CSC 311

Lecture
Data Struct

9)Y

Dr. Marek A. Suchenek

Computer Science
CSUDH

Copyrighted material

All rights r

Copyright by Dr. Marek
and

Addison-Wesley

CSC 311

Lect

Definitions, Applications, Imp
Analysis

Trees and Graphs

game trees

bfﬂﬁr}f frees

binary search trees

fries

search trees

representing priority
queues using heaps

AVL trees

Huffman codes

priority queues and heaps

binary iree fraversals

2-3 frees

graphs are more general
than trees

, flow graphs
graph representations

graph searching algorithms

topological ordering

m Trees—Basic Concepis and Terminology

LEARNING OBJECTIVES

1. To learn how to refer to various parts of trees.
2. To learn about some relationships that are always true in irees.

roots, children, and leaves
descendants

ancestors and parents

Introduction

Figure 8.1 Basic Tree Anatomy

8.2 EXERCISES 1

Definitions of tree

1. A tree Is an acyclic and
connected graph.

If it's non-empty then one of Its
nodes is designated as the root.

Definitions of tree

Definitions of tree

2. A tree Is a set of sequences
closed under operation of taking
a begining subsequence.

(This is sometimes refered to as a
"tree of paths".)

Definitions of tree

Example:

{<>, <0>, <1>, <0,0>,
<1,0>,<1,1>,<1,0,1>}

Definitions of tree

{<>, <0>, <1>, <0,0>,
<1,0>,<1,1>,<1,0,1>}

Definitions of tree

3.A treeis an
following:

Definitions of tree

3. A tree is any of the
following:

(1) the empty set

Definitions of tree

(1) the root (a node) with some
number of subtrees
attached to it. (If the attached
subtree is non-empty then the
attachment has a form of an
edge that goes from the root of
the tree to the root of the
subtree In question.)

Definitions of tree

(it1)) Nothing else is

Definitions of tree

Iree - non-empty

root

/gx

subtree 1 syubtree 2 subtree k

Definitions of tree

Boxes represent empty subtrees

Definitions of binary tree

A tree whose root has at most
two edges incident on it and any
hode other than the root has at
most three edges incident on it.

Definitions of binary tree

Definitions of binary tree

2. A binary tree Is a set of binary
seguences closed under
operation of taking a begining
subsequence.

Definitions of binary tree

Example:

{<>, <0>, <1>, <0,0>,
<1,0>,<1,1>,<1,0,1>}

Definitions of binary tree

{<>, <0>, <1>, <0,0>,
<1,0>,<1,1>,<1,0,1>}

Definitions of binary tree

2 . ADbinary tree is a set of
positive integers closed under
operation of positive integer
division by 2.

Definitions of binary tree

Definitions of binary tree

{1, 2,3, 4, 6,7,13}

Was: {<>, <0>, <1>, <0,0>,
<1,0>,<1,1>,<1,0,1>}

Definitions of binary tree

{1, 2,3, 4, 6,7,13}

Was: {<>, <0>, <1>, <0,0>,
<1,0>,<1,1>,<1,0,1>}

Is: {< >, < 10>’ < 11>1 < 101O>;
< 1150>1< ’111>1< 111011>}

Definitions of binary tree

{1, 2, 3, 4, 6,7,13}

Definitions of binary tree

{1, 2, 3, 4, 6,7,13}

Def. of complete binary tree

2 . A complete binary tree is a set
of first n positive integers.

Def. of complete binary tree

2 . A complete binary tree is a set
of first n positive integers.

Of course, it closed under
operation of positive integer
division by 2.

Def. of complete binary tree

{1! 2’ 3! 4! 5’ 6! 7! 8!

Def. of complete binary tree

{1,2, 3,4,5,6,7,8,9,10,11,12, 13}

89101112

Definitions of binary tree

3. A binary tree Is any of the
following:

(1) the empty set

Definitions of binary tree

(1) the root (a node) with two
subtrees attached to it. (If
the attached subtree Is
non-empty then the attachment
has a form of an edge that goes
from the root of the tree to the
root of the subtree in question.)

Definitions of binary tree

(it1)) Nothing else is

Definitions of binary tree

Binary tree - non-empty

left subtree right subtree

Definitions of binary tree

Boxes represent empty subtrees

(%3 Binary Trees

LEARNING OBJECTIVES

1. To become familiar with the definition of binary frees.

2. To learn the definition of extended and complete binary frees.

3. To prepare for the discussion of binary tree representations and binary
tree operations in the remainder of the chapter.

v
(£ ot |
A T

Figure 8.3 An Extended

Binary Tree
Binary tree 1 Binary tree 2 Binary tree 3 Figure 8.4 Complete and
Incomplete Binary Trees

8.3 EXERCISES 1, £ p Z30

S A Sequential Binarj:r Tree Representation

LEARNING OBJECTIVES

1. To learn about one of the important sequential representations of com-

plete binary trees: _
2. To learn how 16 find the parents and children ‘of nodes in this sequential. ._

renresemt_:ttio'_n. o ’ 3 . s
2. . f . H o S S '
3. To qurh the conditions for a node being a root, a leaf, and‘an internal
node in this representation. '

R 1

¥
L

y ‘numbering nodes
' level-by-level .

k f > M
')) 2 !o n
S 1 e
“ 1009
JT o1 &
& elo o
7 a0 L
g (ooe A
| ?.00(¢
0010 &
e 10\ .
lzlloo!

Al H’D}K’E F JlL'ﬁ. C}E Gfl
o 1 2 3 4 5 6 7 8 9 10 11 12

Figure 8.6 Sequential Representation of a Complete Binary Tree (with A[O] Empty]

.r"'_'The lof ch!h‘i c.f A[q L'.‘,:__;'-;_.-A[z i S i
' The! rlght chl|d of A[|] :"':3;;'; A2k ‘
- The: pt:lren’r GF #II] e Alif2] 50 g ot T i .-'::' '
,The roieb T] ey G R A A "A'ns nonempty "> o
--"Wheiher ﬁx[] is! G leaf .j:-__f'[:i.ie': REnRb 1‘ i

84EXERRCISES - 4,2 3 p <3X

E »

m An Application—Heaps and Priority Queues
LEARNING OBJECTIVES |

. To learn how to represent a heap using a contiguous sequential repre-

sentafion.
2. To learn how heaps can serve as efficient representafions for priority

queues. ‘
3. To discover some important mathematical properties of heaps that will

be used later.

Level-by-level complete tree

Definition of heap

; _-A heup is g ce::rnpiele bmmr}r ‘rree wuh miues stcrred in |’r5 nc}des su-::h
- _..’rhu’r no. ch|1r:f hm a ﬂmlue grecﬂer ﬂ'u::n 1he w.:lue c.f |Ts pr;:ren’r |

Figure 8.8 An Example of @ Heap

Priority Queue (heap)

// assigns it to be the value of the variable X

o
I * The public interface for the PriorityQueue class contains
l * the following method calls. Here, let PQ be a variable having
1 * a PriorityQueue object as its value, let X be a variable that
5 | * contains a priority queue item, and let n be an integer variable.

| */ '
|
| PQ = new PriorityQueue(); // creates an initially empty priority queue PQ
|

10 | n=PQ.size(); // returns the number of items in PQ and
I // stores it in the integer variable n
| .
| PQ.insert(X); // puts X into PQ
i

15 | X =PQ.remove(); // removes the highest priority item from PQ and
|
|

.

Program 5.1 Informal Interface for a PriorityQueue Class

Priority Queue (heap)

 public class PriorityQueue {

aT=F=1a - 1 M = ial=1
e A b | ¥ (W

private int count; //actual numbe
private int capacity; //the size of
private int capacitylncrement;
private int[] itemArray;

Priority Queue (heap)

bubllc PrlorltyOue
count=0;
capacity=10;

capacitylncrement=2;
itemArray=new int[capacity + 1]; //itemAr:

Priority Queue (heap)

public void insert(int newItem)

{

if(count==capacity) //no

{

capacity*=capacitylncrement;
int[] tempArray = new int[capacity + 1];
for (int 1 = 1; 1 <= count; i++)

{

tempArray[1i] = itemArray[i];
cnt2.incr();

}

itemArray = tempArray;

Priority Queue (heap)

count++;

int 1 = count;

while ((1 > 1) & (cnt3.incr() & (newltem > itemArray[i/2])))
{

itemArray[i] = itemArray[i/2];
cnt.incr();
i=1/2;

Priority Queue (heap)

f I, "'I'I:"I'I: = 1 &

i{emﬂrray[i] = newltem;

cnt.incr();

Priority Queue (heap)

public int remove()

{
1f (count==0) return -9999;

aT=1 = e =y == _—
" | WA —

int maxItem = itemArray[l]; //the ri
int demotee count;

count--;

int 1 = 1;

boolean demoted = true;

Priority Queue (heap)

while ((2*1 <= count) && demoted)
{
int j = 2*%i; // first child
if ((j < count) & (cnt3.incr() & (itemArray[j] <« itemArray[j + 1]))) j++
1f (cnt3.incr() & (itemArray[j] > itemArray[demotee])) //demote patch
{

itemArray[i] = itemArray[j]; //promote it
cnt.incr();

Priority Queue (heap)

}

else

{
}

demoted = false;

}

itemArray[i] = itemArray[demotee];
cnt.incr();
itemArray[demotee] = 0;

Priority Queue (heap)

if ((count < capacity / capacityIncrement) && (10 <= capacity / capacitylncrs
{
capacity/=capacityIncrement;
int[] tempArray = new int[capacity+l];
for (1 = 1; 1 <= count; i++)

{

tempArray[i] = itemArray[i];
cnt2.incr();

}

itemArray = tempArray;

}

return maxItem;

Ex A "Deta 37 K .
conptth - :'M w Jave ¢ by

how tfo sort using
priority queues

Mﬁnl g{,&&’ﬁ!gﬁqiz._},
< w‘m A

void priorityQueueSon(GomparisonKey[)

i
inti; A et i be jan integer array index variable
« intn = A.length; f n be the jength of the array A to be sorted

|

I

1

1

|

| .
l PriorityQueue PQ = new Pr.
|

|

1

l

|

|

- O(') let PQ be initially empty
[} i
for (i = 0; i < n; i++) PQ.insert(Alil); » // put A's items into PQ
g(it!
for (i = n—1; i >=0; i—) Ali] = PQ.remove(); // remove PQ’s items
// and put them in A
b N |
rogram 5.2 A Priority Queue Sorting Method w-‘,# ce s (

..ZI'-'OJ() < Z;(h-o) . f{'“,_'

C h-|\ (= {C"’ i

v’ h) = "

2 4eeZa® Fge] -

Toh'— é%r w{(n) £ "‘3('\))10(! P h(f{n}p’(ql%
= Of{tmegea)s 7 |

JOUn-max (FC5), 9(m))]

Priority Queue (heap)

http:/lupload.wikimedia.org/wikipedialcommons/4/4d/Heapsort-example.gif

Performance of heap

Insert to a heap with n nodes:
Worst-case

T(n) € ©(log n)

Performance of heap

Delete from a heap with n nodes:
Worst-case

T(n) € ©(log n)

Ex A "Deta 37 K .
conptth - :'M w Jave ¢ by

how tfo sort using
priority queues

Mﬁnl g{,&&’ﬁ!gﬁqiz._},
< w‘m A

void priorityQueueSon(GomparisonKey[)

i
inti; A et i be jan integer array index variable
« intn = A.length; f n be the jength of the array A to be sorted

|

I

1

1

|

| .
l PriorityQueue PQ = new Pr.
|

|

1

l

|

|

- O(') let PQ be initially empty
[} i
for (i = 0; i < n; i++) PQ.insert(Alil); » // put A's items into PQ
g(it!
for (i = n—1; i >=0; i—) Ali] = PQ.remove(); // remove PQ’s items
// and put them in A
b N |
rogram 5.2 A Priority Queue Sorting Method w-‘,# ce s (

..ZI'-'OJ() < Z;(h-o) . f{'“,_'

C h-|\ (= {C"’ i

v’ h) = "

2 4eeZa® Fge] -

Toh'— é%r w{(n) £ "‘3('\))10(! P h(f{n}p’(ql%
= Of{tmegea)s 7 |

JOUn-max (FC5), 9(m))]

Performance of heap

PriorityQueueSort:
Worst-case

T(n) € ®(n log n)

Tree Traversal

Pre-order
In-order
Post-order

Level-by-level

Tree Traversal

Animati

http://www.cosc.canterbury.ac.nz/mukundan/dsal/

http://www.cosc.canterbury.ac.nz/mukundan/dsal/BTree.html
http://www.cosc.canterbury.ac.nz/mukundan/dsal/BTree.html

Tree Traversal

void preOrderTraversaI(TreeNode 1) 4

Stack S = new Stack(); // let S be an initially empty stack
TreeNode N; /I N points to nodes during traversal
5
S.push(T); // push the pointer T onto the empty stack S

while (!1S.empty()) {

10 N = (TreeNode)S.pop(); // pop top pointer of S into N
if (N !=null) {
System.out.print(N.info); // print N's info field
S.push(N.rlink); // push the right pointer onto S

15 S.push(N.llink); // push the left pointer onto S

}

I
I
I
|
I
I
I
I
I
|
|
I
I
I
I
I
|
I
I

}
Program 8.27 PreOrder Traversal of an Expression Tree Using a Stack

Tree Traversal

void traverse(TreeNode T, int traversalOrder) {

/* to visit T’s nodes in the order specified by the */
/* traversalOrder parameter */
5

if (T 1= null) { // if T == null, do nothing
if (traversalOrder == PRE_ORDER) {

visit(T);
traverse(T .llink, PRE_ORDER);
traverse(T.rlink, PRE_ORDER);

traverse(T.llink, IN_ORDER);
visit(T);
traverse(T.rlink, IN_ORDER);

} else if (traversalOrder == POST_ORDER) {

traverse(T.llink, POST_ORDER);
traverse(T.rlink, POST_ORDER);

visit(T);
25
}

|
|
|
|
|
|
|
I
I
|
|
|
|
| } else if (traversalOrder == IN_ORDER) {
I
|
|
I
|
|
I
I
|
I
|
|
I

}

Program 8.26 Generalized Recursive Traversal Method

Tree Traversal

void levelOrderTraversal(TreeNode T) {

Queue Q = new Queue(); // let Q be an initially empty queue

TreeNode N; // N points to nodes during traversal
D

Q.insert(T); // insert the pointer T into queue Q

while (! Q.empty()) {

// and put it into N

if (N !=null') {
System.out.print(N.info); // print N's info field
Q.insert(N.llink) // insert left pointer on rear of Q

15 Q.insert(N.rlink) // insert right pointer on rear of Q

}

I
|
|
I
|
I
|
I
|
10 | N = (TreeNode) Q.remove(); // remove first pointer of Q
|
|
I
I
I
|
|
I

}
Program 8.28 LevelOrder Binary Tree Traversal Using Queues

BS Tree

Definition of binary search tree.

A binary tree T is called a binary
search tree if, and only |If,

In-order traversal with listing of T
lists the nodes of T In an
Increasing order.

BS Tree

Exercl

http://nova.umuc.edu/~jarc/idsv/lesson4.

http://nova.umuc.edu/~jarc/idsv/lesson4.html
http://nova.umuc.edu/~jarc/idsv/lesson4.html

Delete

Delete(13)

Delete(13)

Delete(0)

Delete(0)

Delete(20)

Delete(20)

Delete(20)

Delete(20)

BS Tree

FACT 1
T is a binary search tree if, and only If,
- T is empty, or

- The left and the right subtree of T are both
binary search trees, and no node in the left
subtree is larger than the root of T, and no
node in the right subtree is smaller than the
root of T.

BS Tree

FACT 2
The number of comparisons while
successfully inserting a new value X into a
binary search tree is equal to the level

level(x)

of the newly inserted node with value Xx.

BS Tree

In particular, the number of comparisons while
building a binary search tree T
as a sequence of consecutive insertions Is:

level(x,) + level(x,) + ... + level(x),

where level(x) is the level number to which x.
belongs.

BS Tree

FACT 3

The number of comparisons while
unsuccessfully searching for a value X in a
binary search tree T is equal to the number of

comparisons while successfully
Inserting X into T.

BS Tree
FACT 4

The number of comparisons while
successfully searching for value x in a
binary search tree is equal to 1 plus the
number of comparisons made while
inserting X into T,

1 + level(x)

that is, one plus the level of the first node that
contains that value.

Performance of BS Trees

7) f £
s !rr F¥ f1ll #

I
A

Performance of BS Trees

Performance of BS Trees

Performance of BS Trees

Per

To be continued ...

INn Lecture

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100

