
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 3: Processes

3.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Copyright

 These slides have been modified by Dr. Marek A. Suchenek © in
February 2012 and thereafter.

 He reserves all rights for the said modifications.

 Any copying, printing, downloading, sharing, or distributing without
the permission of the copyright holder or holders is prohibited.

 Permission for classroom use by the students currently enrolled in
CSC 341 and CSC 541 course is granted for the duration of this
semester.

3.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 3: Processes

 Process Concept

 Process Scheduling

 Operations on Processes

 Interprocess Communication

3.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Concept

INFORMAL DEFINITION:

Deterministic process – a program in execution

3.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Concept

INFORMAL DEFINITION:

Deterministic process – a program in execution; the
execution must progress in sequential fashion

3.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Concept

INFORMAL DEFINITION:

Deterministic process – a program in execution; the
execution must progress in sequential fashion

We will usually omit the adjective deterministic if it is
clear from the context that the process in question is
deterministic.

3.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Concept

INFORMAL DEFINITION:

Deterministic process – a program in execution; the
execution must progress in sequential fashion

We will usually omit the adjective deterministic if it is
clear from the context that the process in question is
deterministic.

Process has its program and its state (a.k.a. context)

3.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Concept

INFORMAL DEFINITION:

Deterministic process – a program in execution; the
execution must progress in sequential fashion

We will usually omit the adjective deterministic if it is
clear from the context that the process in question is
deterministic.

Process has its program and its state (a.k.a. context)

The program is fixed while the state changes as the
execution proceeds.

3.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Concept

A process' state typically includes:
 program counter
 status register
 stack (pointer)
 data section
 registers
 memory
 files
 etc.

3.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Definition of Execution

Execution is a function S: N --> States, where

N is the set of natural numbers (discrete time)

States is the set of possible states of computation

Each S(t) is a (momentary) state of execution S at time t

(a.k.a. current context at time t)

NOTE Function S can be written in a sequential form:

S = <S(0), S(1), S(2),..., S(t),...>

3.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Definition of Execution

Each S(t) contains:

PC(t) - current value of the program counter at time t

Mem(t) - current memory contents at time t available to

the process

3.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

 Definition of Program's Execution

Given deterministic program P, the recurrence relation

between S(t) and S(t+1) is described by the transition

function T
P
 that is defined by the program P

S(t+1) = T
P
(S(t)), for every t in N

3.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

 Definition of Program's Execution

NOTE Technically, definition of a program P's execution

must include a mapping from P's variables onto

addressing space of Mem. For HLL's, this may be easily

accomplished by assuming that P's variables are the actual

elements of Mem.

3.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

 Definition of Program's Execution

Deterministic program's execution is determined by a pair

<P, S(0)>

Where:

P is the program (constant)

S(0) is the state of computation at time 0 (which includes

the initial value PC(0) of the program counter and the

initial contents Mem(0) of P's memory)

3.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

 Definition of Program's Execution

Deterministic program's execution is determined by a pair

<P, S(0)>

Where:

P is the program (constant)

S(1) = T
P
(S(0)),

S(2) = T
P
(S(1)),

S(3) = T
P
(S(2)),

etc.

3.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Formal Definition of Process

Process is defined as a pair

<P, S>

where:

P is the program (constant)

S is a function from N into States (execution, as defined

before).

3.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Formal Definition of Process

Process is defined as a pair

<P, S>

where:

P is the program (constant) – deterministic or not

S is a function from N into States (execution, as defined

before).

3.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process State

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

3.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Diagram of Process State

3.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Control Block (PCB)

Information associated with each process

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

3.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Control Block (PCB)

 Context:

3.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

CPU Switch From Process to Process

Context switch

3.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Context Switch

 When CPU switches to another process, the system must save the state of
the old process and load the saved state for the new process via a context
switch

 Context of a process is represented (stored) in the PCB

 It begins with an interrupt and ends with RTI (ReTurn from Interrupt)

 Context-switch time is overhead (“waste”, that is), as the system does no
useful work while switching

 Time dependent on hardware support and the size of the working set (things
to save and restore)

 Typically, from a single to a few hundred microseconds (10
-6
 sec)

3.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Scheduling Queues

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main memory,
ready and waiting to execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues

3.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Ready Queue And Various I/O Device Queues

3.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Representation of Process Scheduling

3.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schedulers

 Long-term scheduler (or job scheduler) – selects which
processes should be brought into the ready queue

 Short-term scheduler (or CPU scheduler) – selects which
process should be executed next and allocates CPU

3.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Addition of Medium Term Scheduling

3.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schedulers (Cont)

 Short-term scheduler is invoked very frequently (milliseconds) 
(must be fast)

 Long-term scheduler is invoked very infrequently (seconds,
minutes)  (may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than
computations, many short CPU bursts

 CPU-bound process – spends more time doing computations;
few very long CPU bursts

3.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

 Parent process create children processes, which, in turn create other
processes, forming a tree of processes

 Generally, process identified and managed via a process identifier (pid)

 Resource sharing

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution

 Parent and children execute concurrently

 Parent waits until children terminate

3.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation (Cont)

 Address space

 Child duplicate of parent

 Child has a program loaded into it

 UNIX examples

 fork system call creates new process (a duplicate of the creating one)

 exec system call used after a fork to replace the process’ memory
space with a new program

3.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

3.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

C Program Forking Separate Process

int main()
{
pid_t pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
exit(-1);

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for the child to complete
*/

wait (NULL);
printf ("Child Complete");
exit(0);

}
}

3.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Termination

 Process executes last statement and asks the operating system to
delete it (exit)

 Output data from child to parent (via wait)

 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort)

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting

 Some operating system do not allow child to continue if its
parent terminates

– All children terminated - cascading termination

3.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Interprocess Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes,
including sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication (IPC)

 Two models of IPC

 Shared memory

 Message passing

3.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Communications Models

3.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Cooperating Processes

 Independent process cannot affect or be affected by the execution of
another process

 Cooperating process can affect or be affected by the execution of another
process

 Advantages of process cooperation

 Information sharing

 Computation speed-up

 Modularity

 Convenience

3.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Paradigm for cooperating processes, Producer process
produces information that is consumed by a Consumer
process

3.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Problem statement

 There are two processes: Producer and Consumer who
have access to a shared buffer.

 Producer can only write to the buffer.

 Consumer can only read from the buffer.

 The problem is how to synchronize them so that the
following conditions are met:

 Producer does not attempt to write when the buffer
is full.

 Consumer does not attempt to read when the buffer
is empty.

 Consumer does not attempt to read from the
element of the buffer that is currently being written
to by Producer (and vice versa).

3.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 There are two versions of the problem:

 unbounded-buffer places no practical limit on the size of
the buffer

 bounded-buffer assumes that there is a fixed buffer size

 in this case, the buffer is organized as a circular
array

We are going to focus on the bounded-buffer version.

3.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

3.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded-Buffer – Shared-Memory Solution

 Shared data

public class BB_prod-cons {

int BUFFER_SIZE = 10;

Itemtype item1, item2; //details in class itemtype

itemtype [] buffer;

buffer = new itemtype [BUFFER_SIZE];

int in = 0;

int out = 0;

 Solution is correct, but can only use BUFFER_SIZE-1 elements

3.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded-Buffer – Producer

while (true) {
 /* Produce an item1 */

. . .

 while (((in + 1) % BUFFER SIZE) == out)

 ; /* do nothing -- no more room in the buffer */

 // insert an item into the buffer

 buffer[in] = item1;

 in = (in + 1) % BUFFER SIZE;

 }

3.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded Buffer – Consumer

while (true) {

 while (in == out)

 ; // do nothing – no unconsumed items in
the buffer

 // remove an item from the buffer

 item2 = buffer[out];

 out = (out + 1) % BUFFER SIZE;

/* Consume an item2 */

. . .

 }

}

3.45 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Interprocess Communication – Message Passing

 Mechanism for processes to communicate and to synchronize their actions

 Message system – processes communicate with each other without
resorting to shared variables

 IPC facility provides two operations:
 send(message) – message size fixed or variable
 receive(message)

 If P and Q wish to communicate, they need to:
 establish a communication link between them
 exchange messages via send/receive

 Implementation of communication link
 physical (e.g., shared memory, hardware bus)
 logical (e.g., logical properties)

3.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Implementation Questions

 How are links established?

 Can a link be associated with more than two processes?

 How many links can there be between every pair of communicating
processes?

 What is the capacity of a link?

 Is the size of a message that the link can accommodate fixed or variable?

 Is a link unidirectional or bi-directional?

3.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Direct Communication

 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of communication link

 Links are established automatically

 A link is associated with exactly one pair of communicating processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

3.48 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indirect Communication

 Messages are directed and received from mailboxes (also referred to as
ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Properties of communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication links

 Link may be unidirectional or bi-directional

3.49 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indirect Communication

 Operations

 create a new mailbox

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox A

3.50 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indirect Communication

 Mailbox sharing

 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two processes

 Allow only one process at a time to execute a receive operation

 Allow the system to select arbitrarily the receiver. Sender is notified who
the receiver was.

3.51 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Synchronization

 Message passing may be either blocking or non-blocking

 Blocking is considered synchronous

 Blocking send has the sender block until the message is
received

 Blocking receive has the receiver block until a message is
available

 Non-blocking is considered asynchronous

 Non-blocking send has the sender send the message and
continue

 Non-blocking receive has the receiver receive a valid message
or null

3.52 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Buffering

 Queue of messages attached to the link; implemented in one of three
ways

1. Zero capacity – 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 3

