CSC 311

Lectures on Data Structures

by

Dr. Marek A. Suchenek ©

Computer Science CSUDH

Copyrighted material

All rights reserved

Copyright by Dr. Marek A. Suchenek © and Addison-Wesley ©

CSC 311

Lecture 11 Trees

Definitions, Applications, Implementations, Analysis

Trees and Graphs

game trees

search trees

priority queues and heaps

binary trees

representing priority queues using heaps binary tree traversals

binary search trees

AVL trees

2-3 trees

tries

Huffman codes

graphs are more general than trees flow graphs graph representations graph searching algorithms topological ordering Trees—Basic Concepts and Terminology LEARNING OBJECTIVES 1. To learn how to refer to various parts of trees. 2. To learn about some relationships that are always true in trees. roots, children, and leaves descendants ancestors and parents

Introduction

1. A tree is an acyclic and connected graph.

If it's non-empty then one of its nodes is designated as the root.

2. A tree is a set of sequences closed under operation of taking a begining subsequence.

(This is sometimes referred to as a "tree of paths".)

Example:

{<>, <0>, <1>, <0,0>, <1,0>,</1,0>,

3. A finite tree is any of the following:

3. A finite tree is any of the following:

(i) the empty set

(ii) the root (a node) with some number of finite subtrees attached to it. (If the attached subtree is non-empty then the attachment has a form of an edge that goes from the root of the tree to the root of the subtree in question.)

(iii) Nothing else is a finite tree.

Boxes represent empty subtrees

A tree whose root has at most two edges incident on it and any node other than the root has at most three edges incident on it.

2. A binary tree is a set of binary sequences closed under operation of taking a begining subsequence.

Example:

{<>, <0>, <1>, <0,0>, <1,0>,<1,0>,<1,0>,<1,0>,<1,0,1>}

2a. A binary tree is a set of positive integers closed under operation of positive integer division by 2.

{1, 2, 3, 4, 6, 7,13}

{1, 2, 3, 4, 6, 7,13}

{1, 2, 3, 4, 6,7,13}

{1, 2, 3, 4, 6,7,13}

2b. A complete binary tree is a set of first n positive integers.

2b. A complete binary tree is a set of first n positive integers.

Of course, it closed under operation of positive integer division by 2.

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}

3. A finite binary tree is any of the following:

(i) the empty set

(ii) the root (a node) with two finite subtrees attached to it. (If the attached subtree is non-empty then the attachment has a form of an edge that goes from the root of the tree to the root of the subtree in question.)

(iii) Nothing else is a finite tree.

Definitions of binary tree

Boxes represent empty subtrees

8.3 Binary Trees

LEARNING OBJECTIVES

- 1. To become familiar with the definition of binary trees.
- 2. To learn the definition of extended and complete binary trees.
- To prepare for the discussion of binary tree representations and binary tree operations in the remainder of the chapter.

A binary tree is either the empty tree or a node that has left and right subtrees that are binary trees.

Figure 8.3 An Extended Binary Tree

Figure 8.4 Complete and Incomplete Binary Trees

8.3 EXERCISES

1,2 p. 2

250

8.4 A Sequential Binary Tree Representation

LEARNING OBJECTIVES

- To learn about one of the important sequential representations of complete binary trees.
- 2. To learn how to find the parents and children of nodes in this sequential representation.
- 3. To learn the conditions for a node being a root, a leaf, and an internal node in this representation.

numbering nodes level-by-level

Figure 8.6 Sequential Representation of a Complete Binary Tree (with A[0] Empty)

To Find:	Use:	Provided:
The left child of A[i] The right child of A[i] The parent of A[i] The root Whether A[i] is a leaf	A[2 i] A[2 i + 1] A[i / 2] A[1] true	$2.i \le n$ $2.i + 1 \le n$ i > 1 A is nonempty 2.i > n

8.4 EXERCISES 1, 2, 3

8.5 An Application—Heaps and Priority Queues

LEARNING OBJECTIVES

- 1. To learn how to represent a heap using a contiguous sequential representation.
- 2. To learn how heaps can serve as efficient representations for priority
- 3. To discover some important mathematical properties of heaps that will be used later.

Level-by-level complete tree

Heap

Definition of heap

A **heap** is a complete binary tree with values stored in its nodes such that no child has a value greater than the value of its parent.

Figure 8.8 An Example of a Heap

```
The public interface for the PriorityQueue class contains
             the following method calls. Here, let PQ be a variable having
             a PriorityQueue object as its value, let X be a variable that
             contains a priority queue item, and let n be an integer variable.
 5
                                          // creates an initially empty priority queue PQ
         PQ = new PriorityQueue();
                                               // returns the number of items in PQ and
10
         n = PQ.size();
                                                      // stores it in the integer variable n
                                                                        // puts X into PQ
         PQ.insert(X);
                                       // removes the highest priority item from PQ and
         X = PQ.remove();
15
                                            // assigns it to be the value of the variable X
```

Program 5.1 Informal Interface for a PriorityQueue Class

```
public class PriorityQueue {
17
18
19
        //Uses heap as implementation
20
21
22
         private int count; //actual number of elements
23
         private int capacity; //the size of the array - 1
24
         private int capacityIncrement;
         private int[] itemArray;
25
26
```

```
public void insert(int newItem)
35
36 🖃
37
             if(count==capacity) //no more space, "resize"
38
                 capacity*=capacityIncrement;
39
                 int[] tempArray = new int[capacity + 1];
40
                 for (int i = 1; i <= count; i++)
41
42
43
                     tempArray[i] = itemArray[i];
                      cnt2.incr();
44
45
                 itemArray = tempArray;
46
```

```
48
49
             //try insert at the end
50
             count++; //1st element sits at index 1, 2nd element at index 2, etc,...
51
             //the newly inserted element may be too large to be a leaf
52
             int i = count; //initial "logical" position of newItem
53
                             //we keep it in itemArray[0] to save time on swapping
             while ((i > 1) \&\& (cnt3.incr() \& (newItem > itemArray[i/2])))
54
55
56
                 itemArray[i] = itemArray[i/2]; //demote the parent
57
                 cnt.incr():
58
                 i = i/2; //promote the new one i /= 2;
59
```

```
//here i is the index for the newly inserted element
itemArray[i] = newItem;
cnt.incr();
}
```

```
public int remove()
65
66
67
          if (count==0) return -9999;
68
          //here count != 0
69
             int maxItem = itemArray[1]; //the root
70
             int demotee = count;
71
             count - - ;
             int i = 1;
72
73
             boolean demoted = true;
```

```
74
             while ((2*i \le count) \&\& demoted)
75
76
                 int j = 2*i; // first child
77
                 if ((j < count) \&\& (cnt3.incr() \& (itemArray[j] < itemArray[j + 1]))) j++;
78
                 if (cnt3.incr() & (itemArray[i] > itemArray[demotee])) //demote patch
79
80
                     itemArray[i] = itemArray[j]; //promote its larger child
81
                     cnt.incr();
82
                     i = i; //demote patch's index
83
84
```

```
84
85
                 else
86
87
                     demoted = false;
88
89
             //i is the place for the patch
90
             itemArray[i] = itemArray[demotee];
91
92
             cnt.incr();
             itemArray[demotee] = 0; // for demonstration purpose only
93
```

```
if ((count < capacity / capacityIncrement) && (10 <= capacity / capacityIncrement)
95
96
97
                capacity/=capacityIncrement;
                  int[] tempArray = new int[capacity+1]; //because itemArray[0] is not use
98
                  for (i = 1; i <= count; i++)
99
100
101
                      tempArray[i] = itemArray[i];
102
                      cnt2.incr();
103
104
                  itemArray = tempArray;
105
106
              return maxItem;
107
```

Excorption "Data 3tanctures in Java" by Standish

how to sort using priority queues

Non-develors

rogram 5.2 A Priority Queue Sorting Method

$$-\sum_{i=0}^{n-1} f(i) \leq \sum_{i=0}^{n-1} f(n-i) \leq u \cdot f(n-i) \leq u$$

Total
$$\leq 0(+n \cdot f(n) + n \cdot g(n)) = 0(+n (f(n) + g(n))) =$$

$$= O(n \cdot (f(n) + g(n))) =$$

$$= O(n \cdot max (f(n), g(n)))$$

6 5 3 1 8 7 2 4

Performance of heap

Insert to a heap with n nodes:

Worst-case

 $T(n) \in \Theta(\log n)$

Performance of heap

Delete from a heap with n nodes:

Worst-case

$$T(n) \in \Theta(\log n)$$

Excorption "Data 3tanctures in Java" by Standish

how to sort using priority queues

Non-develors

rogram 5.2 A Priority Queue Sorting Method

$$-\sum_{i=0}^{n-1} f(i) \leq \sum_{i=0}^{n-1} f(n-i) \leq u \cdot f(n-i) \leq u$$

Total
$$\leq 0(+n \cdot f(n) + n \cdot g(n)) = 0(+n (f(n) + g(n))) =$$

$$= O(n \cdot (f(n) + g(n))) =$$

$$= O(n \cdot max (f(n), g(n)))$$

Performance of heap

PriorityQueueSort:

Worst-case

$$T(n) \in \Theta(n \log n)$$

Pre-order

In-order

Post-order

Level-by-level

Animation

http://www.cosc.canterbury.ac.nz/mukundan/dsal/BTree.html

```
void preOrderTraversal(TreeNode T) {
                                                     // let S be an initially empty stack
             Stack S = new Stack();
                                                  // N points to nodes during traversal
             TreeNode N;
                                          // push the pointer T onto the empty stack S
5
             S.push(T);
             while (!S.empty()) {
                                                          // pop top pointer of S into N
                  N = (TreeNode)S.pop();
10
                  if (N != null) {
                                                                    // print N's info field
                      System.out.print(N.info);
                                                         // push the right pointer onto S
                       S.push(N.rlink);
                                                          // push the left pointer onto S
                       S.push(N.llink);
15
Program 8.27 PreOrder Traversal of an Expression Tree Using a Stack
```

```
void traverse(TreeNode T, int traversalOrder) {
            /* to visit T's nodes in the order specified by the */
            /* traversalOrder parameter */
                                                            // if T == null, do nothing
5
            if (T != null) {
                 if (traversalOrder == PRE_ORDER) {
                      visit(T);
10
                      traverse(T.llink, PRE_ORDER);
                      traverse(T.rlink, PRE_ORDER);
                  } else if ( traversalOrder == IN_ORDER ) {
15
                      traverse(T.Ilink, IN_ORDER);
                      visit(T);
                      traverse(T.rlink, IN_ORDER);
                  } else if ( traversalOrder == POST_ORDER ) {
20
                       traverse(T.llink, POST_ORDER);
                       traverse(T.rlink, POST_ORDER);
                       visit(T);
 25
 Program 8.26 Generalized Recursive Traversal Method
```

```
void levelOrderTraversal(TreeNode T) {
                                                     // let Q be an initially empty queue
             Queue Q = new Queue();
                                                   // N points to nodes during traversal
             TreeNode N;
 5
                                                     // insert the pointer T into queue Q
             Q.insert(T);
             while (! Q.empty()) {
                                                             // remove first pointer of Q
                  N = (TreeNode) Q.remove();
10
                                                                      // and put it into N
                  if (N != null ) {
                                                                     // print N's info field
                       System.out.print(N.info);
                                                        // insert left pointer on rear of Q
                       Q.insert(N.llink)
                                                       // insert right pointer on rear of Q
                       Q.insert(N.rlink)
15
Program 8.28 LevelOrder Binary Tree Traversal Using Queues
```

BS Tree

Definition of binary search tree.

A binary tree T is called a binary search tree if, and only if, in-order traversal with listing of T lists the nodes of T in an increasing order.

BS Tree

Exercise

http://nova.umuc.edu/~jarc/idsv/lesson4.html

Delete

Delete(13)

Delete(13)

Delete(0)

Delete(0)

21

FACT 1

T is a binary search tree if, and only if,

- T is empty, or
- The left and the right subtree of T are both binary search trees, and no node in the left subtree is larger than the root of T, and no node in the right subtree is smaller than the root of T.

FACT 2

The number of comparisons while successfully inserting a new value x into a binary search tree is equal to the level

level(x)

of the newly inserted node with value x.

In particular, the number of comparisons while building a binary search tree T as a sequence of consecutive insertions is:

$$level(x_1) + level(x_2) + ... + level(x_n),$$

where level(x_i) is the level number to which x_i belongs.

FACT 3

The number of comparisons while unsuccessfully searching for a value x in a binary search tree T is equal to the number of comparisons while successfully inserting x into T.

FACT 4

The number of comparisons while successfully searching for value x in a binary search tree is equal to 1 plus the number of comparisons made while inserting x into T,

1 + level(x)

that is, one plus the level of the first node that contains that value.

Definition of internal path

Internal path length In in a tree IT is
the sum of lengths of all postus
from the root of IT to non-leaves
of IT.

Definition of the external path

The external path length ET in leve T

is the sum of lengths of all paths

from the root to the leaves of T.

Perf

Saddeney 2012	External path length and internal path length E = I + 2n I - the fold number of companions needed to build a briany search tree whose internal path length is I
r. March A.	- the total number of Companions to run two binary search sort Nor such a feel (Some as for Quicksort)
C Coggraph D	Ng. number of compensors to search quecess fully for a key in a R.S. free whose internal path length 15 I: $c = \frac{I + h}{n} = \frac{I}{n} + 1$

es

Perf

200	Avg. number of companions
Sullengl	to search insuccessfully for a key in a B.S. free whose externed path length is E c'= L+2m 2 I+2n n+1 2 n=
Harry A	$=\frac{I}{n}+2=C+1$
700 W	Best case I2 Mlg M-2M
the	$E = I + 2n \approx n \lg n$ $C = \frac{L}{n} + 1 \approx \lg n - 1$
S S S S S S S S S S S S S S S S S S S	C'XC+1 = lgn

es

Per

X	
201	Avg, case
3	T 21.4 mlg n - 2.8 n
The state of the s	E21.4 nlgn - 0.8 n
8	c 2 1.4 lg 1 - 1.8
111	C'2 1.4 lgn - 0.8
line	
- Ci	Worst case
2	$T = \frac{M(M-1)}{2}$
The state of the s	$E = \frac{n(n+3)}{2}$
- Land	$C = \frac{h+1}{2}$
0	$C' = \frac{n+3}{2}$
0	

Peri

-1-	Notes to Standish p. 278
2012	Minimum internal poils length In of any
at the same of the	length In of any bring tree with m
Men	$I_{m} = \sum_{i=1}^{n} \lfloor \lg i \rfloor =$
4	=(m+1)[lgn]-2[lgn]+1-2
March A.	Minimum external path
N. C.	binary tree with y
Se	$E_n = I_n + 2n =$
the	= (n+1) [lgn]-2 [lgn]+1 +2+2n=
Copy	- (m+1) [lgn] +2 (m-2, llgn) +2
(3)	$0 < x < \frac{m}{2}$

Per

. 2 -	Notes to Handish p 278
292	I I
	(n+1)[lgn] +2 5 En <
J3	$(n+1)[lgn]+2 \leq E_n <$
alexal	< (n+1)/lgn 1+n+2
W.	AL60,
4	ALGO, (m+1) [lgm] - 2m+2 < Tm <
March	< (n+1) [lgn] - n + 2
	$C_n = \frac{I_n + n}{m} = \frac{I_n}{m} + I$
B	
\$	n-19n1-2+2 + 1 < Ca <
the state of the s	< n 1 / lgm] - 1 + 2 + 1
Confr	[lgn] + in (llgn]+2) -1 < Cm <
9	< [lgn] + 1 ([lgn] +2)
Bert Tare	/lgn/-1 ≤ Cn ≤ [lgn]

Per

-3-	Notes to Standish p278
B	- L - En
N. C.	$C_n = \frac{E_n}{m+1}$
23	[lgn] + 2 Cm <
4,	< [lgn] + m+1 + 2 -
Manal	= [lgm] + (n+1)+1 = [lgn]+1+
	111
8	
gost case	Ilgn Scn & Ilgn 1+1
(b)	

To be continued

in Lecture Notes ...