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 Chapter 11: File System Implementation

 File-System Structure

 File-System Implementation 

 Directory Implementation

 Allocation Methods

 Free-Space Management 

 Efficiency and Performance

 Recovery

 NFS

 Example: WAFL File System



11.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To describe the details of implementing local file systems and directory 
structures

 To describe the implementation of remote file systems

 To discuss block allocation and free-block algorithms and trade-offs
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File-System Structure

 File structure

 Logical storage unit: logical block

 NOTE: The smallest-addressable unit of information is block (a.k.a. 
physical block) which for a hard disk the textbook refers to as a 
sector (in the meaning of track sector). Thus logical block is a 
sequence of physical blocks.

 Collection of related information

 File system organized into layers

 File system resides on secondary storage (disks)

 Provides efficient and convenient access to disk by allowing data to be 
stored, located retrieved easily

 File control block – storage structure consisting of information about a file

 Device driver controls the physical device 
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A Typical File Control Block
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A Typical File Control Block
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Directory Implementation

 Linear list of file names with pointer to the data blocks.

 simple to program

 time-consuming to execute

 Hash Table – linear list with hash data structure.

 decreases directory search time

 collisions – situations where two file names hash to the same location

 fixed size
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Allocation Methods

 An allocation method refers to how disk blocks are allocated for files:

 Contiguous allocation

 Linked allocation

 Indexed allocation



11.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 Each file occupies a set of contiguous blocks on the disk

 Simple – only starting location (block #) and length (number of 
blocks) are required

 Random access

 Fast transfer – work well with DMA

 Potentially wasteful of space – may cause external fragmentation 
problem. 

 Files cannot grow unrestrictedly
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Contiguous Allocation of Disk Space
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Linked Allocation

 Each file occupies a “linked list” of blocks on the disk

 Versatile and relatively simple

 Sequential access – Θ(N)

 Not so fast transfer – may require many calls to DMA

 Good utilization of space – no external fragmentation problem. 

 Files can grow unrestrictedly

 Relatively unreliable and prone to failures
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Linked Allocation

 Each file is a linked list of disk blocks: blocks may be scattered anywhere on 
the disk.

pointerblock      =
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Linked Allocation
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File-Allocation Table
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Indexed Allocation

 Each file is represented as a B-tree of blocks on the disk

 Allows fast access to blocks in large files

 Semi-random access – Θ(log N)

 Not so fast transfer – may require many calls to DMA

 Good utilization of space – no external fragmentation problem. 

 Files can grow unrestrictedly

 Extra space needed to implement the B-tree structure
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Indexed Allocation

 Brings all pointers together into the index block

 Logical view

index table
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Example of Indexed Allocation



11.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indexed Allocation – Mapping (Cont.)



outer-index

index table file
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Combined Scheme:  UNIX UFS (4K bytes per block)
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Free-Space Management

 Bit vector   (n blocks)

…

0 1 2 n-1

bit[i] =





0  block[i] free

1   block[i] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit
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Free-Space Management (Cont.)

 Bit map requires extra space

 Example:

block size = 212 bytes

disk size = 230 bytes (1 gigabyte)

n = 230/212 = 218 bits = 215 bytes = 32 kilobytes

 Easy to get contiguous files 

 Linked list (free list)

 Cannot get contiguous space easily

 No waste of space

 Grouping 

 Counting
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Linked Free Space List on Disk
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Free-Space Management (Cont.)

 Grouping 
 Modify linked list to store address of next n-1 free blocks in first 

free block, plus a pointer to next block that contains free-block-
pointers (like this one)

 Counting
 Because space is frequently contiguously used and freed,  with 

contiguous-allocation allocation, extents, or clustering
 Keep address of first free block and count of following free 

blocks
 Free space list then has entries containing addresses and 

counts
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Efficiency and Performance

 Efficiency dependent on:

 disk allocation and directory algorithms

 types of data kept in file’s directory entry

 Performance

 disk cache – separate section of main memory for frequently used 
blocks

 free-behind and read-ahead – techniques to optimize sequential access

 improve PC performance by dedicating section of memory as virtual 
disk, or RAM disk
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The Sun Network File System (NFS)

The remainder of this deck is optional for all students

 An implementation and a specification of a software system 
for accessing remote files across LANs (or WANs)

 The implementation is part of the Solaris and SunOS 
operating systems running on Sun workstations using an 
unreliable datagram protocol (UDP/IP protocol and Ethernet
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NFS (Cont.)

 Interconnected workstations viewed as a set of independent machines 
with independent file systems, which allows sharing among these file 
systems in a transparent manner

 A remote directory is mounted over a local file system directory
 The mounted directory looks like an integral subtree of the local 

file system, replacing the subtree descending from the local 
directory

 Specification of the remote directory for the mount operation is 
nontransparent; the host name of the remote directory has to be 
provided
 Files in the remote directory can then be accessed in a 

transparent manner
 Subject to access-rights accreditation, potentially any file system 

(or directory within a file system), can be mounted remotely on top 
of any local directory
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NFS (Cont.)

 NFS is designed to operate in a heterogeneous environment of 
different machines, operating systems, and network architectures; 
the NFS specifications independent of these media

 This independence is achieved through the use of RPC primitives 
built on top of an External Data Representation (XDR) protocol used 
between two implementation-independent interfaces

 The NFS specification distinguishes between the services provided 
by a mount mechanism and the actual remote-file-access services 
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Three Independent File Systems
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Mounting in NFS 

Mounts Cascading mounts
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NFS Mount Protocol

 Establishes initial logical connection between server and client

 Mount operation includes name of remote directory to be mounted 
and name of server machine storing it

 Mount request is mapped to corresponding RPC and forwarded 
to mount server running on server machine 

 Export list – specifies local file systems that server exports for 
mounting, along with names of machines that are permitted to 
mount them 

 Following a mount request that conforms to its export list, the 
server returns a file handle—a key for further accesses

 File handle – a file-system identifier, and an inode number to 
identify the mounted directory within the exported file system

 The mount operation changes only the user’s view and does not 
affect the server side 
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NFS Protocol

 Provides a set of remote procedure calls for remote file operations. 
 The procedures support the following operations:

 searching for a file within a directory 
 reading a set of directory entries 
 manipulating links and directories 
 accessing file attributes
 reading and writing files

 NFS servers are stateless; each request has to provide a full set 
of arguments  (NFS V4 is just coming available – very different, 
stateful)

 Modified data must be committed to the server’s disk before 
results are returned to the client (lose advantages of caching)

 The NFS protocol does not provide concurrency-control 
mechanisms
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Three Major Layers of NFS Architecture 

 UNIX file-system interface (based on the open, read, write, and 
close calls, and file descriptors)

 Virtual File System (VFS) layer – distinguishes local files from 
remote ones, and local files are further distinguished according to 
their file-system types

 The VFS activates file-system-specific operations to handle 
local requests according to their file-system types 

 Calls the NFS protocol procedures for remote requests

 NFS service layer – bottom layer of the architecture

 Implements the NFS protocol
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Schematic View of NFS Architecture 
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NFS Path-Name Translation

 Performed by breaking the path into component names and 
performing a separate NFS lookup call for every pair of 
component name and directory vnode

 To make lookup faster, a directory name lookup cache on the 
client’s side holds the vnodes for remote directory names
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NFS Remote Operations

 Nearly one-to-one correspondence between regular UNIX  system 
calls and the NFS protocol RPCs (except opening and closing 
files)

 NFS adheres to the remote-service paradigm, but employs 
buffering and caching techniques for the sake of performance 

 File-blocks cache – when a file is opened, the kernel checks with 
the remote server whether to fetch or revalidate the cached 
attributes

 Cached file blocks are used only if the corresponding cached 
attributes are up to date

 File-attribute cache – the attribute cache is updated whenever new 
attributes arrive from the server

 Clients do not free delayed-write blocks until the server confirms 
that the data have been written to disk
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End of Chapter 11
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Now you know
Operating Systems
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