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ADT TABLE

1. Construct(N) an empty table T of size N

2. Insert(K, I) an entry with key K and info I into T

3. Delete(K) an entry with key K from T

4. Find(K) an entry with key K in T and, if found, 
return info I of that entry.
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ADT TABLE

Keys – the set of all keys

N – size of T

The size #(Keys) of the set Keys is much larger than 
N

Hash function h 

h: Keys → {0, … N-1}

Hash function h assigns to every key K an index h(N) 

in table T, with even distribution of probability.



  

Construct(N)

1. Construct an array T of size N.

2. for (int i = 0; i < N; i++)

T(i) = “empty”



  

Insert(K, I)

Example:

h(L
n
) = n % N

N = 7



  

Construct(N)



  

Insert(K, I)

If no deletions were made in the past:

1. Compute m = h(K).

2. If T(m) is empty, store (K, I) in T(m).

3. If T(m) is not empty, collision occurs and needs 
to be resolved.



  

Insert(K, I)



  

Insert(K, I)

The following collision resolution methods will be 
considered:

1. linear probing,

2. double hashing, and

3. separate chaining.



  

Linear probing

This is slightly different version of linear probing than 
described in the textbook.

We know that T(m) is not free, that is a collision occurred.

for (int i = 1; i < N; i++)

• {m = (m+1) % N; // for wrap-around effect

• If (T(m) is free)

– {store (K, I) in T(m);
– break;} }

// no room for insertion – the hash table needs to be 
stretched
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Linear probing



  

Double hashing

This is slightly different version of double hashing than 
described in the textbook.

We know that T(m) is not free, that is a collision occurred.

int incr = p(K) // the second hash function, p(K) > 0

for (int i = 1; i < N; i++)

• {m = (m+incr) % N; // for wrap-around effect

• If (T(m) is free)

– {store (K, I) in T(m);
– break;} }

// no room for insertion – the hash table needs to be stretched



  

Double hashing

In order to not waste storage, 

p(K) and N must have no common divisor > 1.

(i.e., p(K) and N must be relatively prime). 

For example, if N = 2k then p(K) must be even.

If N is prime then p(K) > 1.



  

Double hashing



  

Double hashing



  

Double hashing



  

Separate chaining

This is slightly different version of linear probing 
than described in the textbook.

We know that T(m) is not free, that is a collision 
occurred.

Add (K, I) to the beginning of a linked list L
m
 of all 

entries (M, J) such that 

h(M) = m



  

Separate chaining



  

Find(K)

Case of linear probing or double hashing

1. Compute m = h(K).

2.  while (T(m) != “empty”)

if (T(m) != “deleted” && T(m) == K) return info 
from T(m);

else update m following the collision 
resolution method used by Insert; 

// the entry (K, I) not found in T 
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Find(K)

Case of separate chaining

1. Compute m = h(K).

2.  if (T(m) != “empty”)

{Find K on list L
m
;

• if found return it; 
// the entry (K, I) not found in T



  

Find(K)

Case of separate chaining

1. Compute m = h(K).

2.  if (T(m) != “empty”)

{f = Find.L
m
(K);

• if found return info(K); 
// the entry (K, I) not found in T



  

Delete(K)

Case of linear probing or double hashing

1. Follow the same steps as in Find(K);

2. if (found) 

{T(m) = “deleted”;
return;}

// else do nothing; 

// the entry (K, I) not found in T 



  

Delete(K)

Case of separate chaining

1. Compute m = h(K).

2.  if (T(m) != “empty”)

{Delete.L
m
(K);

• if (L
m.
empty()) T(m) = “empty”; 



  

Insert(K, I)

General case (a deletion could have been made 
in the past):

1. Execute Find(K), remembering location n of the 
first free indicator.

2. If not found then store (K, I) in T(n).

“free” means “empty” or “deleted”



  

To be continued ...

in Lecture Notes ...
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