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Chapter 6:  CPU Scheduling
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Chapter 6:  CPU Scheduling

 Basic Concepts

 Scheduling Criteria 

 Scheduling Algorithms

 Thread Scheduling

 Multiple-Processor Scheduling

 Operating Systems Examples

 Algorithm Evaluation
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Basic Concepts

 Maximum CPU utilization obtained with multiprogramming

 CPU–I/O Burst Cycle – Process execution consists of a cycle of 
CPU execution and I/O wait

 CPU burst distribution
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Histogram of CPU-burst Times
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Alternating Sequence of CPU And I/O Bursts
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CPU Scheduler

 Selects from among the processes in memory that are ready to execute, 
and allocates the CPU to one of them

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

 Scheduling that is only allowed under 1 and 4 is nonpreemptive

 All other scheduling is preemptive
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Dispatcher

 Dispatcher module gives control of the CPU to the process selected 
by the short-term scheduler; this involves:

 switching context

 RTN, which includes (simultaneously)

• switching to user mode

• jumping to the proper location in the user program to restart 
that program

 Dispatch latency – time it takes for the dispatcher to stop one 
process and start another running
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Dispatch Latency
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Scheduling Criteria

 CPU utilization (maximize) – keep the CPU as busy as possible

 Throughput (maximize) – # of processes that complete their 
execution per time unit

 Turnaround time (minimize) – amount of time to execute a 
particular process

 Waiting time (minimize) – amount of time a process has been 
waiting in the ready queue

 Response time (minimize) – amount of time it takes from when a 
request was submitted until the first response is produced, not 
output  (for time-sharing environment)
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Scheduling Algorithm Optimization Criteria

 Maximize CPU utilization

 Maximize throughput

 Minimize turnaround time 

 Minimize waiting time 

 Minimize response time
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First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

 P2 3

 P3  3 

 Suppose that the processes arrive in the order: P1 , P2 , P3  

The Gantt Chart for the schedule is:

 Waiting time for P1  = 0; P2  = 24; P3 = 27

 Average waiting time:  (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300
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FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

 P2 , P3 , P1 

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time:   (6 + 0 + 3)/3 = 3

 Much better than previous case

 Avoids the Convoy effect: short process behind long process

P1P3P2

63 300
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Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst.  Use these 
lengths to schedule the process with the shortest time

 SJF is optimal – gives minimum average waiting time for a given set of 
processes

 The difficulty is knowing the length of the next CPU request
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Shortest-Job-First (SJR) Scheduling

 Associate with each process the length of its next CPU burst.  Use 
these lengths to schedule the process with the shortest time

 Two schemes: 

 non-preemptive – once CPU given to the process it cannot be 
preempted until completes its CPU burst

 preemptive – if a new process arrives with CPU burst length 
less than remaining time of current executing process, preempt. 
 This scheme is know as the 
Shortest-Remaining-Time-First (SRTF)

 SJF is optimal (withing pre-emptive and non-pre-emptive 
scheduling algorithms, respectively) – gives minimum average 
waiting time for a given set of processes

 The difficulty is knowing the length of the next CPU request
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Process Arrival Time Burst Time

P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4

 SJF (non-preemptive)

 Average waiting time = (0 + 6 + 3 + 7)/4  = 4

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12
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Example of Preemptive SJF

ProcessArrival Time Burst Time

P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4

 SJF (preemptive)

Average waiting time = (9 + 1 + 0 +2)/4 = 3 =

 = ((11 + 7 + 5) – (0 + 2 + 4 + 5))/4

P1 P3P2

42 110

P4

5 7

P2 P1

16
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Example of Preemptive SJF

ProcessArrival Time Burst Time

P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4

 SJF (preemptive)

Average waiting time = (9 + 1 + 0 +2)/4 = 3 =

 = ((11 + 7 + 5) – (0 + 2 + 4 + 5))/4

P1 P3P2

42 110

P4

5 7

P2 P1

16
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Determining Length of Next CPU Burst

 Can only estimate the length

 Can be done by using the length of previous CPU bursts, using exponential 
averaging

1.   tn=actual  length of nth  CPU  burst
2 .   τn+1=  predicted value for the next CPU  burst
3 .   α , 0≤α≤1
4 .  Define: τ n+1=αtn+ (1−α ) τ n .
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Prediction of the Length of the Next CPU Burst
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Examples of Exponential Averaging

  =0

 n+1 = n

 Recent history does not count

  =1

  n+1 =  tn

 Only the actual last CPU burst counts

 If we expand the formula, we get:

n+1 =  tn+(1 - ) tn -1
 + …

            +(1 -  )j  tn -j + …

            +(1 -  )n +1 0

 Since both  and (1 - ) are less than or equal to 1, each successive term 
has less weight than its predecessor
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Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority (smallest 
integer  highest priority)

 preemptive

 non-preemptive

 SJF is a priority scheduling where priority is the predicted next CPU burst 
time

 Problem: How to avoid starvation?  (Starvation in this case occurs when a 
low priority ready processes is never selected for running.)

 Solution: Aging – as time progresses increase the priority of the processes 
wating in the ready queue.
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Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum), 
usually 10-100 milliseconds.  After this time has elapsed, the 
process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time 
quantum is q, then each process gets 1/n of the CPU time in 
chunks of at most q time units at once.  No process waits in 
ready queue more than (n-1)q time units.

 Performance

 q large  FIFO

 q small  thrashing (q must be large with respect to context 
switch, otherwise overhead is too high)
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Round Robin (RR)

The purpose of RR is to 
approximate SJF

by classifying jobs as short (CPU burst not 
larger than Q) and long (otherwise)
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Example of RR with Time Quantum = 20

Process Burst Time

P1 53

 P2  17

 P3 68

 P4  24

 The Gantt chart is: 

 W = (134 + 121 + 37)/4 = 292/4 = 73

 Higher average turnaround than SJF

 Favors processes with CPU bursts <= Q

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162
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Example of RR with Time Quantum = 20

The Gantt chart is: 

W = (134 + 121 + 37)/4 = 292/4 = 73

Remember:

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162
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Time Quantum and Context Switch Time
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Turnaround Time Varies With The Time Quantum
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Turnaround Time Varies With The Time Quantum

Same scenario, 
but ...

CPU bursts: 6 3 7 1

Q = 3 T = 11.5 W 
= 7.25
Q = 6 T = 12   W = 
7.75
Q = 7 T = 12   W = 
7.75
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Turnaround Time Varies With The Time Quantum

Same scenario, 
but ...

CPU bursts: 6 7 3 1

Q = 3 T = 12.25 W 
= 8
Q = 6 T = 13.25 W 
= 9
Q = 7 T = 13    W 
= 8.75
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Turnaround Time Varies With The Time Quantum

CPU bursts: 7 6 3 1

Q = 3 T = 13    W = 8.75
Q = 6 T = 15    W = 10.75
Q = 7 T = 13.25 W = 9

CPU bursts: 60 3 70 1

Q = 3 T = 66.25 W = 32.75
Q = 6 T = 95.25 W = 62.25
Q = 7 T = 97.4  W = 64.5
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Multilevel Queue

 Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

 Each queue has its own scheduling algorithm

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues

 Fixed priority scheduling; (i.e., serve all from foreground then from 
background).  Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time which it can 
schedule amongst its processes; i.e., 80% to foreground in RR

 20% to background in FCFS 
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Multilevel Queue Scheduling
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Multilevel Feedback Queue

 A process can move between the various queues; aging can be 
implemented this way

 Multilevel-feedback-queue scheduler defined by the following 
parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter 
when that process needs service
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Example of Multilevel Feedback Queue

 Three queues: 

 Q0 – RR with time quantum 8 milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is served FCFS. When it gains CPU, 
job receives 8 milliseconds.  If it does not finish in 8 milliseconds, job is 
moved to queue Q1.

 At Q1 job is again served FCFS and receives 16 additional milliseconds.  
If it still does not complete, it is preempted and moved to queue Q2.
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Multilevel Feedback Queues
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Multilevel Feedback Queues

Provide more flexible approximations of 
the SJF scheduling algorithm.
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Multiple-Processor Scheduling

 CPU scheduling more complex when multiple CPUs are 
available

 Homogeneous processors within a multiprocessor

 Asymmetric multiprocessing – only one processor 
accesses the system data structures, alleviating the need 
for data sharing

 Symmetric multiprocessing  (SMP) – each processor 
is self-scheduling, all processes in common ready queue, 
or each has its own private queue of ready processes

 Processor affinity – process has affinity for processor 
on which it is currently running

 soft affinity

 hard affinity
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Algorithm Evaluation

 Deterministic modeling – takes a particular predetermined 
workload and defines the performance of each algorithm  
for that workload

 Queueing models

 Implementation
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Evaluation of CPU schedulers by Simulation
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End of Chapter 6


