
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 13: Protection

14.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 13: Protection

 Goals of Protection

 Principles of Protection

 Domain of Protection

 Access Matrix

 Implementation of Access Matrix

 Access Control

 Revocation of Access Rights

 Capability-Based Systems

 Language-Based Protection

14.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

 Discuss the goals and principles of protection in a modern
computer system

 Explain how protection domains combined with an access
matrix are used to specify the resources a process may
access

 Examine capability and language-based protection systems

14.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Goals of Protection

 In one protection model, computer consists of a collection of
objects, hardware or software

 Each object has a unique name and can be accessed through
a well-defined set of operations

 Protection problem - ensure that each object is accessed
correctly and only by those processes that are allowed to do so

14.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Principles of Protection

 Guiding principle – principle of least privilege

 Programs, users and systems should be given just
enough privileges to perform their tasks

 Limits damage if entity has a bug, gets abused

 Can be static (during life of system, during life of
process)

 Or dynamic (changed by process as needed) – domain
switching, privilege escalation

 “Need to know” a similar concept regarding access to
data

14.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Principles of Protection (Cont.)

 Must consider “grain” aspect

 Rough-grained privilege management easier, simpler,
but least privilege now done in large chunks

 For example, traditional Unix processes either have
abilities of the associated user, or of root

 Fine-grained management more complex, more
overhead, but more protective

 File ACL lists, RBAC

 Domain can be user, process, procedure

14.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Domain Structure

 Access-right = <object-name, rights-set>
where rights-set is a subset of all valid operations that can
be performed on the object

 Domain = set of access-rights

14.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Domain Implementation (UNIX)

 Domain = user-id

 Domain switch accomplished via file system

 Each file has associated with it a domain bit (setuid bit)

 When file is executed and setuid = on, then user-id is
set to owner of the file being executed

 When execution completes user-id is reset

 Domain switch accomplished via passwords

 su command temporarily switches to another user’s
domain when other domain’s password provided

 Domain switching via commands

 sudo command prefix executes specified command in
another domain (if original domain has privilege or
password given)

14.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Domain Implementation (MULTICS)

 Let Di and Dj be any two domain rings

 If j < I  Di  Dj

14.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multics Benefits and Limits

 Ring / hierarchical structure provided more than the basic
kernel / user or root / normal user design

 Fairly complex -> more overhead

 But does not allow strict need-to-know

 Object accessible in Dj but not in Di, then j must be < i

 But then every segment accessible in Di also
accessible in Dj

14.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Access Matrix

 View protection as a matrix (access matrix)

 Rows represent domains

 Columns represent objects

 Access(i, j) is the set of operations that a process
executing in Domaini can invoke on Objectj

14.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Use of Access Matrix

 If a process in Domain Di tries to do “op” on object Oj, then
“op” must be in the access matrix

 User who creates object can define access column for that
object

 Can be expanded to dynamic protection

 Operations to add, delete access rights

 Special access rights:

 owner of Oi

 copy op from Oi to Oj (denoted by “*”)

 control – Di can modify Dj access rights

 transfer – switch from domain Di to Dj

 Copy and Owner applicable to an object

 Control applicable to domain object

14.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Use of Access Matrix (Cont.)

 Access matrix design separates mechanism from policy

 Mechanism

 Operating system provides access-matrix + rules

 If ensures that the matrix is only manipulated by
authorized agents and that rules are strictly enforced

 Policy

 User dictates policy

 Who can access what object and in what mode

 But doesn’t solve the general confinement problem

14.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Access Matrix of Figure A with Domains as Objects

14.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Access Matrix with Copy Rights

14.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Access Matrix With Owner Rights

14.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Modified Access Matrix of Figure B

14.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation of Access Matrix

 Generally, a sparse matrix

 Option 1 – Global table
 Store ordered triples <domain, object,

rights-set> in table

 A requested operation M on object Oj within domain
Di -> search table for < Di, Oj, Rk >

 with M R∈ k

 But table could be large -> won’t fit in main memory
 Difficult to group objects (consider an object that all

domains can read)

14.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation of Access Matrix (Cont.)

 Option 2 – Access lists for objects
 Each column implemented as an access list for one

object
 Resulting per-object list consists of ordered pairs

<domain, rights-set> defining all domains with
non-empty set of access rights for the object

 Easily extended to contain default set -> If M default ∈
set, also allow access

14.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation of Access Matrix (Cont.)

 Each column = Access-control list for one object
Defines who can perform what operation

Domain 1 = Read, Write
Domain 2 = Read
Domain 3 = Read

 Each Row = Capability List (like a key)
For each domain, what operations allowed on what objects

Object F1 – Read

Object F4 – Read, Write, Execute

Object F5 – Read, Write, Delete, Copy

14.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation of Access Matrix (Cont.)

 Option 3 – Capability list for domains

 Instead of object-based, list is domain based

 Capability list for domain is list of objects together with operations
allows on them

 Object represented by its name or address, called a capability

 Execute operation M on object Oj, process requests operation and
specifies capability as parameter

 Possession of capability means access is allowed

 Capability list associated with domain but never directly accessible
by domain

 Rather, protected object, maintained by OS and accessed
indirectly

 Like a “secure pointer”

 Idea can be extended up to applications

14.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation of Access Matrix (Cont.)

 Option 4 – Lock-key

 Compromise between access lists and capability lists

 Each object has list of unique bit patterns, called locks

 Each domain as list of unique bit patterns called keys

 Process in a domain can only access object if domain
has key that matches one of the locks

14.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Comparison of Implementations

 Many trade-offs to consider

 Global table is simple, but can be large

 Access lists correspond to needs of users

 Determining set of access rights for domain non-
localized so difficult

 Every access to an object must be checked

– Many objects and access rights -> slow

 Capability lists useful for localizing information for a given
process

 But revocation capabilities can be inefficient

 Lock-key effective and flexible, keys can be passed freely
from domain to domain, easy revocation

14.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Comparison of Implementations (Cont.)

 Most systems use combination of access lists and
capabilities

 First access to an object -> access list searched

 If allowed, capability created and attached to process

– Additional accesses need not be checked

 After last access, capability destroyed

 Consider file system with ACLs per file

14.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Access Control

 Protection can be applied to non-file
resources

 Oracle Solaris 10 provides role-
based access control (RBAC) to
implement least privilege

 Privilege is right to execute
system call or use an option
within a system call

 Can be assigned to processes

 Users assigned roles granting
access to privileges and
programs

 Enable role via password to
gain its privileges

 Similar to access matrix

14.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Revocation of Access Rights

 Various options to remove the access right of a domain to an
object

 Immediate vs. delayed

 Selective vs. general

 Partial vs. total

 Temporary vs. permanent

 Access List – Delete access rights from access list

 Simple – search access list and remove entry

 Immediate, general or selective, total or partial,
permanent or temporary

14.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Revocation of Access Rights (Cont.)

 Capability List – Scheme required to locate capability in the
system before capability can be revoked

 Reacquisition – periodic delete, with require and denial if
revoked

 Back-pointers – set of pointers from each object to all
capabilities of that object (Multics)

 Indirection – capability points to global table entry which points
to object – delete entry from global table, not selective (CAL)

 Keys – unique bits associated with capability, generated when
capability created

 Master key associated with object, key matches master key
for access

 Revocation – create new master key

 Policy decision of who can create and modify keys – object
owner or others?

14.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Capability-Based Systems

 Hydra

 Fixed set of access rights known to and interpreted by the system

 i.e. read, write, or execute each memory segment

 User can declare other auxiliary rights and register those with
protection system

 Accessing process must hold capability and know name of
operation

 Rights amplification allowed by trustworthy procedures for a
specific type

 Interpretation of user-defined rights performed solely by user's
program; system provides access protection for use of these rights

 Operations on objects defined procedurally – procedures are
objects accessed indirectly by capabilities

 Solves the problem of mutually suspicious subsystems

 Includes library of prewritten security routines

14.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Capability-Based Systems (Cont.)

 Cambridge CAP System

 Simpler but powerful

 Data capability - provides standard read, write, execute
of individual storage segments associated with object –
implemented in microcode

 Software capability -interpretation left to the
subsystem, through its protected procedures

 Only has access to its own subsystem

 Programmers must learn principles and techniques
of protection

14.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Language-Based Protection

 Specification of protection in a programming language
allows the high-level description of policies for the
allocation and use of resources

 Language implementation can provide software for
protection enforcement when automatic hardware-
supported checking is unavailable

 Interpret protection specifications to generate calls on
whatever protection system is provided by the hardware
and the operating system

14.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Protection in Java 2

 Protection is handled by the Java Virtual Machine (JVM)

 A class is assigned a protection domain when it is loaded by
the JVM

 The protection domain indicates what operations the class
can (and cannot) perform

 If a library method is invoked that performs a privileged
operation, the stack is inspected to ensure the operation can
be performed by the library

 Generally, Java’s load-time and run-time checks enforce type
safety

 Classes effectively encapsulate and protect data and
methods from other classes

14.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Stack Inspection

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 13

