
Heaps and Balanced Trees
For in-class use only in CSC 501/401 course

Dr. Marek A. Suchenek ©

April 15, 2015

1 Heaps and Balanced Trees

1.1 Binary representations of positive natural num-
bers

How many bits are needed to represent a number M > 0 in binary? Let’s
say it’s n. We have:

1

M ≤ 11 . . . 1︸ ︷︷ ︸
n

11 . . . 1︸ ︷︷ ︸
n

+1 = 1 00 . . . 0︸ ︷︷ ︸
n

= 2n

So,

11 . . . 1︸ ︷︷ ︸
n

= 2n − 1

or

M ≤ 2n − 1

or

M + 1 ≤ 2n

or

log2(M + 1) ≤ n

or

dlog2(M + 1)e ≤ n

or

2

blog2 Mc+ 1 ≤ n.

So, the smallest n that is large enough is blog2 Mc + 1; that is how bits
are needed to represent number M > 0 in binary.

Exercise. Do you see a set of binary sequences on Figure 1? Do you see
a complete binary tree there? If so then explain why.

Figure 1: Do you see a set of binary sequences and a complete binary tree
here?

3

1.2 Heaps
A heap is a contiguous, partially ordered binary tree. Contiguous means that
all levels of the tree in question, except, perhaps, for the last level, contain
the maximum number of nodes, and if the last level of the tree contains a
lesser number of nodes then they are flushed all the way to the left.

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17

Figure 2: A heap with 17 nodes showing nodes’ ordinal numbers of nodes in
decimal.

Figure 2 visualizes an example of heap with 17 nodes. It shows nodes’

4

ordinal numbers in decimal. Their binary representations are of the form: 1
followed by a sequence of edges’ labels along the path from the root to the
node in question. For instance, the sequence of labels along the path from
the root to node number 17 is 0001 and the binary representation of 17 is
10001. The depth of the node number 17, defined as the length of path from
the root to that node, is 4 and may be computed as one less than the length
of the binary representation of 17, that is, blog2 17c. Since it is the last node
of the heap, it is also the depth of the heap. (We will comment more on this
later.)

Figure 3: A really large heap on a small picture.

In addition to providing navigation information, labels of the edges indi-
cate orientation of children: an edge labeled with 0 points to the left child
and one labeled with 1 points to the right child. It so happens that the
children of node i are 2i and 2i+ 1, as it has been visualized on Figure 4.

This important fact may be easily established by looking at binary rep-
resentations of nodes’ ordinal numbers. Since each such representation is a
sequence of bits that determine the path from the root to the node in ques-
tion, the binary representation of a parent node is a result of truncating the

5

Figure 4: Ancestral information translated onto ordinal numbers (shown) of
the nodes of heap.

last bit from the binary representation of any of its children. Truncating the
last bit yields the same result as the shiftright operation, that performs
the integer division by 2. So, if j is the ordinal number of a child then the
ordinal number i of its parent is

i = bj2c,

or, in other words,

j =


2i if j is the left child of i

2i+ 1 if j is the right child of i.
(1)

For example, the path from the root to node 13 in the heap on Figure 2,
is 101 which can be obtained from the binary representation of 13, that is,

6

from 1101, by dropping its first digit 1. So the path to the parent of 13 is 10
and the ordinal number of the node at the end of that path (the parent of
13) is 110, or in 6 in decimal. So, 6 is the parent of 13. Of course, 6 = b13

2 c.
Also, the children of 6, if it has any, must have ordinal numbers that

in binary read 1100 and 1101 since these are the only numbers that when
divided by 2 will yield 110 or 6. These are 12 and 13.

In a similar fashion one can determine if a node i has a child of children
by comparing 2i to n. If 2i ≤ n then i has a child or children and if 2i > n
then it has not (is a leaf, that is). If 2i = n then 2i + 1 > n and so node i
does not have the right child. If 2i < n then 2i + 1 ≤ n and so node i does
have the right child.

Partially ordered means that every sequence of nodes along a path from
the root to a leaf in the tree is ordered in a non-increasing order. Or, in other
words, that children, if any, of a node are not larger than their parent.

Figure 5 visualizes an example of a heap with 10 nodes with the values
of the nodes shown instead of their ordinal numbers.

One of the most amazing things about contiguous trees is how cleverly
are they represented with one-dimensional arrays. An array stores the nodes
of the tree according to their level-by-level order. The root of the tree is
stored at index 1, and the children, if any, of a node stored at index i are
stored at indices 2i (the left child) and 2i + 1 (the right child). A node i
has a child j (left or right) if, and only if, j ≤ N , where N is the number of
nodes of the tree.

7

0 1

0 1 0 1

0 1 0

10

9 3

8 6 1 2

7 4 5

Figure 5: A heap with 10 nodes showing their values and not the ordinal
numbers.

The table in Figure 6 shows an array that represents the heap of Figure 2
with the indicies of the array shown in the top row of the table.

1.3 Heapsort

HeapSort (see, e.g., [Knu97] for its description and partial analysis) con-
sists of two phases: heap construction and a sequence of removals from the

8

1 2 3 4 5 6 7 8 9 10
10 9 3 8 6 1 2 7 4 5

Figure 6: Array representation of the heap of Figure 5 showing both the
ordinal numbers (indicies, in the upper row) and the values (in the lower
row) of the nodes.

constructed heap that I call heap deconstruction.
Both phases use a subroutine (referred to as FixHeap in this paper) that

inherits an almost heap, defined as a heap whose root may violate the partially
ordered tree condition, and turns it onto a heap by bubble-sorting its root
into one of its paths. This is done by demoting the said root down the heap
while promoting the largest of its current children until the demotee reaches
the level where it is not less than any of its current children, if it still has
any at that level.

The heap-construction phase (referred to as MakeHeap in this paper and
credited to Floyd [Flo64]) inherits an array that represents a contiguous tree
T of numbers and rearranges it onto a heap by calling FixHeap for its parts
that represent subtrees of T that have been already rearranged onto almost
heaps, beginning from the one that has the last non-leaf (stored at the index
bN2 c in the array) of T as the root1 and ending with the entire tree T (the
root of which is stored at index 1). This is accomplished by the following

1MakeHeap could have begun calling FixHeap from the last node of T , but this would

9

Java statement:

for (int i = N/2; i > 0; i--) FixHeap(i); (2)

The heap-deconstruction phase (referred to as RemoveAll in this paper and
credited to Williams [Wil64]) consists of N calls to a subroutine (referred
to as RemoveMax in this paper) that removes the root of the heap, fills
the resulting vacancy with the last node of the heap, and calls FixHeap in
order to turn the resulting almost heap onto a heap after each removal. The
removed nodes are then stored in the array from the last index up in the
order they were removed, which process yields an array that is sorted in an
increasing order.

A complete code of HeapSortmay be easily found in about every standard
text on Data Structures and Algorithms, or in [WWW].

1.4 The depth of a heap
Each node of of a heap with n nodes is represented by a binary sequence (a
path from the root of the heap to that particular node). The depth of the
heap is equal to the maximal (over all nodes of the heap) length of such a
path. Since the last node in the heap belongs to the last level of the heap,
the length of the path from the root to that last node is maximal.

produce the same sequence of comparisons of keys and demotions because FixHeap does
not do anything to a one-node tree.

10

Let p be the path from the root to the last node of the heap. As we
noticed before, the binary representation of that node’s ordinal number (n,
that is) is 1 followed by p.

In other words, the depth Dn of the heap with n nodes, which is equal to
the length of p, is one less than the number of bits needed to represent n. So

Dn = blog2 nc.

Note. The above equality was also proved in file 2− trees.pdf, Section
Properties of balanced trees, pages 26 and on.

Exercise Show that a heap with l leaves (not nodes) has a depth D that
satisfies

dlog2 le ≤ D ≤ blog2 lc+ 1.

Since the depth of a heap with n nodes is also the level of node n, it
follows that the level of node i is:

level(i) = blog2 ic.

To see why, remove from the heap all the nodes after i. The resulting
heap will have i nodes so its height is blog2 ic, which (by the definition of the
height of a heap) happens to be the same as the level of i.

11

2 The worst-case running time of FixHeap

A worst-case scenario for FixHeap forces it to demote the current root i of the
subtree (an almost heap) all the way down to become the leftmost leaf in the
last level of that subtree or the parent of that leaf. In such a case, the number
of comparisons of keys that FixHeap must perform is maximal. Estimation
of the depth of the subtree in question proves useful in determination exactly
what that number is.

Lemma 2.1 The depth Di
n of a subtree H i

n rooted at node i of a contiguous
binary tree T with n elements satisfies this inequality:

Di
n ≤ blg nc − blg ic. (3)

Proof. The depth Di
n of subtree H i

n is either equal to the difference

level(n)− level(i)

in the case the subtree H i
n contains some nodes of the last level of tree T , or

to
level(n)− level(i)− 1

otherwise. Since level(n) = blog2 nc and level(i) = blog2 ic, the inequality
(3) holds in either case. �

Lemma 2.1 allows for computing the worst-case number of comparisons of
keys performed by FixHeap at node i. It is equal to the depth of the subtree
rooted at i plus the depth of the subtree at i with the last node n removed
from the entire tree.

12

Corollary 2.2 The worst-case number CFixHeap(i)(n) of comparisons of keys
that the FixHeap must perform in order to turn an almost heap subtree H i

n

rooted at node i ≤ bn2 c of a contiguous binary tree T with n ≥ 2 elements
onto a heap satisfies this inequality:

CFixHeap(i)(n) ≤ 2(blg nc − blg ic). (4)

Proof. In the worst-case, FixHeap will demote the root i of a given almost
heap subtree H i

n all the way to the H i
n’s last level, performing at most two

comparisons (one to find the larger of the two children as a candidate for
promotion, and one to compare it to the node that is being demoted) per
level, except for the level 0. This will result in no more than twice the depth
Di
n of subtree H i

n comparisons, that is no more than 2Di
n = 2(blg nc−blg ic)

comparisons. �

Because FixHeap(i) is called only if 1 ≤ i ≤ bn2 c; in particular, n ≥ 2 is
required. So the constrains in Corollary 2.2 do not obstruct its applications
to further analysis of MakeHeap.

3 The worst-case running time of MakeHeap

Theorem 3.1 The worst-case number CMakeHeap(n) of comparisons of keys
that the MakeHeap must perform in order to turn an array with n ≥ 2
elements onto a heap satisfies this inequality:

CMakeHeap(n) ≤ 3n− 2 lg n+ 2. (5)

13

Proof. Recall from file LowerBoundAverageCaseSorting.nb that the mini-
mum external path length in a binary tree with m external nodes is given by
this formula:

eplmin(m) = m(lgm+ ε),

where
ε = 1 + θ − 2θ and θ = dlg me − lg m,

Putting m = n+ 1, where n is the number of internal nodes, we get

iplmin(n) = eplmin(m)− 2n = (n+ 1)(lg(n+ 1) + ε)− 2n =

= (n+ 1)(lg(n+ 1) + ε)− 2(n+ 1) + 2 =

= (n+ 1)(lg(n+ 1) + ε− 2) + 2 =

or
iplmin(n) = (n+ 1)(lg n+ 1

4 + ε) + 2. (6)

Since iplmin(n) = ∑n
i=1blg ic, from (6) we conclude:
n∑
i=1
blg ic = (n+ 1)(lg n+ 1

4 + ε) + 2, (7)

14

or, by 0 ≤ ε,
n∑
i=1
blg ic ≥ (n+ 1) lg n+ 1

4 + 2. (8)

Now, the proof.
The Java statement (2) of page 10 should make it clear that

CMakeHeap(n) =
bn

2 c∑
i=1

CFixHeap(i)(n). (9)

Application of equality (4) of Corollary 2.2 to (9) yields

CMakeHeap(n) ≤
bn

2 c∑
i=1

2(blg nc − blg ic) = 2
bn

2 c∑
i=1

(blg nc − blg ic) =

= 2(
bn

2 c∑
i=1
blg nc −

bn
2 c∑
i=1
blg ic) = 2(bn2 c(blg nc −

bn
2 c∑
i=1
blg ic) ≤

[by the inequality (8), substituting bn2 c for n]

= 2(bn2 cblg nc − (bn2 c+ 1) lg
bn2 c+ 1

4 − 2) =

= 2(bn2 cblg nc − (bn2 c+ 1)(lg(bn2 c+ 1)− lg 4)− 2) ≤

15

[since bn2 c+ 1 ≥ n
2]

≤ 2(bn2 cblg nc − (bn2 c+ 1)(lg n2 − lg 4)− 2) =

= 2(bn2 cblg nc − (bn2 c+ 1)(lg n− lg 2− 2)− 2) =

= 2(bn2 cblg nc − (bn2 c+ 1)(lg n− 3)− 2) =

= 2(bn2 cblg nc − b
n

2 c lg n+ 3bn2 c − lg n+ 3− 2) ≤

≤ 2(bn2 cblg nc − b
n

2 cblg nc+ 3bn2 c − lg n+ 1) = 2(3bn2 c − lg n+ 1) =

= 3× 2bn2 c − 2 lg n+ 2 ≤

[since 2bn2 c ≤ n]
≤ 3n− 2 lg n+ 2.

This completes the proof. �

Therefore,
CMakeHeap(n) ∈ Θ(n) (10)

Note. The derivation of a weaker result (10) in the textbook [BG00], page
188, shown on the Figure 7, is incomplete and rather complicated (it uses
the Master Theorem).

16

Figure 7: A derivation of (10) in the textbook [BG00], page 188.

Note. The exact worst-case number of comparisons of MakeHeap is given
by this formula (published in [Suc12]):

CMakeHeap(n) = 2n− 2s2(n)− e2(n), (11)

where s2(n) is the sum of all digits of the binary representation of n and
e2(n) is the exponent of 2 in the prime factorization of n.

It satisfies this inequality:

17

2n− 2 lg(n+ 1) ≤ CMakeHeap(n) ≤ 2n− 4 for N ≥ 3. (12)

Below is a graph of 2n− 2s2(n)− e2(n) plotted against an upper bound
3n− 2 lg n+ 2.

50 100 150 200

100

200

300

400

500

Figure 8: A graph of 2n − 2s2(n) − e2(n) plotted below an upper bound
3n− 2 lg n+ 2.

18

4 The worst-case running times of H.RemoveMax()

and H.RemoveAll()

Let H be a heap with n nodes. Because the only comparisons of keys are
made by FixHeap(1), the number of comparisons CRemoveMax(n) done in the
worst case by H.RemoveMax() is equal to 0 if n ≤ 2 or, by Corollary 2.2, less
than or equal to 2(blg(n− 1)c − blg 1c) = 2blg(n− 1)c if n > 2.

Therefore,

CRemoveMax(n) ∈ Θ(log n).

Exercise. Prove it!
Now, H.RemoveAll() is composed of a stream of consecutiveH.RemoveMax()

on a shrinking heap H that initially has n nodes and loses 1 node each time
H.RemoveMax() is executed. So, the number CRemoveAll(n) of comparisons
of keys during H.RemoveAll() is equal to the sum

CRemoveAll(n) =
n∑
k=3

CRemoveMax(k),

that is, it satisfies this inequality:

CRemoveAll(n) ≤
n∑
k=3

2blg(k − 1)c = 2
n∑
k=3
blg(k − 1)c = 2

n−1∑
k=2
blg kc =

19

[by the formula (7), substitute n− 1 for n]

= 2(n(lg n4 + ε) + 2) ≤

[by ε < 0.08607133205593421]

≤ 2(n(lg n4 + 0.08607133205593421) + 2) =

= 2(n(lg n− lg 4 + 0.08607133205593421) + 2) =
= 2(n(lg n− 1.91392866794406579) + 2) =

= 2n lg n− 3.82785733588813158n+ 4.
Hence,

CRemoveAll(n) ≤ 2n lg n− 3.82785733588813158n+ 4.

This way we proved the following theorem whose thesis is illustrated on
Fig. 9.

Theorem 4.1 The worst-case number CRemoveAll(n) of comparisons of keys
that the removeAll must perform in order to empty a heap with n nodes
satisfies this inequality:

CRemoveAll(n) ≤ 2n lg n− 3.82785733588813158n+ 4. (13)

20

5 10 15 20

20

40

60

80

100

Figure 9: A graph of CRemoveAll(n) plotted below its upper bound 2n lg n −
3.82785733588813158n+ 4.

Therefore,

CRemoveAll(n) ∈ Θ(n lg n).

5 The running time of HeapSort

Combining inequalities (5) and (13) of theorems 3.1 and 4.1, we conclude:

21

Theorem 5.1 The worst-case number CHeapSort(n) of comparisons of keys
that the Heapsort must perform in order to sort an n-element array satisfies
this inequality for n ≥ 2:

CHeapSort(n) ≤ 2n lg n. (14)

Proof. For n = 1, CHeapSort(n) = 0 = 2× 1× 0 = 2× 1× lg 1 = 2n lg n.
For n = 2, CHeapSort(n) = 1 ≤ 4 = 2× 2× 1 = 2× 2× lg 2 = 2n lg n.
For n = 3, CHeapSort(n) = 3 ≤ 2×3×1.5849625007211563 = 2×3×lg 3 =

2n lg n.
For n > 3,

CHeapSort(n) = CMakeHeap(n) + CRemoveAll(n) ≤

≤ 3n− 2 lg n+ 2 + 2n lg n− 3.82785733588813158n+ 4 ≤
≤ 2n lg n− 0.82785733588813158n− 2 lg n+ 6 ≤

[since for n > 3, −0.82785733588813158n− 2 lg n+ 6 < 0]

≤ 2n lg n.

This completes the proof. �

Therefore,
CHeapSort(n) ∈ Θ(n lg n). (15)

22

Note. The derivation of a weaker result (15) in the textbook [BG00],
page 191, shown on the Figure 10, is incomplete and rather complicated (it
implicitly uses the Master Theorem, quoted on p. 188). Moreover, there is
an error in that derivation.

´ n
1 ln xdx = n lnn − n + 1 and not n lnn − n.

As a result, the correct right-hand side of the inequality derived that way is
2(n lg−1.443(n− 1)).

Figure 10: A derivation of (15) in the textbook [BG00], page 191.

23

Note. The exact formula for the worst-case number of comparisons of
HeapSort is rather complicated and has been published in [Suc15]. Here it
is:

CHeapSort(n) =

= 2(N − 1) (lg N − 1
2 + ε)− 2s2(N)− e2(N) + min(blg(N − 1)c, 2) + 6 + c,

where ε, given by:

ε = 1 + dlg (N − 1)e − lg (N − 1)− 2dlg (N−1)e−lg (N−1),

s2(N) is the sum of all digits of the binary representation of N , e2(N) is the
exponent of 2 in the prime factorization of N , and c is a binary function on
the set of integers defined by:

c =


1 if N ≤ 2dlgNe − 4

0 otherwise.

Fig. 11 shows its graph plotted below the upper bound given by 2n lg n.
For n ≥ 2, the value given by the exact formula can be approximated by

its smoother upper bound

2(n−1)(lg(n−1)−lg e

lg e)+5 ≈ 2(n−1)(lg(n−1)−0.91392866794406579)+5

24

50 100 150 200

500

1000

1500

2000

2500

3000

Figure 11: The worst-case number of comparisons of HeapSort (the lower
curve) plotted below 2n lg n (the upper curve).

as it is shown on the Fig. 12.
For n ≥ 2, a smoother lower bound the value given by the exact formula

is given by:
2(n− 1)(lg(n− 1)− 1)− 2 lg n+ 1√

2
+ 5.

Fig. 13 provides a close-up view on the exact value plotted between both
bounds.

25

50 100 150 200

500

1000

1500

2000

2500

Figure 12: The worst-case number of comparisons of HeapSort (the lower
curve) plotted below 2(n− 1)(lg(n− 1)− 0.913) + 5 (the upper curve).

References
[BG00] Sara Baase and Allen Van Gelder. Computer Algorithms; Introduc-

tion to Design & Analysis. Asddison Wesley, 3rd edition, 2000.

[Flo64] Robert W. Floyd. Algorithm 245: Treesort 3. Communications of
the A.C.M., 7(12):701, 1964.

26

[Knu97] Donald E. Knuth. The Art of Computer Programming, volume 3.
Addison-Wesley Publishing, 2nd edition, 1997.

[Suc12] Marek A. Suchenek. Elementary yet precise worst-case analysis of
Floyd’s heap-construction program. Fundam. Inform., 120(1):75–
92, 2012. doi 10.3233/FI-2012-751.

[Suc15] Marek A. Suchenek. A complete worst-case analysis of
heapsort with experimental verifcation of its results (MS).
http://arxiv.org/abs/1504.01459, April 7 2015.

[Wil64] John W. J. Williams. Algorithm 232: Heapsort. Communications
of the A.C.M., 7(6):347–348, 1964.

[WWW] WWW. Heapsort in Java: http://csc.csudh.edu/suchenek/MakeHeap.html.

.

27

10 20 30 40 50

100

200

300

400

Figure 13: The worst-case number of comparisons of HeapSort plotted be-
tween its upper 2(n−1)(lg(n−1)−0.913) + 5 and lower 2(n−1)(lg(n−1)−
1)− 2 lg n+1√

2 + 5 bounds.

28

