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Definitions of tree

1. A tree is an acyclic and 
connected graph. 

If it's non-empty then one of its 
nodes is designated as the root.



  

Definitions of tree

1. A tree is an acyclic and 
connected graph. 

If it's non-empty then one of its 
nodes is designated as the root.



  

Definitions of tree

2. A tree is a set of sequences 
closed under operation of taking 
a begining subsequence. 

(This is sometimes refered to as a 
"tree of paths".)



  

Definitions of tree

Example: 

{<>, <0>, <1>, <0,0>, 
<1,0>,<1,1>,<1,0,1>}



  

Definitions of tree

{<>, <0>, <1>, <0,0>, 
<1,0>,<1,1>,<1,0,1>}



  

Definitions of tree

3. A finite tree is any of the 
following:



  

Definitions of tree

3. A finite tree is any of the 
following:

(i) the empty set



  

Definitions of tree

(ii) the root (a node) with some 
number of finite subtrees 
attached to it. (If the attached 
subtree is non-empty then the 
attachment has a form of an 
edge that goes from the root of 
the tree to the root of the 
subtree in question.)



  

Definitions of tree

(iii) Nothing else is a finite tree.
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Definitions of tree

Boxes represent empty subtrees



  

Definitions of binary tree

A tree whose root has at most 
two edges incident on it and any 
node other than the root has at 
most three edges incident on it.



  

Definitions of binary tree

1. A tree is an acyclic and 
connected graph. 

If it's non-empty then one of its 
nodes is designated as the root.



  

Definitions of binary tree

2. A binary tree is a set of binary 
sequences closed under 
operation of taking a begining 
subsequence. 



  

Definitions of binary tree

Example: 

{<>, <0>, <1>, <0,0>, 
<1,0>,<1,1>,<1,0,1>}



  

Definitions of binary tree

{<>, <0>, <1>, <0,0>, 
<1,0>,<1,1>,<1,0,1>}



  

Definitions of binary tree

2a. A binary tree is a set of 
positive integers closed under 
operation of positive integer 
division by 2. 



  

Definitions of binary tree

{1, 2, 3, 4, 6, 7,13}

 

 



  

Definitions of binary tree

{1, 2, 3, 4, 6, 7,13}

Was: {<>, <0>, <1>, <0,0>, 
<1,0>,<1,1>,<1,0,1>}



  

Definitions of binary tree

{1, 2, 3, 4, 6, 7,13}

Was: {<>, <0>, <1>, <0,0>, 
<1,0>,<1,1>,<1,0,1>}

Is: {<1>, <1,0>, <1,1>, <1,0,0>, 
<1,1,0>,<1,1,1>,<1,1,0,1>}



  

Definitions of binary tree

{1, 2, 3, 4, 6,7,13}



  

Definitions of binary tree

{1, 2, 3, 4, 6,7,13}



  

Def. of complete binary tree

2b. A complete binary tree is a set 
of first n positive integers.

  



  

Def. of complete binary tree

2b. A complete binary tree is a set 
of first n positive integers.

 
Of course, it closed under 

operation of positive integer 
division by 2. 



  

Def. of complete binary tree

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,13}

 

 



  

Def. of complete binary tree

{1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12, 13}



  

Definitions of binary tree

3. A finite binary tree is any of the 
following:

(i) the empty set



  

Definitions of binary tree

(ii) the root (a node) with two 
finite subtrees attached to it. (If 
the attached subtree is 
non-empty then the attachment 
has a form of an edge that goes 
from the root of the tree to the 
root of the subtree in question.)



  

Definitions of binary tree

(iii) Nothing else is a finite tree.



  

Definitions of binary tree



  

Definitions of binary tree

Boxes represent empty subtrees
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Level-by-level complete tree
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Heap
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Definition of heap

I



  

Priority Queue (heap)
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Priority Queue (heap)
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Priority Queue (heap)
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Priority Queue (heap)
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Priority Queue (heap)
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Priority Queue (heap)

I
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Priority Queue (heap)

http://upload.wikimedia.org/wikipedia/commons/4/4d/Heapsort-example.gif



  

Performance of heap

Insert to a heap with n nodes:

Worst-case 

T(n) ∈  (log n)



  

Performance of heap

Delete from a heap with n nodes:

Worst-case 

T(n) ∈  (log n)
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Performance of heap

PriorityQueueSort:

Worst-case 

T(n) ∈  (n log n)



  

Tree Traversal

Pre-order

In-order

Post-order

Level-by-level



  

Tree Traversal

Animation

http://www.cosc.canterbury.ac.nz/mukundan/dsal/BTree.html

http://www.cosc.canterbury.ac.nz/mukundan/dsal/BTree.html
http://www.cosc.canterbury.ac.nz/mukundan/dsal/BTree.html


  

Tree Traversal
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Tree Traversal
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BS Tree

Definition of binary search tree.

A binary tree T is called a binary 
search tree if, and only if, 

in-order traversal with listing of T 
lists the nodes of T in an 
increasing order.



  

BS Tree

Exercise

http://nova.umuc.edu/~jarc/idsv/lesson4.html

http://nova.umuc.edu/~jarc/idsv/lesson4.html
http://nova.umuc.edu/~jarc/idsv/lesson4.html


  

Delete



  

Delete(13)



  

Delete(13)



  

Delete(0)



  

Delete(0)



  

Delete(20)



  

Delete(20)



  

Delete(20)

21



  

Delete(20)



  

BS Tree

FACT 1

T is a binary search tree if, and only if, 

- T is empty, or

- The left and the right subtree of T are both 
binary search trees, and no node in the left 
subtree is larger than the root of T, and no 
node in the right subtree is smaller than the 
root of T.



  

BS Tree

FACT 2

The number of comparisons while 
successfully inserting a new value x into a 

binary search tree is equal to the level 

level(x) 

of the newly inserted node with value x.



  

BS Tree

FACT 2

The number of comparisons while 
successfully inserting a new value x into a 

binary search tree is equal to the level 

level(x) 

of the newly inserted node with value x.



  

BS Tree

FACT 2

The number of comparisons while 
successfully inserting a new value x into a 

binary search tree is equal to the level 

level(x) 

of the newly inserted node with value x.



  

BS Tree

In particular, the number of comparisons while 
building a binary search tree T 

as a sequence of consecutive insertions is: 

level(x
1
) + level(x

2
) + ... + level(x

n
),

where level(x
i
) is the level number to which x

i
 

belongs.



  

BS Tree

In particular, the number of comparisons while 
building a binary search tree T 

as a sequence of consecutive insertions is: 

level(x
1
) + level(x

2
) + ... + level(x

n
),

where level(x
i
) is the level number to which x

i
 

belongs.



  

BS Tree

FACT 3

The number of comparisons while 
unsuccessfully searching for a value x in a 

binary search tree T is equal to the number of 
comparisons while successfully 

inserting x into T.



  

BS Tree

FACT 3

The number of comparisons while 
unsuccessfully searching for a value x in a 

binary search tree T is equal to the number of 
comparisons while successfully 

inserting x into T.



  

BS Tree

FACT 3

The number of comparisons while 
unsuccessfully searching for a value x in a 

binary search tree T is equal to the number of 
comparisons while successfully 

inserting x into T.



  

BS Tree

FACT 3

The number of comparisons while 
unsuccessfully searching for a value x in a 

binary search tree T is equal to the number of 
comparisons while successfully 

inserting x into T.



  

BS Tree
FACT 4

The number of comparisons while 
successfully searching for value x in a 
binary search tree is equal to 1 plus the 
number of comparisons made while 
inserting x into T, 

1 + level(x)

that is, one plus the level of the first node that 
contains that value.



  

BS Tree
FACT 4

The number of comparisons while 
successfully searching for value x in a 
binary search tree is equal to 1 plus the 
number of comparisons made while 
inserting x into T, 

1 + level(x)

that is, one plus the level of the first node that 
contains that value.



  

BS Tree
FACT 4

The number of comparisons while 
successfully searching for value x in a 
binary search tree is equal to 1 plus the 
number of comparisons made while 
inserting x into T, 

1 + level(x)

that is, one plus the level of the first node that 
contains that value.



  

Performance of BS Trees

F
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To be continued ...

in Lecture Notes ...
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