
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 6: CPU Scheduling

5.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Copyright

 These slides have been modified by Dr. Marek A. Suchenek © in
February 2012.

 He reserves all rights for the said modifications.

 Any copying, printing, downloading, sharing, or distributing without
the permission of the copyright holder or holders is prohibited.

 Permission for classroom use by the students currently enrolled in
CSC 341 course is granted for the duration of this semester.

5.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 6: CPU Scheduling

 Basic Concepts

 Scheduling Criteria

 Scheduling Algorithms

 Thread Scheduling

 Multiple-Processor Scheduling

 Operating Systems Examples

 Algorithm Evaluation

5.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Basic Concepts

 Maximum CPU utilization obtained with multiprogramming

 CPU–I/O Burst Cycle – Process execution consists of a cycle of
CPU execution and I/O wait

 CPU burst distribution

5.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Histogram of CPU-burst Times

5.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Alternating Sequence of CPU And I/O Bursts

5.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

CPU Scheduler

 Selects from among the processes in memory that are ready to execute,
and allocates the CPU to one of them

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

 Scheduling that is only allowed under 1 and 4 is nonpreemptive

 All other scheduling is preemptive

5.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dispatcher

 Dispatcher module gives control of the CPU to the process selected
by the short-term scheduler; this involves:

 switching context

 RTN, which includes (simultaneously)

• switching to user mode

• jumping to the proper location in the user program to restart
that program

 Dispatch latency – time it takes for the dispatcher to stop one
process and start another running

5.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dispatch Latency

5.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Scheduling Criteria

 CPU utilization (maximize) – keep the CPU as busy as possible

 Throughput (maximize) – # of processes that complete their
execution per time unit

 Turnaround time (minimize) – amount of time to execute a
particular process

 Waiting time (minimize) – amount of time a process has been
waiting in the ready queue

 Response time (minimize) – amount of time it takes from when a
request was submitted until the first response is produced, not
output (for time-sharing environment)

5.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Scheduling Algorithm Optimization Criteria

 Maximize CPU utilization

 Maximize throughput

 Minimize turnaround time

 Minimize waiting time

 Minimize response time

5.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

 P2 3

 P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

5.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

 P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case

 Avoids the Convoy effect: short process behind long process

P1P3P2

63 300

5.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst. Use these
lengths to schedule the process with the shortest time

 SJF is optimal – gives minimum average waiting time for a given set of
processes

 The difficulty is knowing the length of the next CPU request

5.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shortest-Job-First (SJR) Scheduling

 Associate with each process the length of its next CPU burst. Use
these lengths to schedule the process with the shortest time

 Two schemes:

 non-preemptive – once CPU given to the process it cannot be
preempted until completes its CPU burst

 preemptive – if a new process arrives with CPU burst length
less than remaining time of current executing process, preempt.
 This scheme is know as the
Shortest-Remaining-Time-First (SRTF)

 SJF is optimal (withing pre-emptive and non-pre-emptive
scheduling algorithms, respectively) – gives minimum average
waiting time for a given set of processes

 The difficulty is knowing the length of the next CPU request

5.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Arrival Time Burst Time

P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4

 SJF (non-preemptive)

 Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

5.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Preemptive SJF

ProcessArrival Time Burst Time

P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4

 SJF (preemptive)

Average waiting time = (9 + 1 + 0 +2)/4 = 3 =

 = ((11 + 7 + 5) – (0 + 2 + 4 + 5))/4

P1 P3P2

42 110

P4

5 7

P2 P1

16

5.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Preemptive SJF

ProcessArrival Time Burst Time

P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4

 SJF (preemptive)

Average waiting time = (9 + 1 + 0 +2)/4 = 3 =

 = ((11 + 7 + 5) – (0 + 2 + 4 + 5))/4

P1 P3P2

42 110

P4

5 7

P2 P1

16

5.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Determining Length of Next CPU Burst

 Can only estimate the length

 Can be done by using the length of previous CPU bursts, using exponential
averaging

1. tn=actual length of nth CPU burst
2 . τn+1= predicted value for the next CPU burst
3 . α , 0≤α≤1
4 . Define: τ n+1=αtn+ (1−α) τ n .

5.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Prediction of the Length of the Next CPU Burst

5.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of Exponential Averaging

  =0

 n+1 = n

 Recent history does not count

  =1

 n+1 =  tn

 Only the actual last CPU burst counts

 If we expand the formula, we get:

n+1 =  tn+(1 - ) tn -1
 + …

 +(1 - )j  tn -j + …

 +(1 - )n +1 0

 Since both  and (1 - ) are less than or equal to 1, each successive term
has less weight than its predecessor

5.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority (smallest
integer  highest priority)

 preemptive

 non-preemptive

 SJF is a priority scheduling where priority is the predicted next CPU burst
time

 Problem: How to avoid starvation? (Starvation in this case occurs when a
low priority ready processes is never selected for running.)

 Solution: Aging – as time progresses increase the priority of the processes
wating in the ready queue.

5.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units at once. No process waits in
ready queue more than (n-1)q time units.

 Performance

 q large  FIFO

 q small  thrashing (q must be large with respect to context
switch, otherwise overhead is too high)

5.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Round Robin (RR)

The purpose of RR is to
approximate SJF

by classifying jobs as short (CPU burst not
larger than Q) and long (otherwise)

5.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of RR with Time Quantum = 20

Process Burst Time

P1 53

 P2 17

 P3 68

 P4 24

 The Gantt chart is:

 W = (134 + 121 + 37)/4 = 292/4 = 73

 Higher average turnaround than SJF

 Favors processes with CPU bursts <= Q

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

5.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of RR with Time Quantum = 20

The Gantt chart is:

W = (134 + 121 + 37)/4 = 292/4 = 73

Remember:

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

5.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Time Quantum and Context Switch Time

5.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Turnaround Time Varies With The Time Quantum

5.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Turnaround Time Varies With The Time Quantum

Same scenario,
but ...

CPU bursts: 6 3 7 1

Q = 3 T = 11.5 W
= 7.25
Q = 6 T = 12 W =
7.75
Q = 7 T = 12 W =
7.75

5.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Turnaround Time Varies With The Time Quantum

Same scenario,
but ...

CPU bursts: 6 7 3 1

Q = 3 T = 12.25 W
= 8
Q = 6 T = 13.25 W
= 9
Q = 7 T = 13 W
= 8.75

5.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Turnaround Time Varies With The Time Quantum

CPU bursts: 7 6 3 1

Q = 3 T = 13 W = 8.75
Q = 6 T = 15 W = 10.75
Q = 7 T = 13.25 W = 9

CPU bursts: 60 3 70 1

Q = 3 T = 66.25 W = 32.75
Q = 6 T = 95.25 W = 62.25
Q = 7 T = 97.4 W = 64.5

5.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

5.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Queue

 Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

 Each queue has its own scheduling algorithm

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues

 Fixed priority scheduling; (i.e., serve all from foreground then from
background). Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time which it can
schedule amongst its processes; i.e., 80% to foreground in RR

 20% to background in FCFS

5.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Queue Scheduling

5.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Feedback Queue

 A process can move between the various queues; aging can be
implemented this way

 Multilevel-feedback-queue scheduler defined by the following
parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter
when that process needs service

5.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Multilevel Feedback Queue

 Three queues:

 Q0 – RR with time quantum 8 milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is served FCFS. When it gains CPU,
job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is
moved to queue Q1.

 At Q1 job is again served FCFS and receives 16 additional milliseconds.
If it still does not complete, it is preempted and moved to queue Q2.

5.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Feedback Queues

5.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Feedback Queues

Provide more flexible approximations of
the SJF scheduling algorithm.

5.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multiple-Processor Scheduling

 CPU scheduling more complex when multiple CPUs are
available

 Homogeneous processors within a multiprocessor

 Asymmetric multiprocessing – only one processor
accesses the system data structures, alleviating the need
for data sharing

 Symmetric multiprocessing (SMP) – each processor
is self-scheduling, all processes in common ready queue,
or each has its own private queue of ready processes

 Processor affinity – process has affinity for processor
on which it is currently running

 soft affinity

 hard affinity

5.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Algorithm Evaluation

 Deterministic modeling – takes a particular predetermined
workload and defines the performance of each algorithm
for that workload

 Queueing models

 Implementation

5.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Evaluation of CPU schedulers by Simulation

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 6

