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m Trees—Basic Concepis and Terminology

LEARNING OBJECTIVES

1. To learn how to refer to various parts of trees.
2. To learn about some relationships that are always true in irees.

roots, children, and leaves
descendants

ancestors and parents




Introduction

Figure 8.1 Basic Tree Anatomy

8.2 EXERCISES 1




Definitions of tree

1. A tree Is an acyclic and
connected graph.

If it's non-empty then one of Its
nodes is designated as the root.



Definitions of tree




Definitions of tree

2. A tree Is a set of sequences
closed under operation of taking
a begining subsequence.

(This is sometimes refered to as a
"tree of paths".)



Definitions of tree

Example:

{<>, <0>, <1>, <0,0>,
<1,0>,<1,1>,<1,0,1>}



Definitions of tree

{<>, <0>, <1>, <0,0>,
<1,0>,<1,1>,<1,0,1>}




Definitions of tree

3.A  treeis an
following:




Definitions of tree

3. A tree is any of the
following:

(1) the empty set



Definitions of tree

(1) the root (a node) with some
number of subtrees
attached to it. (If the attached
subtree is non-empty then the
attachment has a form of an
edge that goes from the root of
the tree to the root of the
subtree In question.)



Definitions of tree

(it1)) Nothing else is




Definitions of tree

Iree - non-empty

root

/gx

subtree 1 syubtree 2 subtree k




Definitions of tree

Boxes represent empty subtrees



Definitions of binary tree

A tree whose root has at most
two edges incident on it and any
hode other than the root has at
most three edges incident on it.



Definitions of binary tree




Definitions of binary tree

2. A binary tree Is a set of binary
seguences closed under
operation of taking a begining
subsequence.



Definitions of binary tree

Example:

{<>, <0>, <1>, <0,0>,
<1,0>,<1,1>,<1,0,1>}



Definitions of binary tree

{<>, <0>, <1>, <0,0>,
<1,0>,<1,1>,<1,0,1>}




Definitions of binary tree

2 . ADbinary tree is a set of
positive integers closed under
operation of positive integer
division by 2.



Definitions of binary tree




Definitions of binary tree

{1, 2,3, 4, 6,7,13}

Was: {<>, <0>, <1>, <0,0>,
<1,0>,<1,1>,<1,0,1>}



Definitions of binary tree

{1, 2,3, 4, 6,7,13}

Was: {<>, <0>, <1>, <0,0>,
<1,0>,<1,1>,<1,0,1>}

Is: {< >, < 10>’ < 11>1 < 101O>;
< 1150>1< ’111>1< 111011>}



Definitions of binary tree

{1, 2, 3, 4, 6,7,13}




Definitions of binary tree

{1, 2, 3, 4, 6,7,13}




Def. of complete binary tree

2 . A complete binary tree is a set
of first n positive integers.



Def. of complete binary tree

2 . A complete binary tree is a set
of first n positive integers.

Of course, it closed under
operation of positive integer
division by 2.



Def. of complete binary tree

{1! 2’ 3! 4! 5’ 6! 7! 8!




Def. of complete binary tree

{1,2, 3,4,5,6,7,8,9,10,11,12, 13}

89101112




Definitions of binary tree

3. A binary tree Is any of the
following:

(1) the empty set



Definitions of binary tree

(1) the root (a node) with two
subtrees attached to it. (If
the attached subtree Is
non-empty then the attachment
has a form of an edge that goes
from the root of the tree to the
root of the subtree in question.)



Definitions of binary tree

(it1)) Nothing else is




Definitions of binary tree

Binary tree - non-empty

left subtree right subtree



Definitions of binary tree

Boxes represent empty subtrees



(%3 Binary Trees

LEARNING OBJECTIVES

1. To become familiar with the definition of binary frees.

2. To learn the definition of extended and complete binary frees.

3. To prepare for the discussion of binary tree representations and binary
tree operations in the remainder of the chapter.
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Figure 8.3 An Extended

Binary Tree
Binary tree 1 Binary tree 2 Binary tree 3 Figure 8.4 Complete and
Incomplete Binary Trees
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S A Sequential Binarj:r Tree Representation

LEARNING OBJECTIVES

1. To learn about one of the important sequential representations of com-

plete binary trees: _
2. To learn how 16 find the parents and children ‘of nodes in this sequential. ._

renresemt_:ttio'_n. o ’ 3 . s
2. . f . H o S S '
3. To qurh the conditions for a node being a root, a leaf, and‘an internal
node in this representation. '
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Figure 8.6 Sequential Representation of a Complete Binary Tree (with A[O] Empty]
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m An Application—Heaps and Priority Queues
LEARNING OBJECTIVES |

. To learn how to represent a heap using a contiguous sequential repre-

sentafion.
2. To learn how heaps can serve as efficient representafions for priority

queues. ‘
3. To discover some important mathematical properties of heaps that will

be used later.




Level-by-level complete tree







Definition of heap

; _-A heup is g ce::rnpiele bmmr}r ‘rree wuh miues stcrred in |’r5 nc}des su-::h
- _..’rhu’r no. ch|1r:f hm a ﬂmlue grecﬂer ﬂ'u::n 1he w.:lue c.f |Ts pr;:ren’r |

Figure 8.8 An Example of @ Heap




Priority Queue (heap)

// assigns it to be the value of the variable X

o
I * The public interface for the PriorityQueue class contains
l *  the following method calls. Here, let PQ be a variable having
1 * a PriorityQueue object as its value, let X be a variable that
5 | *  contains a priority queue item, and let n be an integer variable.

| */ '
|
|  PQ = new PriorityQueue(); // creates an initially empty priority queue PQ
|

10 | n=PQ.size(); // returns the number of items in PQ and
I // stores it in the integer variable n
| .
| PQ.insert(X); // puts X into PQ
i

15 | X =PQ.remove( ); // removes the highest priority item from PQ and
|
|

.

Program 5.1 Informal Interface for a PriorityQueue Class



Priority Queue (heap)

 public class PriorityQueue {

aT=F=1a - 1 M = ial=1
e A b | ¥ (W

private int count; //actual numbe
private int capacity; //the size of
private int capacitylncrement;
private int[] itemArray;




Priority Queue (heap)

bubllc PrlorltyOue
count=0;
capacity=10;

capacitylncrement=2;
itemArray=new int[capacity + 1]; //itemAr:




Priority Queue (heap)

public void insert(int newItem)

{

if(count==capacity) //no

{

capacity*=capacitylncrement;
int[] tempArray = new int[capacity + 1];
for (int 1 = 1; 1 <= count; i++)

{

tempArray[1i] = itemArray[i];
cnt2.incr();

}

itemArray = tempArray;




Priority Queue (heap)

count++;

int 1 = count;

while ((1 > 1) & (cnt3.incr() & (newltem > itemArray[i/2])))
{

itemArray[i] = itemArray[i/2];
cnt.incr();
i=1/2;




Priority Queue (heap)

f I, "'I'I:"I'I: = 1 &

i{emﬂrray[i] = newltem;

cnt.incr();




Priority Queue (heap)

public int remove()

{
1f (count==0) return -9999;

aT=1 = e =y == _—
" | WA —

int maxItem = itemArray[l]; //the ri
int demotee count;

count--;

int 1 = 1;

boolean demoted = true;




Priority Queue (heap)

while ((2*1 <= count) && demoted)
{
int j = 2*%i; // first child
if ((j < count) & (cnt3.incr() & (itemArray[j] <« itemArray[j + 1]))) j++
1f (cnt3.incr() & (itemArray[j] > itemArray[demotee])) //demote patch
{

itemArray[i] = itemArray[j]; //promote it
cnt.incr();




Priority Queue (heap)

}

else

{
}

demoted = false;

}

itemArray[i] = itemArray[demotee];
cnt.incr();
itemArray[demotee] = 0;




Priority Queue (heap)

if ((count < capacity / capacityIncrement) && (10 <= capacity / capacitylncrs
{
capacity/=capacityIncrement;
int[] tempArray = new int[capacity+l];
for (1 = 1; 1 <= count; i++)

{

tempArray[i] = itemArray[i];
cnt2.incr();

}

itemArray = tempArray;

}

return maxItem;




Ex A "Deta 37 K .
conptth - :'M w Jave ¢ by

how tfo sort using
priority queues
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void priorityQueueSon(GomparisonKey[ )

i
inti; A et i be jan integer array index variable
« intn = A.length; f n be the jength of the array A to be sorted

|

I

1

1

|

| .
l PriorityQueue PQ = new Pr.
|

|

1

l

|

|

- O(') let PQ be initially empty
[} i
for (i = 0; i < n; i++) PQ.insert(Alil); » // put A's items into PQ
g(it!
for (i = n—1; i >=0; i—) Ali] = PQ.remove( ); // remove PQ’s items
// and put them in A
b N |
rogram 5.2 A Priority Queue Sorting Method w-‘,# ce s (
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= Of{tmegea)s 7 |

JOUn-max (FC5), 9(m))]




Priority Queue (heap)

http:/lupload.wikimedia.org/wikipedialcommons/4/4d/Heapsort-example.gif



Performance of heap

Insert to a heap with n nodes:
Worst-case

T(n) € ©(log n)



Performance of heap

Delete from a heap with n nodes:
Worst-case

T(n) € ©(log n)
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inti; A et i be jan integer array index variable
« intn = A.length; f n be the jength of the array A to be sorted

|
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|
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l
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- O(') let PQ be initially empty
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for (i = 0; i < n; i++) PQ.insert(Alil); » // put A's items into PQ
g(it!
for (i = n—1; i >=0; i—) Ali] = PQ.remove( ); // remove PQ’s items
// and put them in A
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Performance of heap

PriorityQueueSort:
Worst-case

T(n) € ®(n log n)



Tree Traversal

Pre-order
In-order
Post-order

Level-by-level



Tree Traversal

Animati

http://www.cosc.canterbury.ac.nz/mukundan/dsal/



http://www.cosc.canterbury.ac.nz/mukundan/dsal/BTree.html
http://www.cosc.canterbury.ac.nz/mukundan/dsal/BTree.html

Tree Traversal

void preOrderTraversaI(TreeNode 1) 4

Stack S = new Stack( ); // let S be an initially empty stack
TreeNode N; /I N points to nodes during traversal
5
S.push(T); // push the pointer T onto the empty stack S

while ( !1S.empty( ) ) {

10 N = (TreeNode)S.pop( ); // pop top pointer of S into N
if (N !=null) {
System.out.print(N.info); // print N's info field
S.push(N.rlink); // push the right pointer onto S

15 S.push(N.llink); // push the left pointer onto S

}

I
I
I
|
I
I
I
I
I
|
|
I
I
I
I
I
|
I
I

}
Program 8.27 PreOrder Traversal of an Expression Tree Using a Stack




Tree Traversal

void traverse(TreeNode T, int traversalOrder) {

/* to visit T’s nodes in the order specified by the */
/* traversalOrder parameter */
5

if (T 1= null) { // if T == null, do nothing
if ( traversalOrder == PRE_ORDER) {

visit(T);
traverse(T .llink, PRE_ORDER);
traverse(T.rlink, PRE_ORDER);

traverse(T.llink, IN_ORDER);
visit(T);
traverse(T.rlink, IN_ORDER);

} else if ( traversalOrder == POST_ORDER) {

traverse(T.llink, POST_ORDER);
traverse(T.rlink, POST_ORDER);

visit(T);
25
}

|
|
|
|
|
|
|
I
I
|
|
|
|
| } else if ( traversalOrder == IN_ORDER ) {
I
|
|
I
|
|
I
I
|
I
|
|
I

}

Program 8.26 Generalized Recursive Traversal Method




Tree Traversal

void levelOrderTraversal(TreeNode T) {

Queue Q = new Queue( ); // let Q be an initially empty queue

TreeNode N; // N points to nodes during traversal
D

Q.insert(T); // insert the pointer T into queue Q

while (! Q.empty()) {

// and put it into N

if (N !=null') {
System.out.print(N.info); // print N's info field
Q.insert(N.llink) // insert left pointer on rear of Q

15 Q.insert(N.rlink) // insert right pointer on rear of Q

}

I
|
|
I
|
I
|
I
|
10 | N = (TreeNode) Q.remove( ); // remove first pointer of Q
|
|
I
I
I
|
|
I

}
Program 8.28 LevelOrder Binary Tree Traversal Using Queues




BS Tree

Definition of binary search tree.

A binary tree T is called a binary
search tree if, and only |If,

In-order traversal with listing of T
lists the nodes of T In an
Increasing order.



BS Tree

Exercl

http://nova.umuc.edu/~jarc/idsv/lesson4.



http://nova.umuc.edu/~jarc/idsv/lesson4.html
http://nova.umuc.edu/~jarc/idsv/lesson4.html

Delete




Delete(13)




Delete(13)




Delete(0)




Delete(0)




Delete(20)




Delete(20)




Delete(20)




Delete(20)




BS Tree

FACT 1
T is a binary search tree if, and only If,
- T is empty, or

- The left and the right subtree of T are both
binary search trees, and no node in the left
subtree is larger than the root of T, and no
node in the right subtree is smaller than the
root of T.



BS Tree

FACT 2
The number of comparisons while
successfully inserting a new value X into a
binary search tree is equal to the level

level(x)

of the newly inserted node with value Xx.









BS Tree

In particular, the number of comparisons while
building a binary search tree T
as a sequence of consecutive insertions Is:

level(x,) + level(x,) + ... + level(x ),

where level(x) is the level number to which x.
belongs.






BS Tree

FACT 3

The number of comparisons while
unsuccessfully searching for a value X in a
binary search tree T is equal to the number of

comparisons while successfully
Inserting X into T.












BS Tree
FACT 4

The number of comparisons while
successfully searching for value x in a
binary search tree is equal to 1 plus the
number of comparisons made while
inserting X into T,

1 + level(x)

that is, one plus the level of the first node that
contains that value.









Performance of BS Trees

7 ) f £
s !rr F¥ f1ll #

I
A




Performance of BS Trees




Performance of BS Trees




Performance of BS Trees
















Per







To be continued ...

INn Lecture
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