Dr. Marell A. Suchenell March 17,2010 and on Conections
CSC 501/401 Analysis of Algorithmis 1/201
Lecture Wolcz
Definition of 2-tree.
1. A made with no children is a 2-lnee.
2 A tree of the form
/A /R
where x is a mode and L and R one 2- liee, is a 2-liee.
3. Nothing else is a 2-tree.
Properties of 2 trees.
1. Any 2-tree is finite and non-
2. Each nocle in 2-liee has Doi
3. A 2-tree has M non-leaves and M+1 leaves for a total of 2n+1 nodes, where M > 0.

Page 3	
5	Example.
	For the tree T visnalized in Example 3,
	epl(T)==(4+4+3+2)+(3+3+3+3)=
	- 25
	(Checle it!)
	For the subtres L and R of T.
	epl(L) = 3 + 3 + 2 + 1 = 9
	epl(R) = 2+2+2+2=8
	50, epl(T) = epl(L)+ epl(R)+ m
	where in is the number of leaves in "1"
	(Chech it!)
6	Theorem
V	For any 2-tree T with in leaves,
	epl(T) > \g m lg m
	(In particular, En > [m lg m].)
	epl (T)

Proof la intella
Proof by induction.
Band step. T courts of one node x, which is also the only leat of T.
The only path from the root x of T' to its only leaf x has the length 0.
Since the number in of leaves in 71 13 1, in by in = 1 lg 1 = 1.0 = 0.
So, $X \geq m \lg m + l l l l case$. This completes the bans step.
Inductive step.
Assume that T has a form indiated in definition 1 item 2, and that the subtrees L and T satisfy the them of this theorem, limit is,
epll+ > m, lg m, (1)
epler > mp lg mp, (2)
where m, is the number of leaves in L and in p is the number of leaves in R.

Our goal is to prove that
epe (T) Ex = in lg m.
We have (check it!):
$m = m_1 + m_2 \qquad (3)$ $epl(T) = \sum_{k=1}^{\infty} + \sum_{k=1}^{\infty} + m_k \geq 1$
I by the inductive hypothens (1) & (2)]
2 My lg m, + mp lg mp + m 2
[by the convex property of function f(x)=x lqx, which we will prove later, see Lemma 9]
> 2 m, + Mp lg mp + mr + m =
[by (3)]
= 2 m lg m+m=m (lg m-lg 2)+m=
= m(lgm-1)+m = mlgm-m+m=
= mlg m.
So, ept = m lg m.
This completes the industrice step.

Page 7	
8	Lemma
	X lg x is a convex function on Rt.
	Proof.
	Since the clomein of lgx is Rt, x lgx is a function on Rt.
	To prove that x lgx is convex on Rt, Suffices to show that its second deri- vative is always greater than D on Rt.
	$[x \ln x]'' = [[x]' \cdot \ln x + x \cdot [\ln x]'] =$
	= [lux + x.] = [lux +1] = \frac{1}{x} > 0 for x>0.
Do ->	This completes the proof. [] Exercise Graph completely x lg x.
9	Lemma
	For any a, b ≥ 1
	alga + blg b = 2 art lg art (5)
	Proof. Substitute & lgx for f(x) in Lemma 7 to conclude (5) from (4).
	This completes the proof.

```
Dage 8
     10 Corollary.
         For any a, 6 ≥ 1,
            alga+ blg b = (a+b) (lg(a+b)-1)
         Proof
         2 atb lg atb = (a+b)(lg(a+b) - lg 2) =
         = (9+8) (lg(9+6) -1).
         Application of (5) combleto the proof []
    Internal path length Tin a tree IT is the sum of lengths of the paths from the root of IT to non-leaves of IT.
     12 Example
         For bee T of example 3,
         ipl(T) = (3+2+1)+(2+1+2)+0=11
        (Chech it!) col(t)

So, I = 1 - 2n, where m is the number of non-leaves in T' (Chech it!)
```



```
Euge 10
     epl(t) = 4+4+3+3+3+1 = 18
     eol(t) = 3+3+2+2+3+3= 16
   ept (T3) = 3+3+3+3+2+2=16
        Both T2 and T3 have leaves only on
their last due levels, therefore their
eximpled puter lengths one smallest
for any 2-tree with 11 mod 5.
         The last swo levels, so its externed partir length is larger.
         Also, 6 ly 67 = [15.50...] = 16
         not come as a surprise.
       Theorom
        The shortest external path length in a 2-tree with m leaves is
               Em = m Llgm + 2d
       where d is the offset from the largest power of 2 not greater than m. [lgm].
```

Dage 11	
	Proof
	We may assume that the 2-tree T' with in leaves and smallest external but a length has a shape of heap;
	Da.
	level, from the left to the sight. Nocle & is the last non-less in the sense of this enumeration, and nocke in the last less.
	of To here fore, by the property 2 item 3 of 2-tikes, $k=m-1$, and $m=2m-1$.
	It follows flut the length of path from the lost of T' to any of its uscles i is equal to I lg is. (Check it!)
ept (T	So, $\sum_{i=1}^{n} \sum_{i=1}^{n} \lfloor \lg i \rfloor = \sum_{i=1}^{n} \lfloor \lg i \rfloor = \frac{2m-1}{2m-1} $ $= \sum_{i=1}^{n} \lfloor \lg i \rfloor - \sum_{i=1}^{n} \lfloor \lg i \rfloor = \frac{2m-1}{2m-1} $ $= \sum_{i=1}^{n} \lfloor \lg i \rfloor - \sum_{i=1}^{n} \lfloor \lg i \rfloor = \frac{2m-1}{2m-1} $ $= \sum_{i=1}^{n} \lfloor \lg i \rfloor - \sum_{i=1}^{n} \lfloor \lg i \rfloor = \frac{2m-1}{2m-1} $ $= \sum_{i=1}^{n} \lfloor \lg i \rfloor - \sum_{i=1}^{n} \lfloor \lg i \rfloor = \frac{2m-1}{2m-1} $ $= \sum_{i=1}^{n} \lfloor \lg i \rfloor - \sum_{i=1}^{n} \lfloor \lg i \rfloor = \frac{2m-1}{2m-1} $ $= \sum_{i=1}^{n} \lfloor \lg i \rfloor - \sum_{i=1}^{n} \lfloor \lg i \rfloor = \frac{2m-1}{2m-1} $ $= \sum_{i=1}^{n} \lfloor \lg i \rfloor - \sum_{i=1}^{n} \lfloor \lg i \rfloor = \frac{2m-1}{2m-1} $ $= \sum_{i=1}^{n} \lfloor \lg i \rfloor - \sum_{i=1}^{n} \lfloor \lg i \rfloor = \frac{2m-1}{2m-1} $ $= \sum_{i=1}^{n} \lfloor \lg i \rfloor - \sum_{i=1}^{n} \lfloor \lg i \rfloor = \frac{2m-1}{2m-1} $ $= \sum_{i=1}^{n} \lfloor \lg i \rfloor - \sum_{i=1}^{n} \lfloor \lg i \rfloor = \frac{2m-1}{2m-1} $
	= \(\sum_{i=1} \Llgid = \sin \file \\ 2-tre. PDF

```
Page 12
         = (2m \lfloor lg 2m \rfloor - 2 \lfloor lg 2m \rfloor + 1 + 2) -
(m \lfloor lg m \rfloor - 2 \lfloor lg m \rfloor + 1 + 2) =
= 2m \lfloor lg m + 1 \rfloor - 2 \lfloor lg m + 1 \rfloor + 1 - m \lfloor lg m \rfloor +
          = 2m(light+1)-2 light+2 - mlight+
          + 2 Llgmy +1 =
THE WE USED TOVEN IN LEGAL
         = 2m Llgml + 2m - 222 Llgml - mllgml +
         = Mlgml +2 (m-2/19 ml) =
       (Here we used the fact: 2-tree. PDF

| Mare we used the fact: 2-tree. PDF

| Z | Llg i | = (M+1) | Llg M | -2 | Llg M | +1

| i=1 | +.2
         "Balanced tree".)
This concludes the proof. I
```

Tage 13	
IÇ	Example
	For bees Tz and T3 in example 14,
	m=6, [lg m]=2, and
	d=m-219m = 6-22 = 6-4=2
	Also, E min = m/lgm/+2d =
	50, = = = = 16. Hueron 15 holds, indeed.
17	Corollary. Armorimation
The kigh	A For every M = 1, tom the
barne	mllgm1+2(m-2/19m) > [mlgm].
9 000	proof by putting together theorems 6
	and 15.
	Note. The above is a very close approxima-
	tion, indeed. Proof would involve Taylor's series.
	Tougloi's series.

Page 14	The orean balanced
	1. The average length i m of path from the root to a leat in a 2-lace vited that the beginning of the proof of the beginning of the proof of
	$l_{m}^{avey} = \lfloor lg m \rfloor + \frac{2d}{m} \qquad (6)$
	These m is the number of leaves in tree T and dio (as before) is the smallest integer that is given by d = m - 2m. (the difference between m and the largest power of 2 not greater the 2. If m = 2m for some m then
	$l_{m}^{arg} = lgm = n. \tag{7}$
	3. For all other 2-trees T with m leaves the average length by of path from the root to a leaf is $l_T \ge \lfloor l_g m \rfloor + \frac{2d}{m} \ge l_g m$. (8)
	Proof. To prove part 1 lel's note that $l \frac{avg}{m} = \frac{E_m}{m}$.
	Aplication of (5) of theorem 15 yields

Page 15 To prove part 2, let's note that if $m = 2^m$ for some n then d = 0 and lg m = m = lm l = llg m l. This yields (7).Part 3 Sollows from the fact that heap-straped 2-trees have smallest external path lengths (theorem 13), and from the lover bound on the external parts longth in a 2-tice (theorem 6). These observations complete the proof. I 19 Corollary The lover bound on the overage number of companisons made by any sorting algorithm that sorts any m-element array by companisons is

LB sort [Llg m:] + 2 lg n! (9) Proof. It Sollows that LB ours (n) is equal to the average length of John from the soot to a least in a shortest decision tree T for sorting an n-element array by compansons. Since there are up to n! different arrangements of the array to be sorted, I must have n' notes.

Page 16	
	Plugging in m-n! juto (6) and (8) in theorem 18 yields (9). This completes the proof.
	It sollors that the only cases when m! is a poser of 2 is when m=1 or m=2. Therefore, the equality (7) does not hold for any m>2.
	So the \(\geq \) symbol in (9) may be replaced by > symbol for m 72. Obviously, for m=1 and m=2, the equality holds. This observation allows us to refine collowing 19 to:
	For $m=1,2$, $LB_{n}^{Soft}=lgn!$ (10) For $m>2$, $LB_{n}^{Soft}=lgn!]+\frac{2d}{n!}>lgn!$
	Approximating m! with () " \270 (Storling's formula) yield's (check it, using calculator!):
20	Corollary.
	For $n > 2$, $LB_{2}^{sort} \approx L(n+\frac{1}{2}) lg n - 1.45 n + 0.91 + \frac{2d}{\sqrt{2\pi n}} \cdot \left(\frac{e}{n}\right)^n$ $> (n+\frac{1}{2}) lg n - 1.45 n + 0.91.$

21	Note
	The value of 2d of Term (en) does not
	converge to 0 as in diverges to or, because d is not a constant and it vanes within their limits:
	$0 < d < \frac{n!}{2}$. (Check it!)
	Meretone, Id varies between 0 and 1, or varies is not surprising if one takes with account that the difference between Llg m! I and lg m! varies between 0 and 1 as well.
	A note regarding my penmanship
	Please, keep time in mind that I do note use, intentionally, different "fonts" in my handwriting.
	In particular, m, m, n, and n all denote thre same significant. Here is some more of the same:
	1111 (one)
	m, m, m
	\$ P 6 6 etc.