
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 11: File System
Implementation

11.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

 Chapter 11: File System Implementation

 File-System Structure

 File-System Implementation

 Directory Implementation

 Allocation Methods

 Free-Space Management

 Efficiency and Performance

 Recovery

 NFS

 Example: WAFL File System

11.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To describe the details of implementing local file systems and directory
structures

 To describe the implementation of remote file systems

 To discuss block allocation and free-block algorithms and trade-offs

11.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

File-System Structure

 File structure

 Logical storage unit: logical block

 NOTE: The smallest-addressable unit of information is block (a.k.a.
physical block) which for a hard disk the textbook refers to as a
sector (in the meaning of track sector). Thus logical block is a
sequence of physical blocks.

 Collection of related information

 File system organized into layers

 File system resides on secondary storage (disks)

 Provides efficient and convenient access to disk by allowing data to be
stored, located retrieved easily

 File control block – storage structure consisting of information about a file

 Device driver controls the physical device

11.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A Typical File Control Block

11.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A Typical File Control Block

11.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Directory Implementation

 Linear list of file names with pointer to the data blocks.

 simple to program

 time-consuming to execute

 Hash Table – linear list with hash data structure.

 decreases directory search time

 collisions – situations where two file names hash to the same location

 fixed size

11.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Allocation Methods

 An allocation method refers to how disk blocks are allocated for files:

 Contiguous allocation

 Linked allocation

 Indexed allocation

11.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 Each file occupies a set of contiguous blocks on the disk

 Simple – only starting location (block #) and length (number of
blocks) are required

 Random access

 Fast transfer – work well with DMA

 Potentially wasteful of space – may cause external fragmentation
problem.

 Files cannot grow unrestrictedly

11.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation of Disk Space

11.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linked Allocation

 Each file occupies a “linked list” of blocks on the disk

 Versatile and relatively simple

 Sequential access – Θ(N)

 Not so fast transfer – may require many calls to DMA

 Good utilization of space – no external fragmentation problem.

 Files can grow unrestrictedly

 Relatively unreliable and prone to failures

11.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linked Allocation

 Each file is a linked list of disk blocks: blocks may be scattered anywhere on
the disk.

pointerblock =

11.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linked Allocation

11.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

File-Allocation Table

11.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indexed Allocation

 Each file is represented as a B-tree of blocks on the disk

 Allows fast access to blocks in large files

 Semi-random access – Θ(log N)

 Not so fast transfer – may require many calls to DMA

 Good utilization of space – no external fragmentation problem.

 Files can grow unrestrictedly

 Extra space needed to implement the B-tree structure

11.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indexed Allocation

 Brings all pointers together into the index block

 Logical view

index table

11.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Indexed Allocation

11.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indexed Allocation – Mapping (Cont.)



outer-index

index table file

11.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Combined Scheme: UNIX UFS (4K bytes per block)

11.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Free-Space Management

 Bit vector (n blocks)

…

0 1 2 n-1

bit[i] =





0  block[i] free

1  block[i] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

11.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Free-Space Management (Cont.)

 Bit map requires extra space

 Example:

block size = 212 bytes

disk size = 230 bytes (1 gigabyte)

n = 230/212 = 218 bits = 215 bytes = 32 kilobytes

 Easy to get contiguous files

 Linked list (free list)

 Cannot get contiguous space easily

 No waste of space

 Grouping

 Counting

11.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linked Free Space List on Disk

11.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Free-Space Management (Cont.)

 Grouping
 Modify linked list to store address of next n-1 free blocks in first

free block, plus a pointer to next block that contains free-block-
pointers (like this one)

 Counting
 Because space is frequently contiguously used and freed, with

contiguous-allocation allocation, extents, or clustering
 Keep address of first free block and count of following free

blocks
 Free space list then has entries containing addresses and

counts

11.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Efficiency and Performance

 Efficiency dependent on:

 disk allocation and directory algorithms

 types of data kept in file’s directory entry

 Performance

 disk cache – separate section of main memory for frequently used
blocks

 free-behind and read-ahead – techniques to optimize sequential access

 improve PC performance by dedicating section of memory as virtual
disk, or RAM disk

11.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

The Sun Network File System (NFS)

The remainder of this deck is optional for all students

 An implementation and a specification of a software system
for accessing remote files across LANs (or WANs)

 The implementation is part of the Solaris and SunOS
operating systems running on Sun workstations using an
unreliable datagram protocol (UDP/IP protocol and Ethernet

11.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NFS (Cont.)

 Interconnected workstations viewed as a set of independent machines
with independent file systems, which allows sharing among these file
systems in a transparent manner

 A remote directory is mounted over a local file system directory
 The mounted directory looks like an integral subtree of the local

file system, replacing the subtree descending from the local
directory

 Specification of the remote directory for the mount operation is
nontransparent; the host name of the remote directory has to be
provided
 Files in the remote directory can then be accessed in a

transparent manner
 Subject to access-rights accreditation, potentially any file system

(or directory within a file system), can be mounted remotely on top
of any local directory

11.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NFS (Cont.)

 NFS is designed to operate in a heterogeneous environment of
different machines, operating systems, and network architectures;
the NFS specifications independent of these media

 This independence is achieved through the use of RPC primitives
built on top of an External Data Representation (XDR) protocol used
between two implementation-independent interfaces

 The NFS specification distinguishes between the services provided
by a mount mechanism and the actual remote-file-access services

11.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Three Independent File Systems

11.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Mounting in NFS

Mounts Cascading mounts

11.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NFS Mount Protocol

 Establishes initial logical connection between server and client

 Mount operation includes name of remote directory to be mounted
and name of server machine storing it

 Mount request is mapped to corresponding RPC and forwarded
to mount server running on server machine

 Export list – specifies local file systems that server exports for
mounting, along with names of machines that are permitted to
mount them

 Following a mount request that conforms to its export list, the
server returns a file handle—a key for further accesses

 File handle – a file-system identifier, and an inode number to
identify the mounted directory within the exported file system

 The mount operation changes only the user’s view and does not
affect the server side

11.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NFS Protocol

 Provides a set of remote procedure calls for remote file operations.
 The procedures support the following operations:

 searching for a file within a directory
 reading a set of directory entries
 manipulating links and directories
 accessing file attributes
 reading and writing files

 NFS servers are stateless; each request has to provide a full set
of arguments (NFS V4 is just coming available – very different,
stateful)

 Modified data must be committed to the server’s disk before
results are returned to the client (lose advantages of caching)

 The NFS protocol does not provide concurrency-control
mechanisms

11.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Three Major Layers of NFS Architecture

 UNIX file-system interface (based on the open, read, write, and
close calls, and file descriptors)

 Virtual File System (VFS) layer – distinguishes local files from
remote ones, and local files are further distinguished according to
their file-system types

 The VFS activates file-system-specific operations to handle
local requests according to their file-system types

 Calls the NFS protocol procedures for remote requests

 NFS service layer – bottom layer of the architecture

 Implements the NFS protocol

11.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schematic View of NFS Architecture

11.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NFS Path-Name Translation

 Performed by breaking the path into component names and
performing a separate NFS lookup call for every pair of
component name and directory vnode

 To make lookup faster, a directory name lookup cache on the
client’s side holds the vnodes for remote directory names

11.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NFS Remote Operations

 Nearly one-to-one correspondence between regular UNIX system
calls and the NFS protocol RPCs (except opening and closing
files)

 NFS adheres to the remote-service paradigm, but employs
buffering and caching techniques for the sake of performance

 File-blocks cache – when a file is opened, the kernel checks with
the remote server whether to fetch or revalidate the cached
attributes

 Cached file blocks are used only if the corresponding cached
attributes are up to date

 File-attribute cache – the attribute cache is updated whenever new
attributes arrive from the server

 Clients do not free delayed-write blocks until the server confirms
that the data have been written to disk

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 11

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Now you know
Operating Systems

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

