CSC 311

Lectures on Data Structures

by

Dr. Marek A. Suchenek ©

Computer Science
CSUDH

Copyrighted material

All rights reserved

Copyright by Dr. Marek A. Suchenek © and Addison-Wesley ©

CSC 311

Lecture 12 Hashing

ADT TABLE, Applications, Implementations, Analysis

Key K = Airport Code

Associated Information I = City

AKL DCA FRA GCM GLA HKG LAX ORY PHL

Auckland, New Zealand Washington, D.C. Frankfurt, Germany Grand Cayman, Cayman Islands Glasgow, Scotland Hong Kong, China Los Angeles, California Paris, France Philadelphia, Pennsylvania

ADT TABLE

- 1. Construct(N) an empty table T of size N
- 2. Insert(K, I) an entry with key K and info I into T
- 3. Delete(K) an entry with key K from T
- 4. Find(K) an entry with key K in T and, if found, return info I of that entry.

ADT TABLE

Keys – the set of all keys

N – size of T

The size #(Keys) of the set Keys is much larger than N

Hash function h

h: Keys $\rightarrow \{0, ..., N-1\}$

Hash function h assigns to every key K an index h(N) in table T, with even distribution of probability.

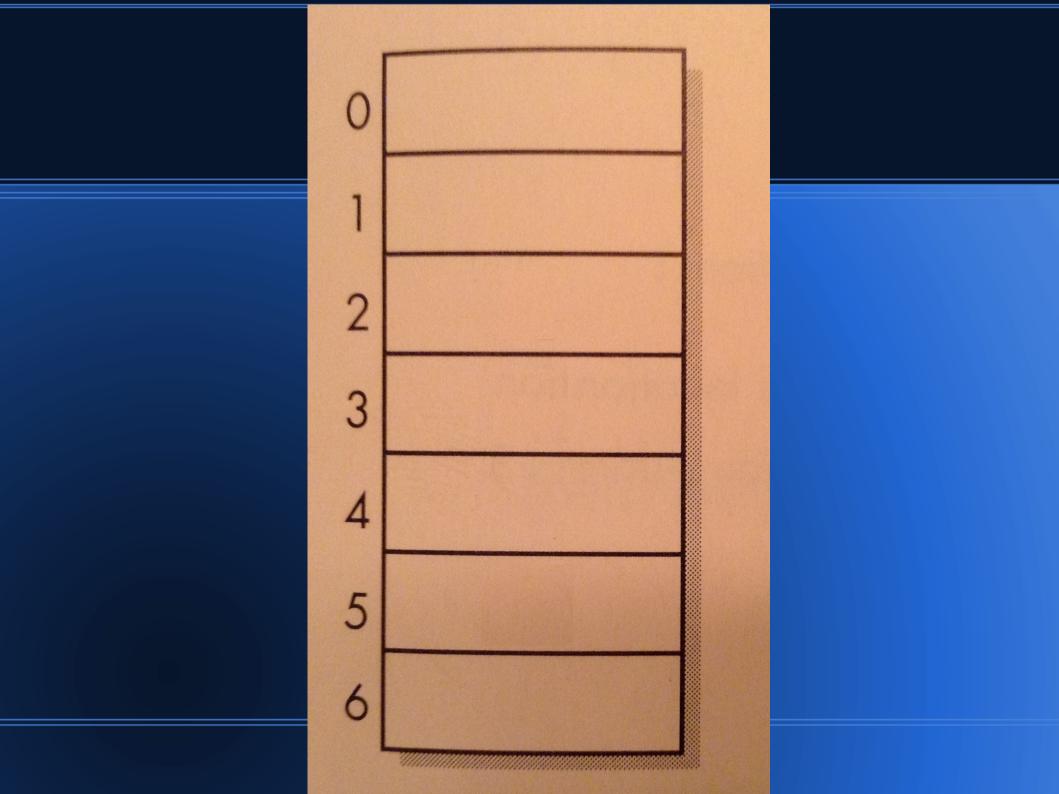
Construct(N)

1. Construct an array T of size N.

Example:

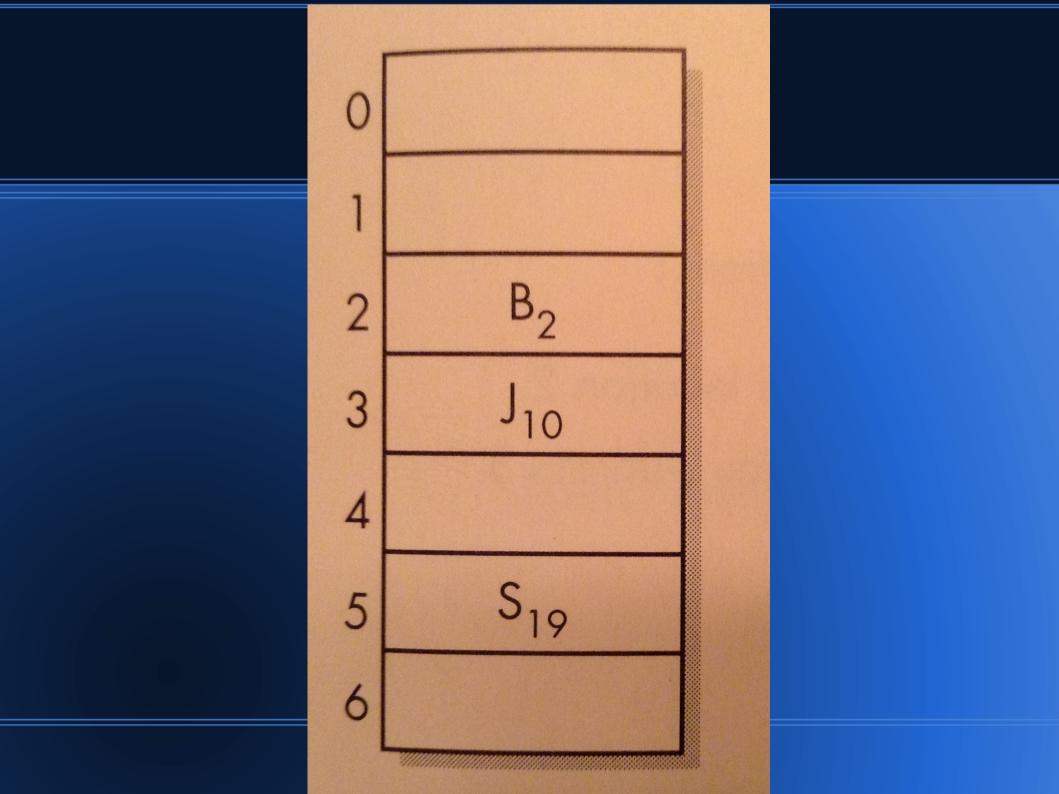
$$h(L_n) = n \% N$$

$$N = 7$$



If no deletions were made in the past:

- 1. Compute m = h(K).
- 2. If T(m) is empty, store (K, I) in T(m).
- 3. If T(m) is not empty, collision occurs and needs to be resolved.



The following collision resolution methods will be considered:

- 1. linear probing,
- 2. double hashing, and
- 3. separate chaining.

Linear probing

This is slightly different version of linear probing than described in the textbook.

```
We know that T(m) is not free, that is a collision occurred.
```

```
for (int i = 1; i < N; i++)

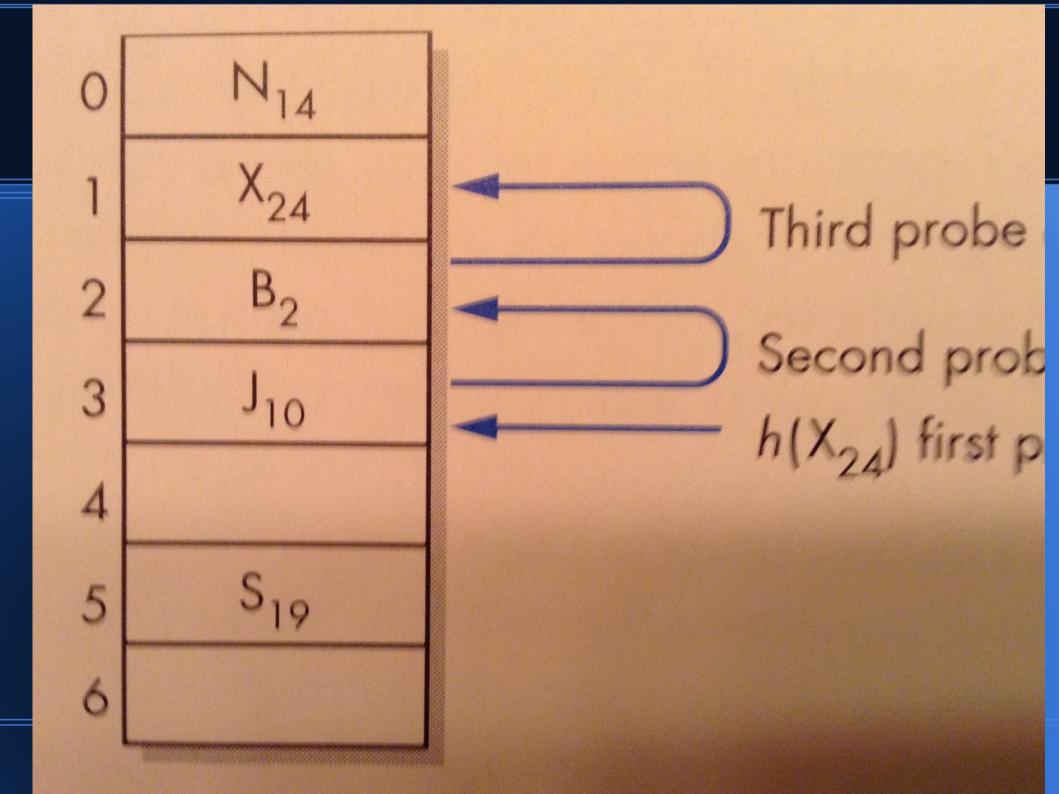
{m = (m+1) % N; // for wrap-around effect

If (T(m) is free)

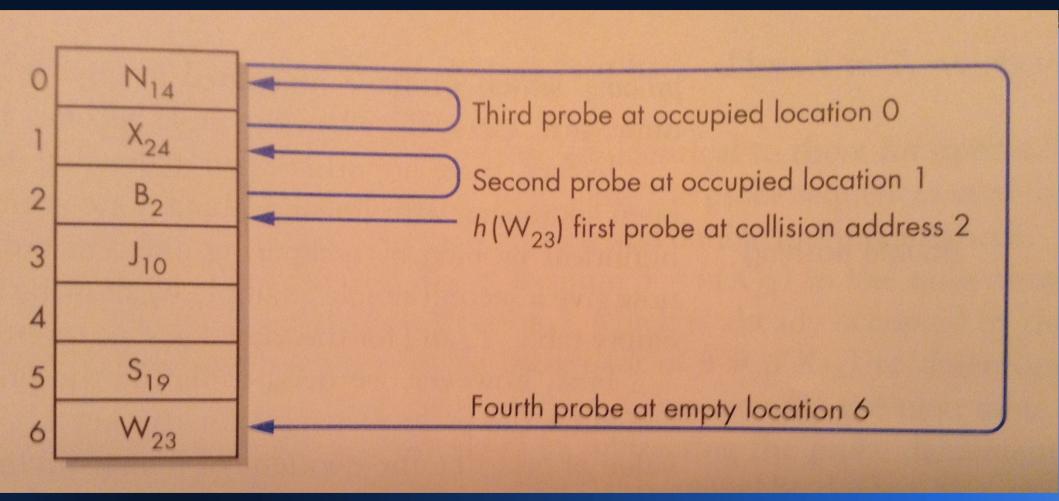
{store (K, I) in T(m);

break;}}
```

// no room for insertion — the hash table needs to be stretched



Linear probing



Double hashing

This is slightly different version of double hashing than described in the textbook.

```
We know that T(m) is not free, that is a collision occurred.

int incr = p(K) // the second hash function, p(K) > 0

for (int i = 1; i < N; i++)

{m = (m+incr) % N; // for wrap-around effect

If (T(m) is free)

{store (K, I) in T(m);

break;} }
```

// no room for insertion – the hash table needs to be stretched

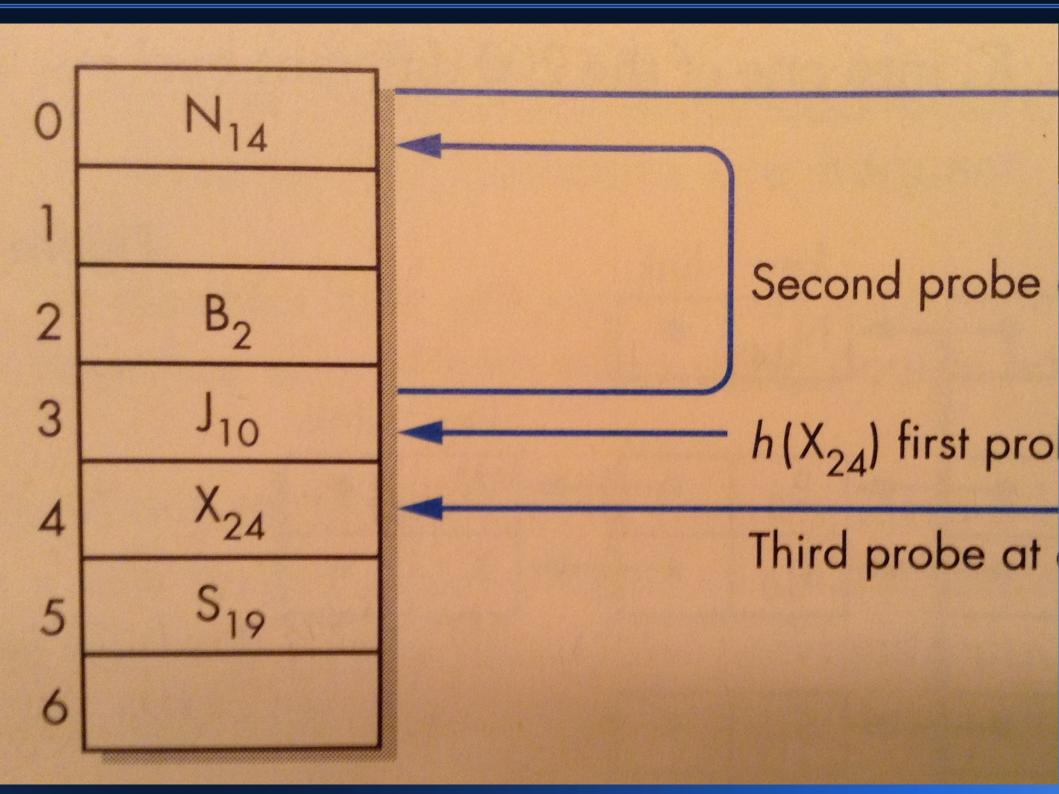
Double hashing

In order to not waste storage, p(K) and N must have no common divisor > 1. (i.e., p(K) and N must be relatively prime).

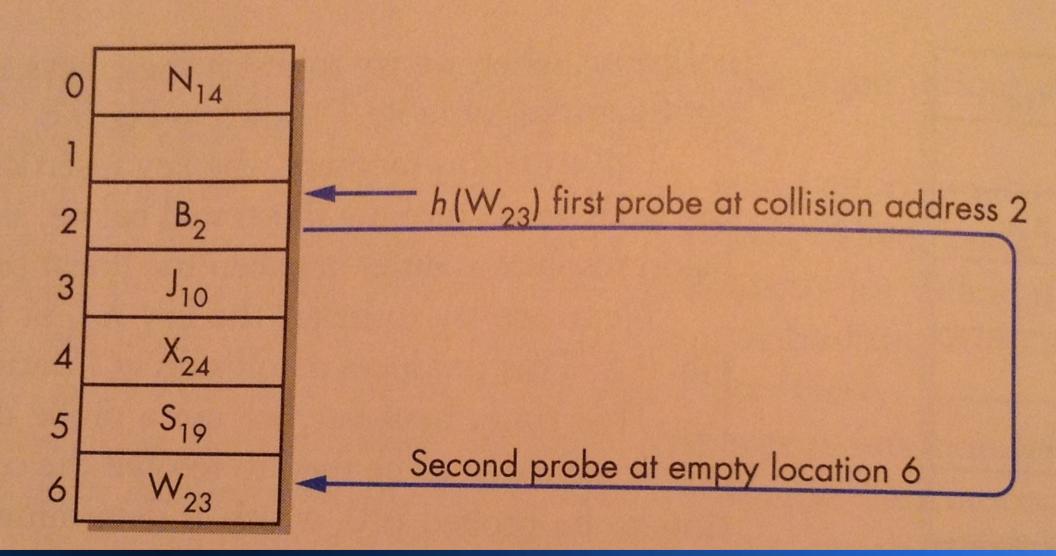
For example, if $N = 2^k$ then p(K) must be even.

If N is prime then p(K) > 1.

$Key = L_n$	$h(L_n)$	$p(L_n)$
J10 B2	3 2 5	
S ₁₉ N ₁₄ X ₂₄ W ₂₃	3	2 3
W23	2	3



Double hashing



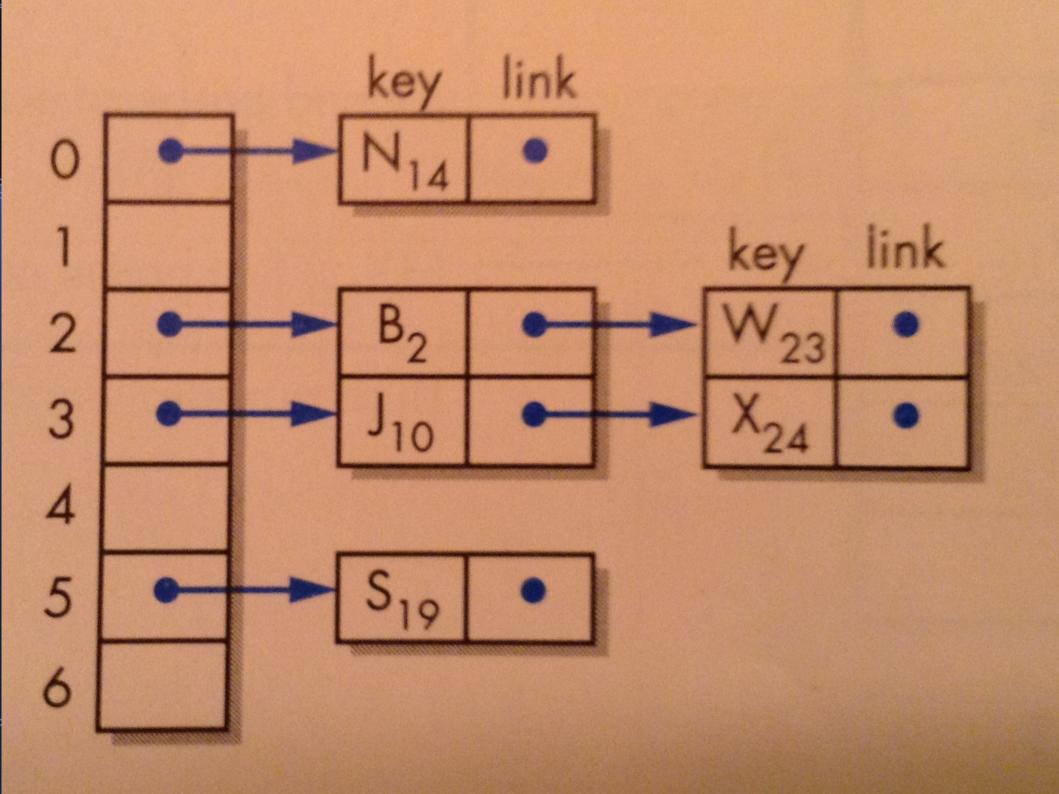
Separate chaining

This is slightly different version of linear probing than described in the textbook.

We know that T(m) is not free, that is a collision occurred.

Add (K, I) to the beginning of a linked list L_m of all entries (M, J) such that

$$h(M) = m$$



Case of linear probing or double hashing

- 1. Compute m = h(K).
- 2. while (T(m) != "empty")
- if (T(m) != "deleted" && T(m) == K) return info
 from T(m);

else update m following the collision resolution method used by Insert;

// the entry (K, I) not found in T

Case of linear probing or double hashing

- 1. Compute m = h(K).
- 2. while (T(m) != "empty" && T(m) != "deleted") if (T(m) == K) return info from T(m); else update m following the collision resolution method used by Insert; // the entry (K, I) not found in T

Case of separate chaining

```
1. Compute m = h(K).
```

Case of separate chaining

```
    Compute m = h(K).
    if (T(m) != "empty")
        {f = Find.L<sub>m</sub>(K);
        if found return info(K);
        // the entry (K, I) not found in T
```

Delete(K)

Case of linear probing or double hashing

```
1. Follow the same steps as in Find(K);
```

Delete(K)

Case of separate chaining

```
1. Compute m = h(K).
```

```
    2. if (T(m) != "empty")
        {Delete.L<sub>m</sub>(K);
        if (L<sub>m</sub>empty()) T(m) = "empty";
```

General case (a deletion could have been made in the past):

- 1. Execute Find(K), remembering location n of the first free indicator.
- 2. If not found then store (K, I) in T(n).

"free" means "empty" or "deleted"

To be continued ...

in Lecture Notes