

CSC 311

Lectures on
Data Structures

by

Dr. Marek A. Suchenek ©

Computer Science
CSUDH

Copyrighted material

All rights reserved

Copyright by Dr. Marek A. Suchenek ©
and

Addison-Wesley ©

CSC 311

Lecture 12
Hashing

ADT TABLE, Applications, Implementations,
Analysis

ADT TABLE

1. Construct(N) an empty table T of size N

2. Insert(K, I) an entry with key K and info I into T

3. Delete(K) an entry with key K from T

4. Find(K) an entry with key K in T and, if found,
return info I of that entry.

ADT TABLE

1. Construct(N) an empty table T of size N

2. Insert(K, I) an entry with key K and info I into T

3. Delete(K) an entry with key K from T

4. Find(K) an entry with key K in T and, if found,
return info I of that entry.

ADT TABLE

Keys – the set of all keys

N – size of T

The size #(Keys) of the set Keys is much larger than
N

Hash function h

h: Keys → {0, … N-1}

Hash function h assigns to every key K an index h(N)

in table T, with even distribution of probability.

Construct(N)

1. Construct an array T of size N.

2. for (int i = 0; i < N; i++)

T(i) = “empty”

Insert(K, I)

Example:

h(L
n
) = n % N

N = 7

Construct(N)

Insert(K, I)

If no deletions were made in the past:

1. Compute m = h(K).

2. If T(m) is empty, store (K, I) in T(m).

3. If T(m) is not empty, collision occurs and needs
to be resolved.

Insert(K, I)

Insert(K, I)

The following collision resolution methods will be
considered:

1. linear probing,

2. double hashing, and

3. separate chaining.

Linear probing

This is slightly different version of linear probing than
described in the textbook.

We know that T(m) is not free, that is a collision occurred.

for (int i = 1; i < N; i++)

• {m = (m+1) % N; // for wrap-around effect

• If (T(m) is free)

– {store (K, I) in T(m);
– break;} }

// no room for insertion – the hash table needs to be
stretched

Linear probing

This is slightly different version of linear probing than
described in the textbook.

We know that T(m) is not free, that is a collision occurred.

for (int i = 1; N; i++)

• {m = (m+1) % N; // for wrap-around effect

• If (T(m) is free)

– {store (K, I) in T(m);
– break;} }

// no room for insertion – the hash table needs to be
stretched

Linear probing

Double hashing

This is slightly different version of double hashing than
described in the textbook.

We know that T(m) is not free, that is a collision occurred.

int incr = p(K) // the second hash function, p(K) > 0

for (int i = 1; i < N; i++)

• {m = (m+incr) % N; // for wrap-around effect

• If (T(m) is free)

– {store (K, I) in T(m);
– break;} }

// no room for insertion – the hash table needs to be stretched

Double hashing

In order to not waste storage,

p(K) and N must have no common divisor > 1.

(i.e., p(K) and N must be relatively prime).

For example, if N = 2k then p(K) must be even.

If N is prime then p(K) > 1.

Double hashing

Double hashing

Double hashing

Separate chaining

This is slightly different version of linear probing
than described in the textbook.

We know that T(m) is not free, that is a collision
occurred.

Add (K, I) to the beginning of a linked list L
m
 of all

entries (M, J) such that

h(M) = m

Separate chaining

Find(K)

Case of linear probing or double hashing

1. Compute m = h(K).

2. while (T(m) != “empty”)

if (T(m) != “deleted” && T(m) == K) return info
from T(m);

else update m following the collision
resolution method used by Insert;

// the entry (K, I) not found in T

Find(K)

Case of linear probing or double hashing

1. Compute m = h(K).

2. while (T(m) != “empty” && T(m) != “deleted”)

if (T(m) == K) return info from T(m);
else update m following the collision

resolution method used by Insert;
// the entry (K, I) not found in T

Find(K)

Case of separate chaining

1. Compute m = h(K).

2. if (T(m) != “empty”)

{Find K on list L
m
;

• if found return it;
// the entry (K, I) not found in T

Find(K)

Case of separate chaining

1. Compute m = h(K).

2. if (T(m) != “empty”)

{f = Find.L
m
(K);

• if found return info(K);
// the entry (K, I) not found in T

Delete(K)

Case of linear probing or double hashing

1. Follow the same steps as in Find(K);

2. if (found)

{T(m) = “deleted”;
return;}

// else do nothing;

// the entry (K, I) not found in T

Delete(K)

Case of separate chaining

1. Compute m = h(K).

2. if (T(m) != “empty”)

{Delete.L
m
(K);

• if (L
m.
empty()) T(m) = “empty”;

Insert(K, I)

General case (a deletion could have been made
in the past):

1. Execute Find(K), remembering location n of the
first free indicator.

2. If not found then store (K, I) in T(n).

“free” means “empty” or “deleted”

To be continued ...

in Lecture Notes ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

