

CSC 311

Lectures on
Data Structures

by

Dr. Marek A. Suchenek ©

Computer Science
CSUDH

Copyrighted material

All rights reserved

Copyright by Dr. Marek A. Suchenek ©
and

Addison-Wesley ©

CSC 311

Lecture 11
Trees

Definitions, Applications, Implementations,
Analysis

Introduction

I

Introduction

I

Introduction

I

Definitions of tree

1. A tree is an acyclic and
connected graph.

If it's non-empty then one of its
nodes is designated as the root.

Definitions of tree

1. A tree is an acyclic and
connected graph.

If it's non-empty then one of its
nodes is designated as the root.

Definitions of tree

2. A tree is a set of sequences
closed under operation of taking
a begining subsequence.

(This is sometimes refered to as a
"tree of paths".)

Definitions of tree

Example:

{<>, <0>, <1>, <0,0>,
<1,0>,<1,1>,<1,0,1>}

Definitions of tree

{<>, <0>, <1>, <0,0>,
<1,0>,<1,1>,<1,0,1>}

Definitions of tree

3. A finite tree is any of the
following:

Definitions of tree

3. A finite tree is any of the
following:

(i) the empty set

Definitions of tree

(ii) the root (a node) with some
number of finite subtrees
attached to it. (If the attached
subtree is non-empty then the
attachment has a form of an
edge that goes from the root of
the tree to the root of the
subtree in question.)

Definitions of tree

(iii) Nothing else is a finite tree.

Definitions of tree

Definitions of tree

Boxes represent empty subtrees

Definitions of binary tree

A tree whose root has at most
two edges incident on it and any
node other than the root has at
most three edges incident on it.

Definitions of binary tree

1. A tree is an acyclic and
connected graph.

If it's non-empty then one of its
nodes is designated as the root.

Definitions of binary tree

2. A binary tree is a set of binary
sequences closed under
operation of taking a begining
subsequence.

Definitions of binary tree

Example:

{<>, <0>, <1>, <0,0>,
<1,0>,<1,1>,<1,0,1>}

Definitions of binary tree

{<>, <0>, <1>, <0,0>,
<1,0>,<1,1>,<1,0,1>}

Definitions of binary tree

2a. A binary tree is a set of
positive integers closed under
operation of positive integer
division by 2.

Definitions of binary tree

{1, 2, 3, 4, 6, 7,13}

Definitions of binary tree

{1, 2, 3, 4, 6, 7,13}

Was: {<>, <0>, <1>, <0,0>,
<1,0>,<1,1>,<1,0,1>}

Definitions of binary tree

{1, 2, 3, 4, 6, 7,13}

Was: {<>, <0>, <1>, <0,0>,
<1,0>,<1,1>,<1,0,1>}

Is: {<1>, <1,0>, <1,1>, <1,0,0>,
<1,1,0>,<1,1,1>,<1,1,0,1>}

Definitions of binary tree

{1, 2, 3, 4, 6,7,13}

Definitions of binary tree

{1, 2, 3, 4, 6,7,13}

Def. of complete binary tree

2b. A complete binary tree is a set
of first n positive integers.

Def. of complete binary tree

2b. A complete binary tree is a set
of first n positive integers.

Of course, it closed under

operation of positive integer
division by 2.

Def. of complete binary tree

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,13}

Def. of complete binary tree

{1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12, 13}

Definitions of binary tree

3. A finite binary tree is any of the
following:

(i) the empty set

Definitions of binary tree

(ii) the root (a node) with two
finite subtrees attached to it. (If
the attached subtree is
non-empty then the attachment
has a form of an edge that goes
from the root of the tree to the
root of the subtree in question.)

Definitions of binary tree

(iii) Nothing else is a finite tree.

Definitions of binary tree

Definitions of binary tree

Boxes represent empty subtrees

Introduction

I

Introduction

I

Introduction

I

Introduction

I

Level-by-level complete tree

I

Heap

I

Definition of heap

I

Priority Queue (heap)

I

Priority Queue (heap)

I

Priority Queue (heap)

I

Priority Queue (heap)

I

Priority Queue (heap)

I

Priority Queue (heap)

I

Priority Queue (heap)

I

Priority Queue (heap)

I

Priority Queue (heap)

I

Priority Queue (heap)

I

Introduction

I

Priority Queue (heap)

http://upload.wikimedia.org/wikipedia/commons/4/4d/Heapsort-example.gif

Performance of heap

Insert to a heap with n nodes:

Worst-case

T(n) ∈ (log n)

Performance of heap

Delete from a heap with n nodes:

Worst-case

T(n) ∈ (log n)

Introduction

I

Performance of heap

PriorityQueueSort:

Worst-case

T(n) ∈ (n log n)

Tree Traversal

Pre-order

In-order

Post-order

Level-by-level

Tree Traversal

Animation

http://www.cosc.canterbury.ac.nz/mukundan/dsal/BTree.html

http://www.cosc.canterbury.ac.nz/mukundan/dsal/BTree.html
http://www.cosc.canterbury.ac.nz/mukundan/dsal/BTree.html

Tree Traversal

I

Tree Traversal

I

Tree Traversal

I

BS Tree

Definition of binary search tree.

A binary tree T is called a binary
search tree if, and only if,

in-order traversal with listing of T
lists the nodes of T in an
increasing order.

BS Tree

Exercise

http://nova.umuc.edu/~jarc/idsv/lesson4.html

http://nova.umuc.edu/~jarc/idsv/lesson4.html
http://nova.umuc.edu/~jarc/idsv/lesson4.html

Delete

Delete(13)

Delete(13)

Delete(0)

Delete(0)

Delete(20)

Delete(20)

Delete(20)

21

Delete(20)

BS Tree

FACT 1

T is a binary search tree if, and only if,

- T is empty, or

- The left and the right subtree of T are both
binary search trees, and no node in the left
subtree is larger than the root of T, and no
node in the right subtree is smaller than the
root of T.

BS Tree

FACT 2

The number of comparisons while
successfully inserting a new value x into a

binary search tree is equal to the level

level(x)

of the newly inserted node with value x.

BS Tree

FACT 2

The number of comparisons while
successfully inserting a new value x into a

binary search tree is equal to the level

level(x)

of the newly inserted node with value x.

BS Tree

FACT 2

The number of comparisons while
successfully inserting a new value x into a

binary search tree is equal to the level

level(x)

of the newly inserted node with value x.

BS Tree

In particular, the number of comparisons while
building a binary search tree T

as a sequence of consecutive insertions is:

level(x
1
) + level(x

2
) + ... + level(x

n
),

where level(x
i
) is the level number to which x

i

belongs.

BS Tree

In particular, the number of comparisons while
building a binary search tree T

as a sequence of consecutive insertions is:

level(x
1
) + level(x

2
) + ... + level(x

n
),

where level(x
i
) is the level number to which x

i

belongs.

BS Tree

FACT 3

The number of comparisons while
unsuccessfully searching for a value x in a

binary search tree T is equal to the number of
comparisons while successfully

inserting x into T.

BS Tree

FACT 3

The number of comparisons while
unsuccessfully searching for a value x in a

binary search tree T is equal to the number of
comparisons while successfully

inserting x into T.

BS Tree

FACT 3

The number of comparisons while
unsuccessfully searching for a value x in a

binary search tree T is equal to the number of
comparisons while successfully

inserting x into T.

BS Tree

FACT 3

The number of comparisons while
unsuccessfully searching for a value x in a

binary search tree T is equal to the number of
comparisons while successfully

inserting x into T.

BS Tree
FACT 4

The number of comparisons while
successfully searching for value x in a
binary search tree is equal to 1 plus the
number of comparisons made while
inserting x into T,

1 + level(x)

that is, one plus the level of the first node that
contains that value.

BS Tree
FACT 4

The number of comparisons while
successfully searching for value x in a
binary search tree is equal to 1 plus the
number of comparisons made while
inserting x into T,

1 + level(x)

that is, one plus the level of the first node that
contains that value.

BS Tree
FACT 4

The number of comparisons while
successfully searching for value x in a
binary search tree is equal to 1 plus the
number of comparisons made while
inserting x into T,

1 + level(x)

that is, one plus the level of the first node that
contains that value.

Performance of BS Trees

F

Performance of BS Trees

F

Performance of BS Trees

F

Performance of BS Trees

F

Performance of BS Trees

F

Performance of BS Trees

F

Performance of BS Trees

F

Performance of BS Trees

F

Performance of BS Trees

F

Performance of BS Trees

F

To be continued ...

in Lecture Notes ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100

