CSC 311-01

QUIZ 2

Spring 2015

5 min. 5 questions

This is a CLOSED textbook quiz.

USE SCANTRON FORM NO. 882-E LIKE THIS:

	PART 1				4	LSC	NO.2	PINC	LON	(Y)		"TO USE SUBJECTIVE SCORE FEATURE:							_		FO	RM	NO	88	2-E		1	MAC	HINE	E O/	VLY				Т	EST	FRE	СО	RD						
E					MAKE DARK MARKS ERASE COMPLETELY TO CHANGE				2			Mark total possible subjective points Only one mark per line on key				NAME				Your name he					ere	ere			PART 1																
ARI												• 163 points maximum						SUBJECT			C	Course No			0				Fill			PART 2													
						· EXAMPLE A B -				- 0	0.08	8		AMPLE DI UDENT ORE:		Y (8)	× ×	-		n 0	DATE				Date				PERIOD		Semester			er	TOTAL										
MLY	-09-	-10-	- 0	KEY	- tu	- 60	m I	- C	ı ü	E.	E		i i	E	En	(H)	E 10	i iii	E-	H	03	r u	, n	E	E	 	EB	ű ű	1 6	E L	il u	ıώ	iu.	- G	- Eu	2 0	u w	- 63	· ·	£ 3	i ii	i ii	i ii	(shy	20
			10 012	×	, ed	0	0 10	7 70	0.0	- ng-	- ud		-	1 10	, rd	. D.			-	Da c	-0	0	0-0		-0	200		0	0		D . C		- Q	0 0	000	70	Do	0	100	500	0.0	:0:	6 6	To Sun	
			2.		20		- 0-	-0		000	100			10		7 707	0	0	0	-C- E	7 707	0	ن د	- 70-			10	10		-0,	0		-0-	0 0	0	0	5 5	101	5	5 5	-		50	re No	, Sa.
STRUC		0	000		- Z-	- B	-82	0 0	6	EB.	-B-	0 0	B	8	rB1	-8-	183		000	rB.	· B ·	8 4	9	-B	- 8	0 10	- EB-1	6	S S		8 8	0	-8-	0 0	9	-81	0 0	187	T 8 1	9 6	B	8	8 8	ures G	ficand
₹ .	100	c 200°	0 40	0	- 82		CA.	- A -	· A	"A"	-W	A	V V	A	-A-	r.A.	- A-	A	- V	CAS	· V	CAS	A	- 4.3	A	A	-W-	V	. 4	A	rA.	cA.	"A"	Y	CAS	- V	A	- A-	FA.	- A-	×	· A.	-A-	Orly Sea	Sections .
					-	O.	60 .	4 1	9	7	00	2 5	2 5	12	13	14	15	14	100	19	20	23	33 6	24	52	27	28	50	3.1	32	33	35	36	37	39	40	42	43	44	45	47	48	50		2.5

Select one answer to each question.

- 1. What is an Abstract Data Type? Select exactly one answer.
 - (A) A class based on abstract concepts borrowed from discrete mathematics.
 - (B) A type of data that does not have concrete implementation.
 - (C) A collection of methods with well-defined functionality that work on some unspecified data structure.
 - (D) A collection of abstract methods that work on some specific data structure.
 - (E) None of the above.
- 2. Give the big- Θ characterization of the average number of copyings per insertion needed to "resize" an array while consecutively inserting n elements into a priority queue implemented as an array if the additive capacity increment is used. Select exactly one answer.
 - (A) $\Theta(1)$
 - (B) $\Theta(n)$
 - (C) $\Theta(n^2)$
 - (D) $\Theta(2^n)$
 - (E) None of the above.

- 3. Give the big- Θ characterization of the *total number* of copyings needed to "resize" an array while consecutively inserting n elements into a priority queue implemented as an array if the <u>multiplicative</u> capacity increment is used. Select exactly one answer.
 - (A) $\Theta(1)$
 - (B) $\Theta(n)$
 - (C) $\Theta(n \log n)$
 - (D) $\Theta(n^2)$
 - (E) None of the above.
- 4. Assumming that PQ.insert(A[i]) takes f(i) time and A[i]=PQ.remove() takes g(i+1) time, where f and g are increasing functions, give the best big "Oh" characterization of the worst-case running time of the following code:

```
for (int i = 0; i < n; i++) PQ.insert(A[i]);
for (int i = n-1; i >= 0; i-) A[i]=PQ.remove();
Select exactly one answer.

(A) O(n^2)

(B) O(\max(f(n), g(n)))

(C) O(n \max(f(n), g(n)))

(D) O(\max(f(n) + g(n)))
```

- (E) None of the above.
- 5. Assumming that count = n at the time of call, give the best big "Oh" characterization of the worst-case running time of the following method. Select exactly one answer.

```
public void insert(int newItem) {
   int insertPosition = count;
   while ((insertPosition > 0) &&
     (itemArray[insertPosition - 1] > newItem)) {
        insertPosition-;
        itemArray[insertPosition+1] = itemArray[insertPosition];
   }
   itemArray[insertPosition] = newItem;
   count++;
}
```

- (A) O(1)
- (B) $O(\log n)$
- (C) O(n)
- (D) $O(n^2)$
- (E) None of the above.