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Chapter 8:  Virtual Memory

 Background

 Demand Paging

 Copy-on-Write

 Page Replacement

 Allocation of Frames 

 Thrashing

 Memory-Mapped Files

 Allocating Kernel Memory

 Other Considerations

 Operating-System Examples
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Objectives

 To describe the benefits of a virtual memory system

 To explain the concepts of demand paging, page-replacement algorithms, 
and allocation of page frames
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Background

 Virtual memory – separation of logical memory from physical memory.

 Only part of the program needs to be in memory for execution

 Logical address space can therefore be much larger than physical 
address space

 Allows address spaces to be shared by several processes

 Allows for more efficient process creation

 Virtual memory can be implemented via:

 Demand paging 

 Demand segmentation
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Virtual Memory That is Larger Than Physical Memory


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Demand Paging

 Bring a page into memory only when it is needed

 Less I/O needed

 Less memory needed 

 Faster response

 More users

 Page is needed  reference to it

 invalid reference  abort

 not-in-memory  bring to memory

 Lazy swapper – never swaps a page into memory unless page is needed

 Swapper that deals with pages is a pager
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Transfer of a Paged Memory to Contiguous Disk Space
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Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated
(v  in-memory, i  not-in-memory)

 Initially valid–invalid bit is set to i on all entries

 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry

      is I  page fault

v
v
v

v
i

i
i

….

Frame # valid-invalid bit

page table
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Page Table When Some Pages Are Not in Main Memory
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Page Fault

 If there is a reference to a page, first reference to that page will 
trap to operating system:

              page fault

1. Operating system looks at another table to decide:
 Invalid reference  abort
 Just not in memory

2. Get empty frame

3. Swap page into frame

4. Reset tables

• Set validation bit = v

1. Restart the instruction that caused the page fault
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Steps in Handling a Page Fault
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Performance of Demand Paging

 Page Fault Rate 0  p  1.0

 if p = 0 no page faults 

 if p = 1, every reference is a fault

 Effective Access Time (EAT) for virtual memory

EAT = (1 – p) x ma + p x (page fault time)
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Performance of Demand Paging

 Page Fault Rate 0  p  1.0

 if p = 0 no page faults 

 if p = 1, every reference is a fault

 Effective Access Time (EAT) for virtual memory

EAT = (1 – p) x memory access

+ p (page fault overhead

           + swap page out (may be unnecessary)

           + swap page in

           + restart overhead

                                                     )
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Performance of Demand Paging

 Page Fault Rate 0  p  1.0

 if p = 0 no page faults 

 if p = 1, every reference is a fault

 Effective Access Time (EAT) for virtual memory

EAT = (1 – p) x memory access // EAT for paged memory

                                                              // computed in Chap. 7

+ p (page fault overhead

           + swap page out (may be unnecessary)

           + swap page in

           + restart overhead

                                                     )



9.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 7: Effective Access Time

Example

 Associative Lookup  = 0.05 time unit (= 10 ns)

 Assume time unit is 190 ns

 Hit ratio 99

EAT = 190ns (2 +  – 190ns (2 + 0.0495 -.99)

201.305ns  200ns 

 



9.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Demand Paging Example

 Assume the memory access time = 200 nanoseconds

Average page-fault service time in microseconds (µs)

 Interrupt ~ 0 µs

 Save context ~ 10 – 20 µs

 Recognize page fault ~ 1 µs

 Check validity of page reference and find disk addr ~ 5 µs

 Issue a read from the disk to a free frame = 0 µs

 Wait in the waiting queue 0 s (if the ready queue is nonempty)

 While waiting, allocate CPU to another process p ~ 10 - 20 µs

 Accept END interrupt from DMA ~ 0 µs
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Demand Paging Example 2

 Assume the memory access time = 200 nanoseconds

 Average page-fault service time (cont'd)

 Save context of process p ~ 10 – 20 µs

 Update page table ~ 2 µs

 Wait in the ready queue 0 µs

 Restore the context ~ 10 – 20 µs 

 Total ~ 48 – 88 µs, say, 70 µs on average
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Demand Paging Example 3

 Assume the memory access time = 200 nanoseconds

 Average page-fault service time = 70 µs = 70,000 ns

 EAT =  (1 – p)  x 200 + p x 70,000 

              = 200 + p x 69,800

 If one access out of 1,000 causes a page fault, then

         EAT = 269.8 nanoseconds  270ns . 

      This is a slowdown by 35%

If one access out of 10,000 causes a page fault, then

         EAT = 207 nanoseconds. 

      This is a slowdown by 3.5%
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Demand Paging Example 3

 If one access out of 10,000 causes a page fault, then

         EAT = 207 nanoseconds. 

      This is a slowdown by 3.5%

Unrealistic value from the textbook:
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Demand Paging Example 3

 If one access out of 10,000 causes a page fault, then

         EAT = 207 nanoseconds. 

      This is a slowdown by 3.5%

 The question is how can one assure such a low page-fault rate?
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Demand Paging Example 3

 If one access out of 10,000 causes a page fault, then

         EAT = 207 nanoseconds. 

      This is a slowdown by 3.5%

 The question is how can one assure such a low page-fault rate?

 Page replacement algorithm is the key to an answer.
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What happens if there is no free frame?

 Page replacement – find some page in memory, but not 
really in use, swap it out

 algorithm

 performance – want an algorithm which will result in 
minimum number of page faults

 Same page may be brought into memory several times
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Page Replacement

 Prevent over-allocation of memory by modifying page-fault service routine to 
include page replacement

 Use modify (dirty) bit to reduce overhead of page transfers – only modified 
pages are written to disk

 Page replacement completes separation between logical memory and 
physical memory – large virtual memory can be provided on a smaller 
physical memory
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Need For Page Replacement
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Basic Page Replacement

1) Find the location of the desired page on disk

2) Find a free frame:
   -  If there is a free frame, use it
   -  If there is no free frame, use a page replacement 
algorithm to select a victim frame

3) Bring  the desired page into the (newly) free frame; 
update the page and frame tables

4) Restart the process



9.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement
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Page Replacement Algorithms

 Want lowest page-fault rate

 Example string of memory references: (assuming page 
length 100):

 0100, 0101, 0232, 0311, 0404, 0100, 0102, 0103, 0233, 
0252, 0532, 0104, 0100, 0101, 0233, 0312, 0405, 0532

 Evaluate algorithm by running it on a particular string of 
page references with consecutive duplicate references 
collapsed to single ones (reference string) and computing 
the number of page faults on that string
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Page Replacement Algorithms 2

 In PowerPoint examples, the reference string is 

   

               1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

for a total of 5 pages and minimum 5 page faults.

 In textbook examples, the reference string is 

   

               7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

for a total of 6 pages and minimum 6 page faults.
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Graph of Page Faults Versus The Number of Frames
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First-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per process)

Net faults = 9 – 5 = 4.

 4 frames

Net faults = 10 – 5 = 5.

 Belady’s Anomaly: more frames  more page faults
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FIFO Illustrating Belady’s Anomaly
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FIFO Page Replacement

Net faults = 15 – 6 = 9.
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Optimal Algorithm

 Replace page that will not be used for longest period of time

 4 frames example

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Net faults = 6 – 5 = 1.

 How do you know this?

 Used for measuring how well your algorithm performs

1

2

3

4

6 page faults
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Optimal Page Replacement

Net faults = 9 – 6 = 3.
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Least Recently Used (LRU) Algorithm

 Reference string:  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Net faults = 8 – 5 = 3.

 Counter implementation

 Every page entry has a counter; every time page is referenced 
through this entry, copy the clock into the counter

 When a page needs to be changed, look at the counters to 
determine which are to change
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LRU Page Replacement

Net faults = 12 – 6 = 6.
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LRU Algorithm (Cont.)

 Stack implementation – keep a stack of page numbers in a double link form:

 Page referenced:

 move it to the top

 requires 6 pointers to be changed

 No search for replacement
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Use Of A Stack to Record The Most Recent Page References
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LRU Approximation Algorithms

 Reference bit
 With each page associate a bit, initially = 0
 When page is referenced bit set to 1
 Replace the one which is 0 (if one exists)

 We do not know the order, however

 Second chance
 Need reference bit
 Clock replacement
 If page to be replaced (in clock order) has reference bit = 1 then:

 set reference bit 0
 leave page in memory
 replace next page (in clock order), subject to same rules
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Second-Chance (clock) Page-Replacement Algorithm
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Counting Algorithms

 Keep a counter of the number of references that have been 
made to each page

 LFU Algorithm:  replaces page with smallest count

 MFU Algorithm: based on the argument that the page with 
the smallest count was probably just brought in and has yet to 
be used
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Allocation of Frames

 Each process needs minimum number of pages

 Example:  IBM 370 – 6 pages to handle SS MOVE instruction:

 instruction is 6 bytes, might span 2 pages

 2 pages to handle from

 2 pages to handle to

 Two major allocation schemes

 fixed allocation

 priority allocation
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Allocation of Frames 2
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Fixed Allocation

 Equal allocation – For example, if there are 100 frames and 5 
processes, give each process 20 frames.

 Proportional allocation – Allocate according to the size of process
si= size of process pi

S=∑ s i

m=  total number of frames

a i= allocation for pi=
s i

S
×m

m=64
si=10

s2=127

a1=
10
137

×64≈5

a2=
127
137

×64≈59
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Priority Allocation

 Use a proportional allocation scheme using priorities rather than 
size

 If process Pi generates a page fault,

 select for replacement one of its frames

 select for replacement a frame from a process with lower 
priority number
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Global vs. Local Allocation

 Global replacement – process selects a replacement 
frame from the set of all frames; one process can take a 
frame from another

 Local replacement – each process selects from only its 
own set of allocated frames
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Thrashing

 If a process does not have “enough” pages, the page-fault rate is 
very high.  This leads to:

 low CPU utilization

 operating system thinks that it needs to increase the degree of 
multiprogramming

 another process added to the system

 Thrashing  a process is busy swapping pages in and out
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Thrashing (Cont.)
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Demand Paging and Thrashing 

 Why does demand paging work?
Locality model

 Process migrates from one locality to another

 Localities may overlap

 Why does thrashing occur?
 size of locality > total memory size
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Page-Fault Frequency Scheme

 Establish “acceptable” page-fault rate

 If actual rate too low, process loses frame

 If actual rate too high, process gains frame
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Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated as routine memory 
access by mapping a disk block to a page in memory

 A file is initially read using demand paging. A page-sized portion of the file is 
read from the file system into a physical page. Subsequent reads/writes 
to/from the file are treated as ordinary memory accesses.

 Simplifies file access by treating file I/O through memory rather than 
read() write() system calls

 Also allows several processes to map the same file allowing the pages in 
memory to be shared
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Memory Mapped Files
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Other Issues – Page Size

 Page size selection must take into consideration:

 fragmentation

 table size 

 I/O overhead

 locality
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Other Issues – TLB Reach 

 TLB Reach - The amount of memory accessible from the TLB

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the TLB

 Otherwise there is a high degree of page faults

 Increase the Page Size

 This may lead to an increase in fragmentation as not all 
applications require a large page size

 Provide Multiple Page Sizes

 This allows applications that require larger page sizes the 
opportunity to use them without an increase in 
fragmentation
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Other Issues – Program Structure

 Program structure
 Int[128,128] data;
 Each row is stored in one page 
 Program 1 

                for (j = 0; j <128; j++)
                  for (i = 0; i < 128; i++)
                        data[i,j] = 0;

     128 x 128 = 16,384 page faults 

 Program 2 

             for (i = 0; i < 128; i++)
               for (j = 0; j < 128; j++)
                     data[i,j] = 0;

128 page faults
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Other Issues – I/O interlock

 I/O Interlock – Pages must sometimes be locked into 
memory

 Consider I/O - Pages that are used for copying a file 
from a device must be locked from being selected for 
eviction by a page replacement algorithm
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Reason Why Frames Used For I/O Must Be In Memory
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End of Chapter 8
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