Chapter 4: Threads

Operating System Concepts - 9t Edition Silberschatz, Galvin and Gagne ©2013

97 Chapter 4: Threads

L

Overview

Multicore Programming
Multithreading Models
Threading Issues

Operating System Concepts - 9t Edition 4.2 Silberschatz, Galvin and Gagne ©2013

gy
&

A\

B A thread is a process with a narrower context.

® The minimum context a thread must contain consists of:
¢ program counter
¢ status register

B Thus a thread may be referred to as a lightweight process
B while a (traditional) process may be referred to as a heavyweight thread.
B Moreover, a process may have (spawn) several threads.

Operating System Concepts - 9t Edition 4.3 Silberschatz, Galvin and Gagne ©2013

&ﬁg,.{ Motivation

B Most modern applications are multithreaded

Threads run within application

B Process creation is heavy-weight while thread creation is light-
weight

B Can simplify code, increase efficiency
B OS Kernels are generally multithreaded

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts - 9* Edition 4.4

&r:g;‘i‘f Multithreaded Server Architecture

s
i

&\

(2) create new
(1) request thread to service
the request

Y
Y

thread

client server

(3) resume listening
for additional
client requests

Operating System Concepts - 9t Edition 4.5 Silberschatz, Galvin and Gagne ©2013

g Benefits

B Responsiveness — may allow continued execution if part of
process is blocked, especially important for user interfaces

B Resource Sharing - threads share resources of process (for
instance, registers), easier than shared memory or message
passing

B Economy - cheaper than process creation, thread's context
switching requires less overhead than process' context switching

B Scalability — process can take advantage of multiprocessor
architectures

AR
£ /‘%i\&\\\\
0 /}‘v\(
‘ﬁ&" AQjV p

Operating System Concepts - 9t Edition 4.6 Silberschatz, Galvin and Gagne ©2013

g Multicore Programming

B Multicore or multiprocessor systems putting pressure on
programmers, challenges include:

® Dividing activities

® Balance

® Data splitting

® Data dependency

® Testing and debugging

B Parallelism implies a system can perform more than one task
simultaneously

B Concurrency supports more than one task making progress

® Single processor / core - scheduler provides concurrency with no
or little parallelism

® Multiprocessor / multicore - scheduler provides concurrency with
parallelism

B DMA allows scheduler to provide parallelism even without concurr

& ‘}\ o\
0 %\v';
A 20% 7

Operating System Concepts - 9t Edition 4.7 Silberschatz, Galvin and Gagne ©2013

PN

%‘35 Multicore Programming (Cont.)

S\

B Types of parallelism

® Data parallelism — distributes subsets of the same data
across multiple cores, same operation on each

® Task parallelism — distributing threads across cores, each
thread performing unique operation

B As # of threads grows, so does architectural support for threading
® CPUs have cores as well as hardware threads

® Consider Oracle SPARC T4 with 8 cores, and 8 hardware
threads per core

Operating System Concepts - 9 Edition 4.8 Silberschatz, Galvin and Gagne ©2013

57 Concurrency vs. Parallelism

B Concurrent execution on single-core system:

single core

T1‘T2‘T3‘T4‘T1‘TQ‘T3‘T4‘T1‘...

time

>

B Parallelism on a multi-core system:

core 1 T4 T3 T4 T3 T4

core 2 Tg T4 Tg T4 Tg

Operating System Concepts - 9t Edition 4.9 Silberschatz, Galvin and Gagne ©2013

=

Single and Multithreaded Processes

g/ﬁ«w‘«l
L ' ¥
code data files
registers stack
thread ——>

single-threaded process

Operating System Concepts - 9* Edition

4.10

code data files
registers ||| registers ||| registers
stack stack stack
(—

— thread

multithreaded process

Silberschatz, Galvin and Gagne ©20

%,"" A m d ah I ’S LaW

B |dentifies performance gains from adding additional cores to an
application that has both serial and parallel components

B S is sequential portion (cannot be parallelized)
B For N processors (cores), the upper bound on speedup is:

speedup <

B That s, if application is 75% parallel / 25% serial, moving from 1 to 2
cores results in speedup of 1.6 times

B As N approaches infinity, speedup approaches 1/ S

Serial portion of an application has disproportionate (slowing
down) effect on performance gained by adding additional cores

Operating System Concepts - 9t Edition 411 Silberschatz, Galvin and Gagne ©2013

Amdahl’s Law

//1 AN

P Multithreading Models

B Many-to-One (library-supported threads typically belong to this category)

B One-to-One (currently, the most typical scenario for OS-supported threads)

B Many-to-Many

A
AW\

B D

: \
' 7 W

/D

s

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts - 9* Edition 4.13

o 't Many-to-One

©\\.

B Many user-level threads mapped to
single kernel thread

B One thread blocking causes all to block

B Multiple threads may not run in parallel
on multicore system because only one ; ;

<«——user thread

may be in the kernel at a time
B Few systems currently use this model
B Examples:
® Library-supported threads
® Solaris Green Threads
® GNU Portable Threads

k) «<—kernel thread

Operating System Concepts - 9t Edition 4.14 Silberschatz, Galvin and Gagne ©2013

-

o One-to-One

o s

Each user-level thread maps to kernel thread
Creating a user-level thread creates a kernel thread

Allows more parallelism than many-to-one

Number of threads per process may be restricted
due to overhead of thread creation

Examples
® Windows

® Linux
® Solaris 9 and later

Operating System Concepts - 9* Edition 4.15

<«—— user thread

Silberschatz, Galvin and Gagne ©20

$F Many-to-Many Model

B Allows many user level threads to be
mapped to many kernel threads

B Allows the operating system to create
a sufficient number of kernel threads

B Solaris prior to version 9 ; ;
B Windows with the ThreadFiber ; §<—userthreac
package
k k k | «—kernel thread

Operating System Concepts - 9t Edition 4.16 Silberschatz, Galvin and Gagne ©2013

=

o L Scheduler Activations

| AW

B Typically use an intermediate data structure
between user and kernel threads — lightweight
process (LWP)

® Appears to be a virtual processor on which
process can schedule user thread to run | LWP | +—— lightweight process

® Each LWP attached to kernel thread

d— jgar nread

“"a._.-'h,___l

l.l-.- !
| k kjli—kernel triread
et -

Operating System Concepts - 9 Edition 4.17 Silberschatz, Galvin and Gagne ©20

,ﬂmwl
Lr :

G Linux Threads

B Linux refers to them as tasks rather than threads
B Thread creation is done through clone() system call

B clone() allows a child task to share the address space of the
parent task (process)

® Flags control behavior

flag meaning
CLONE_FS File-system information is shared.
CLONE_VM The same memory space is shared.
CLONE_SIGHAND Signal handlers are shared.
CLONE_FILES The set of open files is shared.

B struct task_struct points to process data structures
(shared or unique)

SO \\
4 P — R
S -
7y W
A A\

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts - 9* Edition 4.18

End of Chapter 4

Operating System Concepts - 9t Edition Silberschatz, Galvin and Gagne ©2013

