
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 4:  Threads



4.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 4: Threads

 Overview

 Multicore Programming

 Multithreading Models

 Threading Issues



4.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Definition

 A thread is a process with a narrower context.

 The minimum context a thread must contain consists of:

 program counter

 status register

 Thus a thread may be referred to as a lightweight process

 while a (traditional) process may be referred to as a heavyweight thread.

 Moreover, a process may have (spawn) several threads.



4.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Motivation

 Most modern applications are multithreaded

 Threads run within application

 Process creation is heavy-weight while thread creation is light-
weight

 Can simplify code, increase efficiency

 OS Kernels are generally multithreaded



4.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multithreaded Server Architecture



4.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Benefits

 Responsiveness – may allow continued execution if part of 
process is blocked, especially important for user interfaces

 Resource Sharing – threads share resources of process (for 
instance, registers), easier than shared memory or message 
passing

 Economy – cheaper than process creation, thread's context 
switching requires less overhead than process' context switching

 Scalability – process can take advantage of multiprocessor 
architectures



4.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multicore Programming

 Multicore or multiprocessor systems putting pressure on 
programmers, challenges include:

 Dividing activities

 Balance

 Data splitting

 Data dependency

 Testing and debugging

 Parallelism implies a system can perform more than one task 
simultaneously

 Concurrency supports more than one task making progress

 Single processor / core - scheduler provides concurrency with no 
or little parallelism

 Multiprocessor  / multicore - scheduler provides concurrency with 
parallelism

  DMA allows scheduler to provide parallelism even without concurrency



4.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multicore Programming (Cont.)

 Types of parallelism 

 Data parallelism – distributes subsets of the same data 
across multiple cores, same operation on each

 Task parallelism – distributing threads across cores, each 
thread performing unique operation

 As # of threads grows, so does architectural support for threading

 CPUs have cores as well as hardware threads

 Consider Oracle SPARC T4 with 8 cores, and 8 hardware 
threads per core



4.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Concurrency vs. Parallelism

 Concurrent execution on single-core system:

 Parallelism on a multi-core system:



4.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Single and Multithreaded Processes



4.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Amdahl’s Law

 Identifies performance gains from adding additional cores to an 
application that has both serial and parallel components

 S is sequential portion (cannot be parallelized)

 For N processors (cores), the upper bound on speedup is:

 That is, if application is 75% parallel / 25% serial, moving from 1 to 2 
cores results in speedup of 1.6 times

 As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate (slowing 
down) effect on performance gained by adding additional cores



4.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Amdahl’s Law



4.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multithreading Models

 Many-to-One (library-supported threads typically belong to this category)

 One-to-One (currently, the most typical scenario for OS-supported threads)

 Many-to-Many



4.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Many-to-One

 Many user-level threads mapped to 
single kernel thread

 One thread blocking causes all to block

 Multiple threads may not run in parallel 
on multicore system because only one 
may be in the kernel at a time

 Few systems currently use this model

 Examples:

 Library-supported threads

 Solaris Green Threads

 GNU Portable Threads



4.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

One-to-One

 Each user-level thread maps to kernel thread

 Creating a user-level thread creates a kernel thread

 Allows more parallelism than many-to-one

 Number of threads per process may be restricted 
due to overhead of thread creation

 Examples

 Windows

 Linux

 Solaris 9 and later



4.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Many-to-Many Model

 Allows many user level threads to be 
mapped to many kernel threads

 Allows the  operating system to create 
a sufficient number of kernel threads

 Solaris prior to version 9

 Windows  with the ThreadFiber 
package



4.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Scheduler Activations

 Typically use an intermediate data structure 
between user and kernel threads – lightweight 
process (LWP)

 Appears to be a virtual processor on which 
process can schedule user thread to run

 Each LWP attached to kernel thread



4.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Linux Threads

 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system call

 clone() allows a child task to share the address space of the 
parent task (process)

 Flags control behavior

 struct task_struct points to process data structures 
(shared or unique)



Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 4


