Chapter 12: 1/0 Systems

Operating System Concepts - 9t Edition Silberschatz, Galvin and Gagne ©2013

&g’;‘f/ Chapter 12: 1/0 Systems

Overview
I/O Hardware
Application I/O Interface

Transforming I/0O Requests to Hardware Operations
STREAMS

|

N

N

B Kernel I/O Subsystem
|

N

B Performance

Operating System Concepts - 9t Edition 13.2 Silberschatz, Galvin and Gagne ©2013

o 4
| AW

g - 1
g Objectives

B Explore the structure of an operating system’s I/O subsystem

B Discuss the principles of I/O hardware and its complexity

B Provide details of the performance aspects of I/O hardware
and software

Operating System Concepts - 9t Edition 13.3 Silberschatz, Galvin and Gagne ©2013

<GP Overview

B |/O management is a major component of operating system
design and operation

® [Important aspect of computer operation

® |/O devices vary greatly

® Various methods to control them

® Performance management

® New types of devices frequent
B Ports, busses, device controllers connect to various devices
B Device drivers encapsulate device details

® Present uniform device-access interface to 1/O subsystem

Operating System Concepts - 9t Edition 13.4 Silberschatz, Galvin and Gagne ©2013

g /0 Hardware

B Incredible variety of I1/O devices
® Storage
® Transmission
® Human-interface

B Common concepts — signals from 1/O devices interface with computer
® Port — connection point for device
® Bus - daisy chain or shared direct access
» PCI bus common in PCs and servers, PCI Express (PCle)
» expansion bus connects relatively slow devices
® Controller (host adapter) — electronics that operate port, bus, device
» Sometimes integrated
» Sometimes separate circuit board (host adapter)
» Contains processor, microcode, private memory, bus controller, etc

Some talk to per-device controller with bus controller, microcode,
memory, etc

Operating System Concepts - 9t Edition 13.5 Silberschatz, Galvin and Gagne ©2013

5P A Typical PC Bus Structure

2008

monitor processor
cache
ggafrgllf:r b”%%%?;i?fry — memory SCSI controller
| PCI bus)
IDE disk controller expansion bus keyboard
interface

@ @ { expansion bus)
@ @ parallel serial
port port

13.6 Silberschatz, Galvin and Gagne ©2013

Operating System Concepts - 9* Edition

=

o
g /O Hardware (Cont.)

B |/O instructions control devices

B Devices usually have registers where device driver places
commands, addresses, and data to write, or read data from
registers after command execution

® Data-in register, data-out register, status register, control
register

® Typically 1-4 bytes, or FIFO buffer
B Devices have addresses, used by

® Direct I/O instructions

® Memory-mapped I/O

» Device data and command registers mapped to
processor address space

» Especially for large address spaces (graphics)

Operating System Concepts - 9t Edition 13.7 Silberschatz, Galvin and Gagne ©2013

/'f‘%

&g‘;ﬁ Device 1/O Port Locations on PCs (partial)

©\\.

I/O address range (hexadecimal) device
000-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF serial port (primary)

Operating System Concepts - 9t Edition 13.8 Silberschatz, Galvin and Gagne ©2013

55 Polling

M For each byte of I/O
1. Read busy bit from status register until O

2. Host sets read or write bit and if write copies data into data-out
register

3. Host sets command-ready bit
4. Controller sets busy bit, executes transfer

5. Controller clears busy bit, error bit, command-ready bit when
transfer done

B Step 1is busy-wait cycle to wait for 1/O from device
® Reasonable if device is fast
® But inefficient if device slow
® CPU switches to other tasks?
» But if miss a cycle data overwritten / lost

2 MW
< i b\
X
= ﬂw\x\\
e W
U AP

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts - 9* Edition 13.9

P
e Interrupts

A\

B Polling can happen in 3 instruction cycles
® Read status, logical-and to extract status bit, branch if not zero
® How to be more efficient if non-zero infrequently?
B CPU Interrupt-request line triggered by I/O device
® Checked by processor after each instruction
B Interrupt handler receives interrupts
® Maskable to ignore or delay some interrupts
B Interrupt vector to dispatch interrupt to correct handler
® Context switch at start and end
® Based on priority
® Some nonmaskable

® Interrupt chaining if more than one device at same interrupt
number

SN \
7 “\(
A A\

Operating System Concepts - 9t Edition 13.10 Silberschatz, Galvin and Gagne ©2013

&%@ Interrupt-Driven I/O Cycle

CPU 1/O controller

Y

device driver initiates I/O \
initiates 110

CPU executing checks for
interrupts between instructions

1 3
1
]
¥ L 2
CPU receiving interrupt, 4 input ready, output
transfers control to - complete, or error
interrupt handler generates interrupt signal
7
5
Y

interrupt handler
processes data,
returns from interrupt

6

CPU resumes
processing of
interrupted task

Operating System Concepts - 9t Edition 13.11 Silberschatz, Galvin and Gagne ©2013

«4%7 Intel Pentium Processor Event-Vector Table

©\\.

vector number description
0 divide error
1 debug exception
2 null interrupt
S breakpoint
4 INTO-detected overflow
5 bound range exception
6 invalid opcode
7 device not available
8 double fault
9 coprocessor segment overrun (reserved)
10 invalid task state segment
11 segment not present
12 stack fault
13 general protection
14 page fault
115 (Intel reserved, do not use)
16 floating-point error
17 alignment check
18 machine check
19-31 (Intel reserved, do not use)
32-255 maskable interrupts

Operating System Concepts - 9t Edition 13.12 Silberschatz, Galvin and Gagne ©2013

gw Interrupts (Cont.)

B Interrupt mechanism also used for exceptions
® Terminate process, crash system due to hardware error
B Page fault executes when memory access error

B System call executes via trap to trigger kernel to execute
request

B Multi-CPU systems can process interrupts concurrently
® |f operating system designed to handle it
B Used for time-sensitive processing, frequent, must be fast

~

1\
S
W

297

‘4
P70

AN\
A

Operating System Concepts - 9t Edition 13.13 Silberschatz, Galvin and Gagne ©2013

S Direct Memory Access

B Used to avoid programmed I/O (one byte at a time) for large data
movement

B Requires DMA controller

B Bypasses CPU to transfer data directly between I/O device and
memory

B OS writes DMA command block into memory
Source and destination addresses

Read or write mode

Count of bytes

Writes location of command block to DMA controller

Bus mastering of DMA controller — grabs bus from CPU
» Cycle stealing from CPU but still much more efficient
® When done, interrupts to signal completion

B Version that is aware of virtual addresses can be even more efficient -
DVMA

2 £ 5)
ﬂ.ﬁ\x\ ,
A A0% 7

Operating System Concepts - 9t Edition 13.14 Silberschatz, Galvin and Gagne ©2013

| AW

«§¥7 Six Step Process to Perform DMA Transfer

1. device driver is told
to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer cache
and decreasing C at address X
untii C =0
DMA/bus/

6. when C = 0, DMA
interrupts CPU to signal

interrupt [+~ CPU memory bus —

controller

X
memory | buffer

transfer completion
! PCI bus
3. disk controller initiates

IDE disk DMA transfer

controller 4. disk controller sends

each byte to DMA
@ @ controller
disk) (disk
Operating System Concepts - 9* Edition 13.15

Silberschatz, Galvin and Gagne ©2013

=

g Application 1/O Interface
B |/O system calls encapsulate device behaviors in generic classes
B Device-driver layer hides differences among I/O controllers from kernel
B New devices talking already-implemented protocols need no extra work
B Each OS has its own I/O subsystem structures and device driver
frameworks
B Devices vary in many dimensions
® Character-stream or block
® Sequential or random-access
® Synchronous or asynchronous (or both)
® Sharable or dedicated
® Speed of operation
® read-write, read only, or write only

Operating System Concepts - 9t Edition 13.16 Silberschatz, Galvin and Gagne ©2013

A Kernel I/O Structure

software

hardware

kernel

kernel /O subsystem

SCSI keyboard | mouse PCI bus floppy ATAPI
device device device oo device device device
driver driver driver driver driver driver
SCSI keyboard | mouse PCl bus floppy ATAPI
device device device see device device device
controller | controller | controller controller | controller | controller
F 3 A A A A A
I 4 L 4 4 A 4 Y Y
ATAPI
scs| floppy- | | devices
T keyboard| | mouse coe PCI bus disk (disks,
drives tapes,
drives)
13.17

Operating System Concepts - 9* Edition

A !@;‘

Silberschatz, Galvin and Gagne ©2013

=

| AW

e Characteristics of 1/O Devices

aspect variation example
datA-taratar ods character terminal
block disk
sequential modem
access method o CD-ROM
synchronous tape
transter schedule asynchronous keyboard
oo dedicated tape
g sharable keyboard
device speed latency
seek time
transfer rate
delay between operations
read only CD-ROM
|/O direction write only graphics controller
read-write disk
Operating System Concepts - 9t Edition 13.18 Silberschatz, Galvin and Gagne ©2013

S

o ot ‘Characteristics of 1/0 Devices (Cont.)

B Subtleties of devices handled by device drivers
B Broadly I/O devices can be grouped by the OS into
® Block I/O
® Character I/O (Stream)
® Memory-mapped file access
® Network sockets

B For direct manipulation of I/O device specific characteristics,
usually an escape / back door

® Unix 1octl() call to send arbitrary bits to a device control
register and data to device data register

: \
’,/ “\(
A 9%

Operating System Concepts - 9t Edition 13.19 Silberschatz, Galvin and Gagne ©2013

g :
L Block and Character Devices

|8 N

B Block devices include disk drives
® Commands include read, write, seek
® Raw I/O, direct /O, or file-system access
® Memory-mapped file access possible

» File mapped to virtual memory and clusters brought via
demand paging

® DMA

B Character devices include keyboards, mice, serial ports
® Commands include get(), put()
® Libraries layered on top allow line editing

AN\
S\

> ‘W\‘D)
A 290%™

Operating System Concepts - 9t Edition 13.20 Silberschatz, Galvin and Gagne ©2013

™

“i" N ,

Network Devices

B Varying enough from block and character to have own
interface

B Linux, Unix, Windows and many others include socket
interface

® Separates network protocol from network operation
® Includes select () functionality

B Approaches vary widely (pipes, FIFOs, streams, queues,
mailboxes)

Operating System Concepts - 9t Edition 13.21 Silberschatz, Galvin and Gagne ©2013

o 4
| AW

) (mj .
=7 Clocks and Timers

Provide current time, elapsed time, timer
Normal resolution about 1/60 second
Some systems provide higher-resolution timers

Programmable interval timer used for timings, periodic
interrupts

ioctl() (on UNIX) covers odd aspects of I/O such as
clocks and timers

Operating System Concepts - 9t Edition 13.22 Silberschatz, Galvin and Gagne ©2013

,,:\,%

‘*aw/ Nonblocking and Asynchronous I/O

A\

B Blocking - process suspended until I/O completed
® Easy to use and understand
® Insufficient for some needs
B Nonblocking - I/O call returns as much as available
® User interface, data copy (buffered I/O)
® Implemented via multi-threading
® Returns quickly with count of bytes read or written

® select() tofindif data ready then read() orwrite()
to transfer

B Asynchronous - process runs while 1/0 executes
® Difficult to use
® |/O subsystem signals process when 1/O completed

\\x
A\

‘*/\Sﬁka\f
A p

Operating System Concepts - 9t Edition 13.23 Silberschatz, Galvin and Gagne ©2013

S5 Two 1/0 Methods

requesting process

kernel user N
——waiting——4

N

device driver

!

< |+ interrupt handler
i

hardware
— data transfer —

time —»
(a)

Synchronous

Operating System Concepts - 9* Edition 13.24

fequesting process } user

J

device driver

|
tinterrupt handler > kernel

H hardware
--(ata transfer —

time —>
(b)

Asynchronous

Silberschatz, Galvin and Gagne ©2013

,.«n“%‘*‘%-k
5» ‘

GF7 Vectored 1/O

B Vectored I/O allows one system call to perform multiple 1/0
operations

B For example, Unix readve() accepts a vector of multiple
buffers to read into or write from

B This scatter-gather method better than multiple individual 1/0
calls

® Decreases context switching and system call overhead
® Some versions provide atomicity

» Avoid for example worry about multiple threads
changing data as reads / writes occurring

Operating System Concepts - 9t Edition 13.25 Silberschatz, Galvin and Gagne ©2013

,ﬂmwl
Lr :

o Kernel 1/O Subsystem

B Scheduling
® Some I/O request ordering via per-device queue
® Some OSs try fairness
® Some implement Quality Of Service (i.e. IPQOS)
B Buffering - store data in memory while transferring between devices
® To cope with device speed mismatch
® To cope with device transfer size mismatch
® To maintain “copy semantics”
® Double buffering — two copies of the data
» Kernel and user
» Varying sizes
» Full / being processed and not-full / being used
» Copy-on-write can be used for efficiency in some cases

Operating System Concepts - 9t Edition 13.26 Silberschatz, Galvin and Gagne ©2013

T Device-status Table

“L‘ N

device: keyboard

status: idle

device: laser printer request for _—l‘

status: busy —— " laser printer

address: 38546

device: mouse length: 1372

status: idle

device: disk unit 1

status: idle

g’g{ﬁ::t?dssk = » request for » request for __—I:

e disk unit 2 disk unit 2

file: xxx file: yyy
operation: read operation: write
address: 43046 address: 03458
length: 20000 length: 500

Operating System Concepts - 9t Edition 13.27 Silberschatz, Galvin and Gagne ©2013

Hype

=1

syste

Cl Express 2.0
finiband (QD
erial ATA (SAT,
Gigabit Eth
SC

Fir

rTransport (32-pair)

m bus

(X32)
R 12X)
A-300)
ernet
Slbus
eWire

d disk

0.00001

Operating System Concepts - 9* Edition

0.001 0.

1 10 1000

13.28

100000

10E6

Silberschatz, Galvin and Gagne ©2013

ST Kernel 1/0 Subsystem

e
“L‘ N ,

B Caching - faster device holding copy of data
® Always just a copy
® Key to performance
® Sometimes combined with buffering
B Spooling - hold output for a device
® |f device can serve only one request at a time
® j.e., Printing
B Device reservation - provides exclusive access to a device
® System calls for allocation and de-allocation
® Watch out for deadlock

Operating System Concepts - 9t Edition 13.29 Silberschatz, Galvin and Gagne ©2013

G Error Handling

B OS can recover from disk read, device unavailable, transient
write failures

® Retry a read or write, for example
® Some systems more advanced — Solaris FMA, AlX

» Track error frequencies, stop using device with
increasing frequency of retry-able errors

B Most return an error number or code when I/O request fails
B System error logs hold problem reports

Operating System Concepts - 9t Edition 13.30 Silberschatz, Galvin and Gagne ©2013

P :
G5 I/O Protection

“i" N ,

B User process may accidentally or purposefully attempt to
disrupt normal operation via illegal 1/O instructions

® All I/O instructions defined to be privileged
® |/O must be performed via system calls

» Memory-mapped and I/O port memory locations must
be protected too

Operating System Concepts - 9t Edition 13.31 Silberschatz, Galvin and Gagne ©2013

/'f‘%

©\\.

%7 Use of a System Call to Perform 1/0

®

trap to
monitor

Operating System Concepts - 9* Edition

case n kernel
R read || perform 1/O

®

return
to user

user

system call n<- program

13.32

Silberschatz, Galvin and Gagne ©2013

g7 Kernel Data Structures

B Kernel keeps state info for I/O components, including open file
tables, network connections, character device state

B Many, many complex data structures to track buffers, memory
allocation, “dirty” blocks

B Some use object-oriented methods and message passing to
implement 1/O

® Windows uses message passing

» Message with I/O information passed from user mode
into kernel

» Message modified as it flows through to device driver
and back to process

» Pros / cons?

2 MW
< i b\
X
= ﬂw\x\\
e W
U AP

Operating System Concepts - 9t Edition 13.33 Silberschatz, Galvin and Gagne ©2013

S5 UNIX 1/O Kernel Structure

| AW

system-wide open-file table

: active-inode
file-system record table
inode pointer >
pointer to read and write functions
pointer to select function
PEr-Process i | iq nointer to ioct! function
file descriptorj> openfile table|| 1 | .
v pointer to close function
\\ . network-
4 - information
User-process memory networking (socket) record table

pointer to network info >
pointer to read and write functions
pointer to select function

pointer to ioctl function

pointer to close function

kernel memory

Operating System Concepts - 9t Edition 13.34 Silberschatz, Galvin and Gagne ©2013

hg 7 Power Management

B Not strictly domain of 1/0, but much is I/O related

B Computers and devices use electricity, generate heat, frequently
require cooling

B (OSes can help manage and improve use

® Cloud computing environments move virtual machines
between servers

» Can end up evacuating whole systems and shutting them
down

B Mobile computing has power management as first class OS
aspect

2 £ 5 \
ﬂ.ﬁ\x\ ,
A A0% 7

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts - 9* Edition 13.35

iy
G

" o Power Management (Cont.)

B For example, Android implements
® Component-level power management
» Understands relationship between components
» Build device tree representing physical device topology
» System bus -> I/O subsystem -> {flash, USB storage}
» Device driver tracks state of device, whether in use
» Unused component — turn it off
» All devices in tree branch unused — turn off branch

® Wake locks — like other locks but prevent sleep of device when lock
is held

® Power collapse — put a device into very deep sleep
» Marginal power use

» Only awake enough to respond to external stimuli (button press,
incoming call)

N A
4 "~)
/74 ’W

\
|

\ D,
A A%

Operating System Concepts - 9t Edition 13.36 Silberschatz, Galvin and Gagne ©2013

) ,¢M -
&«gyg /O Requests to Hardware Operations

B Consider reading a file from disk for a process:

® Determine device holding file

Translate name to device representation
Physically read data from disk into buffer
Make data available to requesting process
Return control to process

Operating System Concepts - 9* Edition 13.37

\

&

> M.\\"'\\
PSRN
Silberschatz, Galvin and Gagne ©2013

(Kn”/iy/

L\

Life Cycle of An I/O Request

Operating System Concepts -

9th Edition

user
request IO process
system call
kernel

1/O subsystem

can already

/O completed,
input data available, or
output completed

return from system call

satisfy request? yes

send request to device
driver, block process if kernel
appropriate I/O subsystem

|

process request, issue

transfer data
(if appropriate) to process,
return completion
or error code

determine which 11O
completed, indicate state
change to I/O subsystem

receive interrupt, store
data in device-driver buffer
if input, signal to unblock
device driver

f

interrupt

/O completed,
generate interrupt

commands to controller, device
configure controller to driver
block until interrupted

a5 troll n interrupt
evice-controller commands handler

device
monitor device, controller

interrupt when 1/O
completed
time
13.38

)

Silberschatz, Galvin and Gagne ©2013

55 STREAMS

B STREAM - a full-duplex communication channel between a
user-level process and a device in Unix System V and beyond

B A STREAM consists of:
® STREAM head interfaces with the user process
® driver end interfaces with the device
® zero or more STREAM modules between them
B Each module contains a read queue and a write queue

B Message passing is used to communicate between queues
® Flow control option to indicate available or busy

B Asynchronous internally, synchronous where user process
communicates with stream head

Operating System Concepts - 9t Edition 13.39 Silberschatz, Galvin and Gagne ©2013

The STREAMS Structure

Operating System Concepts - 9* Edition

user process

stream head

read queue

write queue

r

y

read queue

write queue

A

Y

read queue

write queue

modules

~

y

read queue

write queue

driver end

13.40

Silberschatz, Galvin and Gagne ©2013

g Performance

| AW

B |/O a major factor in system performance:

® Demands CPU to execute device driver, kernel |/O
code

® Context switches due to interrupts
® Data copying
® Network traffic especially stressful

Operating System Concepts - 9t Edition 13.41 Silberschatz, Galvin and Gagne ©2013

4% Intercomputer Communications

©\\.

character BSTOIK
typed system call packet
. %1< .
3|8 3|8 B|e
£z g|2 2|z
O
interrupt interrupt network
generated handled adapter
oo oo
sl 5l
|0 o| o
interrupt interrupt interrupt
handled generated generated
(network % g

- ®

n|lo
device network device
driver adapter driver
il device heriel network

driver subdaemon
%< %< %1<
8|8 8|8 g3
c|'S c|S (=
K L ik
context context
user > kernel Qetwork kernel
Process | switch aemon | syitch
sending system receiving system

Operating System Concepts - 9t Edition 13.42 Silberschatz, Galvin and Gagne ©2013

o :
T Improving Performance

o d)
|8 N ,

B Reduce number of context switches
B Reduce data copying

B Reduce interrupts by using large transfers, smart controllers,
polling

B Use DMA
B Use smarter hardware devices

B Balance CPU, memory, bus, and I/O performance for highest
throughput

B Move user-mode processes / daemons to kernel threads

> ‘W\‘D)
A 290%™

Operating System Concepts - 9t Edition 13.43 Silberschatz, Galvin and Gagne ©2013

B - - - 1
4% Device-Functionality Progression

|8 N

< iNncreased time (generations) |

< increased efficiency |

< iNncreased development cost |

< iNncreased abstraction |

(BIBMDIRL) 8000 301D
(BIBMDRL) 8000 JBJ0NNCO-8018)
3000 JO-A3)

3000 oLy
3000 U0[eay e
i
Wyiofie ma

iNncreased flexibility

V

Operating System Concepts - 9t Edition 13.44 Silberschatz, Galvin and Gagne ©2013

End of Chapter 12

Operating System Concepts - 9t Edition Silberschatz, Galvin and Gagne ©2013

