
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 8: Virtual Memory

9.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 8: Virtual Memory

 Background

 Demand Paging

 Copy-on-Write

 Page Replacement

 Allocation of Frames

 Thrashing

 Memory-Mapped Files

 Allocating Kernel Memory

 Other Considerations

 Operating-System Examples

9.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To describe the benefits of a virtual memory system

 To explain the concepts of demand paging, page-replacement algorithms,
and allocation of page frames

9.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Background

 Virtual memory – separation of logical memory from physical memory.

 Only part of the program needs to be in memory for execution

 Logical address space can therefore be much larger than physical
address space

 Allows address spaces to be shared by several processes

 Allows for more efficient process creation

 Virtual memory can be implemented via:

 Demand paging

 Demand segmentation

9.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual Memory That is Larger Than Physical Memory



9.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Demand Paging

 Bring a page into memory only when it is needed

 Less I/O needed

 Less memory needed

 Faster response

 More users

 Page is needed  reference to it

 invalid reference  abort

 not-in-memory  bring to memory

 Lazy swapper – never swaps a page into memory unless page is needed

 Swapper that deals with pages is a pager

9.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Transfer of a Paged Memory to Contiguous Disk Space

9.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated
(v  in-memory, i  not-in-memory)

 Initially valid–invalid bit is set to i on all entries

 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry

 is I  page fault

v
v
v

v
i

i
i

….

Frame # valid-invalid bit

page table

9.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Table When Some Pages Are Not in Main Memory

9.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Fault

 If there is a reference to a page, first reference to that page will
trap to operating system:

 page fault

1. Operating system looks at another table to decide:
 Invalid reference  abort
 Just not in memory

2. Get empty frame

3. Swap page into frame

4. Reset tables

• Set validation bit = v

1. Restart the instruction that caused the page fault

9.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Steps in Handling a Page Fault

9.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Performance of Demand Paging

 Page Fault Rate 0  p  1.0

 if p = 0 no page faults

 if p = 1, every reference is a fault

 Effective Access Time (EAT) for virtual memory

EAT = (1 – p) x ma + p x (page fault time)

9.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Performance of Demand Paging

 Page Fault Rate 0  p  1.0

 if p = 0 no page faults

 if p = 1, every reference is a fault

 Effective Access Time (EAT) for virtual memory

EAT = (1 – p) x memory access

+ p (page fault overhead

 + swap page out (may be unnecessary)

 + swap page in

 + restart overhead

)

9.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Performance of Demand Paging

 Page Fault Rate 0  p  1.0

 if p = 0 no page faults

 if p = 1, every reference is a fault

 Effective Access Time (EAT) for virtual memory

EAT = (1 – p) x memory access // EAT for paged memory

 // computed in Chap. 7

+ p (page fault overhead

 + swap page out (may be unnecessary)

 + swap page in

 + restart overhead

)

9.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 7: Effective Access Time

Example

 Associative Lookup  = 0.05 time unit (= 10 ns)

 Assume time unit is 190 ns

 Hit ratio 99

EAT = 190ns (2 +  – 190ns (2 + 0.0495 -.99)

201.305ns  200ns

9.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Demand Paging Example

 Assume the memory access time = 200 nanoseconds

Average page-fault service time in microseconds (µs)

 Interrupt ~ 0 µs

 Save context ~ 10 – 20 µs

 Recognize page fault ~ 1 µs

 Check validity of page reference and find disk addr ~ 5 µs

 Issue a read from the disk to a free frame = 0 µs

 Wait in the waiting queue 0 s (if the ready queue is nonempty)

 While waiting, allocate CPU to another process p ~ 10 - 20 µs

 Accept END interrupt from DMA ~ 0 µs

9.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Demand Paging Example 2

 Assume the memory access time = 200 nanoseconds

 Average page-fault service time (cont'd)

 Save context of process p ~ 10 – 20 µs

 Update page table ~ 2 µs

 Wait in the ready queue 0 µs

 Restore the context ~ 10 – 20 µs

 Total ~ 48 – 88 µs, say, 70 µs on average

9.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Demand Paging Example 3

 Assume the memory access time = 200 nanoseconds

 Average page-fault service time = 70 µs = 70,000 ns

 EAT = (1 – p) x 200 + p x 70,000

 = 200 + p x 69,800

 If one access out of 1,000 causes a page fault, then

 EAT = 269.8 nanoseconds  270ns .

 This is a slowdown by 35%

If one access out of 10,000 causes a page fault, then

 EAT = 207 nanoseconds.

 This is a slowdown by 3.5%

9.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Demand Paging Example 3

 If one access out of 10,000 causes a page fault, then

 EAT = 207 nanoseconds.

 This is a slowdown by 3.5%

Unrealistic value from the textbook:

9.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Demand Paging Example 3

 If one access out of 10,000 causes a page fault, then

 EAT = 207 nanoseconds.

 This is a slowdown by 3.5%

 The question is how can one assure such a low page-fault rate?

9.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Demand Paging Example 3

 If one access out of 10,000 causes a page fault, then

 EAT = 207 nanoseconds.

 This is a slowdown by 3.5%

 The question is how can one assure such a low page-fault rate?

 Page replacement algorithm is the key to an answer.

9.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

What happens if there is no free frame?

 Page replacement – find some page in memory, but not
really in use, swap it out

 algorithm

 performance – want an algorithm which will result in
minimum number of page faults

 Same page may be brought into memory several times

9.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement

 Prevent over-allocation of memory by modifying page-fault service routine to
include page replacement

 Use modify (dirty) bit to reduce overhead of page transfers – only modified
pages are written to disk

 Page replacement completes separation between logical memory and
physical memory – large virtual memory can be provided on a smaller
physical memory

9.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Need For Page Replacement

9.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Basic Page Replacement

1) Find the location of the desired page on disk

2) Find a free frame:
 - If there is a free frame, use it
 - If there is no free frame, use a page replacement
algorithm to select a victim frame

3) Bring the desired page into the (newly) free frame;
update the page and frame tables

4) Restart the process

9.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement

9.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement Algorithms

 Want lowest page-fault rate

 Example string of memory references: (assuming page
length 100):

 0100, 0101, 0232, 0311, 0404, 0100, 0102, 0103, 0233,
0252, 0532, 0104, 0100, 0101, 0233, 0312, 0405, 0532

 Evaluate algorithm by running it on a particular string of
page references with consecutive duplicate references
collapsed to single ones (reference string) and computing
the number of page faults on that string

9.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement Algorithms 2

 In PowerPoint examples, the reference string is

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

for a total of 5 pages and minimum 5 page faults.

 In textbook examples, the reference string is

 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

for a total of 6 pages and minimum 6 page faults.

9.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Graph of Page Faults Versus The Number of Frames

9.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

First-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per process)

Net faults = 9 – 5 = 4.

 4 frames

Net faults = 10 – 5 = 5.

 Belady’s Anomaly: more frames  more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

9.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

FIFO Illustrating Belady’s Anomaly

9.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

FIFO Page Replacement

Net faults = 15 – 6 = 9.

9.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Optimal Algorithm

 Replace page that will not be used for longest period of time

 4 frames example

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Net faults = 6 – 5 = 1.

 How do you know this?

 Used for measuring how well your algorithm performs

1

2

3

4

6 page faults

4 5

9.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Optimal Page Replacement

Net faults = 9 – 6 = 3.

9.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Least Recently Used (LRU) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Net faults = 8 – 5 = 3.

 Counter implementation

 Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

 When a page needs to be changed, look at the counters to
determine which are to change

5

2

4

3

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3

9.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

LRU Page Replacement

Net faults = 12 – 6 = 6.

9.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

LRU Algorithm (Cont.)

 Stack implementation – keep a stack of page numbers in a double link form:

 Page referenced:

 move it to the top

 requires 6 pointers to be changed

 No search for replacement

9.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Use Of A Stack to Record The Most Recent Page References

9.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

LRU Approximation Algorithms

 Reference bit
 With each page associate a bit, initially = 0
 When page is referenced bit set to 1
 Replace the one which is 0 (if one exists)

 We do not know the order, however

 Second chance
 Need reference bit
 Clock replacement
 If page to be replaced (in clock order) has reference bit = 1 then:

 set reference bit 0
 leave page in memory
 replace next page (in clock order), subject to same rules

9.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Second-Chance (clock) Page-Replacement Algorithm

9.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Counting Algorithms

 Keep a counter of the number of references that have been
made to each page

 LFU Algorithm: replaces page with smallest count

 MFU Algorithm: based on the argument that the page with
the smallest count was probably just brought in and has yet to
be used

9.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Allocation of Frames

 Each process needs minimum number of pages

 Example: IBM 370 – 6 pages to handle SS MOVE instruction:

 instruction is 6 bytes, might span 2 pages

 2 pages to handle from

 2 pages to handle to

 Two major allocation schemes

 fixed allocation

 priority allocation

9.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Allocation of Frames 2

9.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Fixed Allocation

 Equal allocation – For example, if there are 100 frames and 5
processes, give each process 20 frames.

 Proportional allocation – Allocate according to the size of process
si= size of process pi

S=∑ s i

m= total number of frames

a i= allocation for pi=
s i

S
×m

m=64
si=10

s2=127

a1=
10
137

×64≈5

a2=
127
137

×64≈59

9.45 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Priority Allocation

 Use a proportional allocation scheme using priorities rather than
size

 If process Pi generates a page fault,

 select for replacement one of its frames

 select for replacement a frame from a process with lower
priority number

9.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Global vs. Local Allocation

 Global replacement – process selects a replacement
frame from the set of all frames; one process can take a
frame from another

 Local replacement – each process selects from only its
own set of allocated frames

9.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thrashing

 If a process does not have “enough” pages, the page-fault rate is
very high. This leads to:

 low CPU utilization

 operating system thinks that it needs to increase the degree of
multiprogramming

 another process added to the system

 Thrashing  a process is busy swapping pages in and out

9.48 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thrashing (Cont.)

9.49 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Demand Paging and Thrashing

 Why does demand paging work?
Locality model

 Process migrates from one locality to another

 Localities may overlap

 Why does thrashing occur?
 size of locality > total memory size

9.50 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page-Fault Frequency Scheme

 Establish “acceptable” page-fault rate

 If actual rate too low, process loses frame

 If actual rate too high, process gains frame

9.51 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated as routine memory
access by mapping a disk block to a page in memory

 A file is initially read using demand paging. A page-sized portion of the file is
read from the file system into a physical page. Subsequent reads/writes
to/from the file are treated as ordinary memory accesses.

 Simplifies file access by treating file I/O through memory rather than
read() write() system calls

 Also allows several processes to map the same file allowing the pages in
memory to be shared

9.52 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory Mapped Files

9.53 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Other Issues – Page Size

 Page size selection must take into consideration:

 fragmentation

 table size

 I/O overhead

 locality

9.54 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Other Issues – TLB Reach

 TLB Reach - The amount of memory accessible from the TLB

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the TLB

 Otherwise there is a high degree of page faults

 Increase the Page Size

 This may lead to an increase in fragmentation as not all
applications require a large page size

 Provide Multiple Page Sizes

 This allows applications that require larger page sizes the
opportunity to use them without an increase in
fragmentation

9.55 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Other Issues – Program Structure

 Program structure
 Int[128,128] data;
 Each row is stored in one page
 Program 1

 for (j = 0; j <128; j++)
 for (i = 0; i < 128; i++)
 data[i,j] = 0;

 128 x 128 = 16,384 page faults

 Program 2

 for (i = 0; i < 128; i++)
 for (j = 0; j < 128; j++)
 data[i,j] = 0;

128 page faults

9.56 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Other Issues – I/O interlock

 I/O Interlock – Pages must sometimes be locked into
memory

 Consider I/O - Pages that are used for copying a file
from a device must be locked from being selected for
eviction by a page replacement algorithm

9.57 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Reason Why Frames Used For I/O Must Be In Memory

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 8

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

