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Abstract
All Θ(n lg n) sorting algorithms discussed in class perform less than

2n lg n comparisons of keys in order to sort any n-element array of
distinct elements.

Some of those perform slightly less than n lg n comparisons of keys.
The state of the art in the question of optimality of sorting by

decision tree is summarized in this paper.
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1 Quicksort
The worst-case number of comparisons of keys performed by basic Quicksort
while sorting an array of n distinct elements is rather disappointing and equal
to:

n(n− 1)
2 .

The average-case number is equal to

2(n+ 1)
n∑
i=1

1
i
− 4n ≈ 1, 386(n+ 1) lg n− 2.846n+ 2.154 + 1

n
.

The best-case number is equal to
n∑
i=1
blg ic = (n+1)(lg(n+1)+ε(n+1))−2n = (n+1)(lg n+ 1

4 +ε(n+1))+2,

where ε, given by:

ε(n) = 1 + θ − 2θ and θ = dlg ne − lg n,

is a continuous function of n on the set of reals > 1, with the minimum value
0 and and the maximum (supremum, if n is restricted to integers) value

δ = 1− lg e+ lg lg e ≈ 0.0860713320559342.
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2 Mergesort
The worst-case number of comparisons of keys performed by Mergesort while
sorting an array of n distinct elements is equal to:

n∑
i=1
dlg ie = n(lg n+ ε(n))− n+ 1 = n(lg n2 + ε(n)) + 1,

where ε, given by:

ε(n) = 1 + θ − 2θ and θ = dlg ne − lg n,

is a continuous function of n on the set of reals > 1, with the minimum value
0 and and the maximum (supremum, if n is restricted to integers) value

δ = 1− lg e+ lg lg e ≈ 0.0860713320559342.

The best-case number is given by a rather convoluted formula (to appear in
my forthcoming text) and is slightly less than 1

2n lg n as the Fig. 1 below
shows.

3 Heapsort
The worst-case number of comparisons of keys performed by basic Heapsort
while sorting an array of n distinct elements is given by a formula that I
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Figure 1: The best-case number of comparisons for Mergesort plotted below
function 1

2n lg n.

discovered in Summer of 2013 (to be published in my forthcoming paper).
The formula is a bit complicated as its graph on Fig. 2 below suggests.

Its fairly good upper bound is given by

2n lg n

as it is shown on Fig. 3 below.
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Figure 2: The worst-case number of comparisons of HeapSort plotted against
its upper 2(n − 1)(lg(n − 1) − 0.9139) and lower 2(n − 1)(lg(n − 1) − 1) −
2 lg(n+ 1) + 6 bounds.

4 Accelerated Heapsort
Accelerated Heapsort uses slightly more than half of the number of compar-
isons of keys that the basic Heapsort (with fast MakeHeap) performs in the
worst case. According to your textbook [BG00], the number of comparisons
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Figure 3: The worst-case number of comparisons of HeapSort plotted against
its upper bound 2n lg n.

done by accelerated Heapsort is no more than

n lg n+O(n lg lg n).

Any improvements to the aforementioned upper bound will be posted here
as they become available.
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5 The least known upper bound for the worst
case

The worst-case provably fastest1 known uniform algorithm2 that sorts by
decision tree is based on Merge-insertion sort (not covered in class). Merge-
insertion sort performs

n∑
i=1
dlg 3

4ie

comparisons of keys in the worst case while sorting an array of n distinct
elements. For years it was believed to be the worst-case optimal3 sorting
algorithm, which conjecture has been proven false in 1979 (in general) and
1981 (for n = 47). Interestingly enough, in the latter case, Merge-insertion
sort lost to itself (by just one comparison) in a sense that sorting 5 and 42
elements using it and then merging the results efficiently required only 200
comparisons in the worst case while Merge-insertion sorting of 47 elements
required 201. This leaves the following as the least known upper bound F (n)
for the worst case:

F (n) =


∑n
i=1dlg 3

4ie if n 6= 47

200 if n = 47.
1In terms of the number of comparisons of keys performed in the worst case.
2An algorithm that does not distinguish special cases of n.
3In class of algorithms that sort by decision tree
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Figures 4 and 5 show graphs of the upper bound F (n) plotted against the
information-theoretic lower bound.

It is known since 1979 that for infinitely many sizes of sorted arrays,
Merge-insertion sort is not worst-case optimal.

6 Lower bounds
The information-theoretic lower bound on the worst-case number of compar-
isons of keys performed by any sorting algorithm that sorts by decision tree
while sorting an array of n distinct elements is equal to:

dlg n!e > d(n+ 1
2) lg n− 1.443n+ 1.325e.

The information-theoretic lower bound on the average-case number of com-
parisons of keys performed by any sorting algorithm that sorts by decision
tree while sorting an array of n distinct elements is equal to:

lg n! + ε(n!) > (n+ 1
2) lg n− 1.443n+ 1.325.

where ε, given by:

ε(n) = 1 + θ − 2θ and θ = dlg ne − lg n,

is a continuous function of n on the set of reals > 1, with the minimum value
0 and and the maximum (supremum, if n is restricted to integers) value

δ = 1− lg e+ lg lg e ≈ 0.0860713320559342.
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The information-theoretic lower bound on the best-case number of compar-
isons of keys performed by any sorting algorithm that sorts by decision tree
while sorting an array of n distinct elements is bit tricky to define. On one
hand, it is obvious that at least n−1 comparisons are required to verify that
the array in question is sorted. On the other hand, an algorithm that per-
forms n−1 comparisons in the best case cannot be worst-case or average-case
optimal for all n; for instance, such an algorithm is not worst-case optimal
for n = 4, ..., 11, 20, 21 and not average-case optimal for n = 4, 5, 9, 10.

It does make sense to define the lower bound on the best-case number
of comparisons as the minimal number of comparisons that an average-case
(alternatively: a worst-case) optimal algorithm that sorts by decision tree
must perform while sorting an n-element array.

If the algorithm in question is information-theoretic optimal on the aver-
age then the following is the number of comparisons that the said algorithm
must perform in the bast case4:

blg((n!− 1) + 1)c = blg n!c > b(n+ 1
2) lg n− 1.443n+ 1.325c,

which for n > 2 is exactly one less than in the worst case5.
4The number of comparisons that the said algorithm must perform in the bast case

is equal to blg(k + 1)c, where k is the number of internal nodes in its decision tree, or
k = n!− 1.

5Because for n > 2, n! is never a power of 2
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If the algorithm in question is information-theoretic optimal in the worst
case then the number of comparisons c(n) that the said algorithm must
perform in the bast case oscillates between n− 1 and blg n!c as n diverges to
∞:

n− 1 ≤ c(n) ≤ blg n!c.

Although for some specific sizes (e.g., 1 through 11, 20, 21 for the worst-case
lower bound and 1 through 5, 9, 10 for the average-case lower bound) of the
sorted array the information-theoretic lower bounds can be actually reached
by sorting algorithms that sort by decision tree, not much more is known in
this respect (consult [Knu97] for more details).

Figures 4 and 5 visualize the numbers of comparisons ∑n
i=1dlg 3

4ie per-
formed by Merge-insertion sort (the worst-case-fastest known sorting algo-
rithm that sorts by decision table) in the worst case (the upper dots) plotted
above the information-theoretic lower bound dlg n!e (the lower dots). They
illustrate the current knowledge in this respect. When both dots in a verti-
cal line on the graphs plotted on these Figures coincide then the respective
information-theoretic lower bound is reached by Merge-insertion sort. Oth-
erwise, it is not. In the latter case, ! indicates the optimum6 and ? indicates
the suspected optimum. If there is no indication then any of the two dots
(it is not known which one, though) or a value between them may represent
the optimum.

6Except for n = 47 where ! indicates the information-theoretic lower bound of 198 that
is not reached by Merge-insertion sort.
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Figure 4: Number of comparisons performed by Merge-insertion sort in the
worst case (upper dots) plotted above the information-theoretic lower bound
(lower dots). ! indicates the actual optimum. ? indicates suspected opti-
mum.

For instance, it is not known what is the actual minimum number of
comparisons that suffices to sort any array of 16 distinct elements7. The
information-theoretic minimum is 45 comparisons while the fastest known
sorting of 16 distinct elements takes 46 comparisons. Knuth in [Knu97], p.
192, conjectures that the said minimum is 45. A recent paper by Marcin

716! = 20 922 789 888 000.
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Figure 5: Number of comparisons performed by Merge-insertion sort in the
worst case (upper dots) plotted above the information-theoretic lower bound
(lower dots) - continued from Fig. 4. ! indicates the lower bound at n = 47
for which Merge-insertion sort is known to be not optimal.

Peczarski [Pec04] settled the question of worst-case optimality of sorting by
decision table for n = 13, 14, and 22. Here is an excerpt from Peczarski’s
paper:

The reachability of the average-case optimality is even less known than
of the worst-case. For instance, it is not know what is the minimum av-
erage number of comparisons that is needed to sort any array of 6 distinct

12



Figure 6: An excerpt from [Pec04] that disproves Knuth’s conjectures
S(13) = 33 (posed in [Knu97], p. 192, and disproved by Peczarski in his
Master’s Thesis in 2002) and S(14) = 37 (posed elsewhere).

elements8. The information-theoretic minimum is the average of 9.5777...
comparisons while the fastest on the average known sorting of 6 distinct
elements requires the average of 9.6 comparisons.

It is known, however, that the information-theoretic lower bounds cannot
be reached for some specific sizes of sorted arrays. For instance, no algorithm
that sorts by decision tree can perform less than 30 comparisons in the worst
case while sorting an array of 12 distinct elements, while the information-
theoretic lower bound for 12 elements is 29.

Also, any algorithm that sorts by decision tree must perform more than
3898
315 comparisons on the average while sorting an array of 7 distinct elements,
while the information-theoretic lower bound for 7 elements is 3898

315 .
The relationship between the worst-case and average-case optimality is

86! = 720.
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not clear as well.
What is known is that, for any size n of the sorted array, any algorithm

that is information-theoretic optimal in the average case is also worst-case
optimal, simply because any decision tree with n! external nodes that has the
shortest external path length is also a shortest decision tree with n! external
nodes.

However, it is not known if for all sizes n of the sorted array, average-case
optimality for n implies worst-case optimality for n.

The converse implication does not hold, though, as some decision trees
that are shortest may be not have the shortest external path length. An
example in this category is Mergesort that for 6-element array is information-
theoretic worst-case optimal but not average-case optimal.

7 Comparison of the results
Fig. 7 below shows graphs of numbers of comparisons of selected sorting
algorithm and information-theoretic lower bounds for n ≤ 30.

Fig. 8 shows the same graphs as Fig. 7 for n ≤ 30, with added graphs of
2n lg n, n lg n, and n for comparison of trends.

Fig. 9 shows the same graphs as Fig. 8 for n ≤ 300.
Fig. 10 shows the same graphs as Fig. 9 for n ≤ 10, 000.
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Figure 7: Number of comparisons performed by: Quicksort on average (aq),
Quicksort in the best case (bq), Mergesort in the worst case (wm), and Heap-
sort in the worst case (wh), as well as the information-theoretic lower bounds
on the worst-case (wLB) and average (aLB) number of comparisons.

.
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Figure 8: Number of comparisons performed by: Quicksort on average,
Quicksort in the best case, Mergesort in the worst case, and Heapsort in
the worst case, the information-theoretic lower bounds on the worst-case
and average number of comparisons, and functions 2n lg n, n lg n, and n.
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Figure 9: Number of comparisons performed by: Quicksort on average (aq),
Quicksort in the best case, Mergesort in the worst case, and Heapsort in the
worst case, the information-theoretic lower bounds on the worst-case and
average number of comparisons, and functions 2n lg n, n lg n, and n.
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Figure 10: Number of comparisons performed by: Quicksort on average,
Quicksort in the best case, Mergesort in the worst case, and Heapsort in the
worst case, the information-theoretic lower bounds on the worst-case and
average number of comparisons, and functions 2n lg n, n lg n, and n.
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