com

Microsecond per Step

Table B

;_H 15 1_.5;?

.

o

LY

ol

b

W
*

2.3

e

s

l | #-axis — ™
. | | |
1 500 I 1000 1500 2000
¥

q

Figure B.12 Graphical Meaning of O-Notafion

What O-Notation Doesn’t Tell You

/ .

Measuring the running time of a program

E. s : - -
| T(n) - the running time of a program on “"worst”
: input of size n

b

Tavgfn) - the average time of a program on
" inputs of size n

S = - —

Time is mesured in some abstract units, independent
of particular computer, compiler, and similar factors.
| SE— .

slide.spxl

Rule of composition and product

- : & -

Suppose that Tq(n) and T2(n) are the running times
of two program fragments Py and P2, and that Tq(n)
is O(f{n)) and T2(n) is O(g(n)). Then Tq(n) + T2(n),
the running time of Py followed by P», is

To see why, observe that for some constants ¢, ¢3, nq,
and np, if nznq then T1(n)< cq1*f(n), and if n=n>
then Ta(n)<c2*g(n).

Let ng = max(n{, n2). If nxxng, then

T1(n) + T2(n) < cq1*fin) + c2*gin).

From this we conclude that if nzng, then

T1(n) + Ta(n) < (cq + c2)*max (f(n), g(n)).
Thefore, the comblned running time Tq(n} + T3(n)
is O(max(f(n), g{n))).

e

~ e ———
The rule for products is the following. If Ty(n) and Tzln) !
are O(f(n)) and O(g(n)), respectively, then Tﬂn]‘Tz(n)
|s* One can prove this fact using the same ideas
as in the proof of the sum rule. It follows from the product

rule that O{c*f(n)) means the same 5I1|ng as O[f(n)) if c is 5
positive constant. For example, O(n 2} is the same as0O(n*)

AL RN AL 2 e M

£ gt

cn ide.rul
g

Example of calculating the running time of program with procedure calls

function[n: integer). integer;
{ fact{n) computes n! }
begin

i-lnput size measure: n.-
‘Running time: T(n).

[~

T(n) is a linear function for n > 1, because

T(n) - T(n - 1) = constant. Tharefore'

{(We may even solve the above equation:
T(n) is linear, so it must be of the form
An + B. Easy calculus gives us T(n) = ¢*n + (d - c)).

slide.elpl0

25

Algorithm analysis technigues (1)
Analysis of recursive programs - efficiency.

function mergesort (L: LIST; n: integer) : LIST; “u:ak
{ L is a list of length n. A sorted version of L
is returned. We lssume}
var

L is Lz: LIST

INPUT s128 MEASURE :

Estimate the complexlty of me[gesort.

We will guess an asvptotic upper bound of the worst case
running time T(n) of mergesort and prove it by induction.

~ Claim. For some constant d and aachm k=1

(whlch implies n lTlnI £d*n"logn,)

that is to say,
It is sufficient to prove that for all k€@ , thene MIS"(',S C, wrthl
™ T2 sd k*2X

19 For k = 1, T(2% < 4c, thus (*) holds if d > 2c.

20 Assume that (_1) holds for all k < m (the induction hypothesis}.
T(2M) < 2(T(2™ <

(by induction hvpotheqllsl

2*{4-(m N*2 1 4 c 2 2M = (m-1) * 2™ + 2™ =
=c * m * 2M which means that (*) holds also for k = m.

analys.l

Feneral rules

1. The Bach®assignment, read, and write statement
can usually be taken to be 0{1} There are a few exceptions,
such as in PL/I, where assignments can involve arbitrarily large
arrays, and in any language that allows function calls in
assignement statements.

time of a s ice of statements is determined by
the sum rule That is, the runnmg time of tha sequence is,
to within a constant factor, tha largest running time of any
statement in the sequence.

3. The lFURRIN may be estamated as the

running tlme of the conditlonallv executed statements, plus
the time faor evaluating the condition. The time to evaluate
the condltlon rs normallyr 0(1)

: _ . o fgct may be estimated as
the tlme to evalutaa ths condltlon plus the larger of the
time needed for the statements executed when the condition
is true and the time for the statements executed when the
condition is false.

ne to exec loop is the sum, over all times around
the Ioop, of the time to execute the body and the time to
evaluate the condition for termination (usually the latter
is O(1)). Often this time is, neglecting constant factors,
the product of the number of times around the loop and the
largest possible time for one execution of the body, but we
must consider each loop separately to make sure. The number
of iterations around a loop is usually clear, but there are
times when the number of iterations cannot be computed
precisely.

TR ey

Slicle Ael 2

~5

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

