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Abstract 

In this paper theoretical aspects of knowledge in dis- 
tributed systems are investigated. A nonmonotonic 
multi-modal variant of logic S5, deductively complete 
with respect to a Kripke-style minimal-knowledge se- 
mantics, is introduced. It allows for formal verifica- 
tion and analysis of information and its flow within 
a distributed system, either b y  proof-theowtic meth- 
ods or by computing models of system's knowledge. 
The introduced system is applied to Mr. Sum and Mr. 
Product Pussle which was not properly handled by  ez- 
isting methods of modal logic. 
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1 Introduction 

Applications of modal logic in reasoning about 
knowledge represented in digital systems belong to 
main stream research in Artificial Intelligence. A num- 
ber of formal systems have been proposed and stud- 
ied in professional literature, e.g. in [MD80, Moo85, 
MaT91, KamQl]. They involve a modal operator K 
with the intentional interpretation "one knows that 
...". The distinguishing property of these systems is 
the so called nonmonotonicity, a feature which admits 
refutation of old theorems when new axioms are added 
to the system. Indeed, if somebody's whole knowledge 
is fully represented by a set of axioms E then that per- 
son must be ignorant of every sentence (p which is not 
entailed by E. Under such interpretation, C should en- 
tail i K ( p  for every (o not entailed by E, while Eu((o} 
(a larger set) should not. Clearly, Eu((p} should entail 
K(p, instead. 

Because the single operator K does not allow for 
the adequate treatment of a distributed knowledge, 
a multimodal version of modal logic has been sug- 
gested M a formal tool for proper treatment of the 
distributed case. Each autonomous element A, of a 
distributed system, the so called agent, has its own op- 
erator K ,  with the intentional interpretation Uagent 
A, knows that...". So far, all published systems of 
this kind (cf. [HMQO, FHVQl, FHV92] for the most 
recent development in this subject) have been mono- 
tonic. This may be considered a serious disadvantage 
taking into account the nonmonotonic behavior of sen- 
tences of the form lK , (p .  In particular, none of these 
systems properly formalises general patterns of rea- 
soning about one's ignorance. 

In this paper, we introduce a nonmonotonic multi- 
epidemic logic ME which unifies two formal systems 
of reasoning about knowledge: a well known multi- 
modal monotonic variant [Hin62] of logic S5, and a 
unimodal nonmonotonic variant [Suc92a] of S5. The 
proposed ME logic allows for reasoning about both 
knowledge and ignorance. It turns out that ME logic 
is sound and complete with respect to  a certain re- 
striction of Kripke-style semantics, which we call a 
minimal-knowledge mesh semantics. This complete- 
ness property allows for using interchangeably the 
proof-theoretic and the model-computing techniques, 
depending on which one is computationally feasible in 
a given circumstance. 

Unlike most logical approaches which are mainly 
focused on highly abstract Artificial Intelligence ap- 
plications, ME logic, because of the concept of the 
mesh model used, has a strong appeal for architecture 
and hardware oriented interpretations. We illustrate 
our approach with application of ME logic to the Mr. 
Sum and Mr. Product Puzzle, a non-trivial example 
which has been a hard nut to crack for monotonic mul- 
timodal logics. 
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2 System topology 

We assume that the distributed system consists of 
N autonomoys agents AI,  ..., AN related to a certain 
global world S = (SI , ..., S N ) ,  with each agent A, hav- 
ing: comple_te knowledge of the n-th component Sn 
of S (e.g., S may be interpreted as a global status 
register with local components S,). All these agents 
are capable of reasoning about the global world on the 
basis of the information they possess. They may also 
broadcast what they know to all other agents. 

Moreover, the ageets admit the existence_ of cer- 
tain possible worlds St which together with S form a 
model M for their distributed knowledge. This model 
M represents all publicly known information in the 
system, so that every agent knows what the possible 
worlds are, and every agent knows that every agent 
knows what the possible worlds are, etc .... The agents 
also know that each of them knows the respective com- 
ponent of the global world S. Except for this knowl- 
edge, and its logical consequences, there is nothing else 
that every agent knows, and that every agent knows 
that every agent knows, etc .... 

Broadcasting may increase the agents’ knowledge, 
so that the model M for public knowledge may vary 
(as we will see, it may shrink). 

3 Multimodal language Lnl 

To express the agent’s knowledge, and to  reason 
about it, we use the multimodal language Lhf de- 
fined as follows. (cf. any textbook on modal logic, 
e.g. [CheBO], for details about the unimodal case). 
LA1 has a finite collection I of constants c1, ..., clq, 
N status variables *I,  ..., T N ,  the equality symbol =, 
usual logical connectives (including the falsehood sym- 
bol I and the truth symbol T), the common knowl- 
edge modality C,  and the individual agents’ modal- 
ities K l ,  ..., K N .  Terms of  LA^ are defined as con- 
stants and status variables. Formulw of Lnf are I, 
T, TI = 7 2 ,  where 71,~ are terms, i c p ,  cp V $, cp A $, 
Ccp, Klcp,..., and K ~ c p ,  where cp and $ are formu- 
las. Other connectives are treated as abbreviations, 
i.e. cp 2 $ is an abbreviation for l c p  V $, Vcefcp(c) 
is an abbreviation for cp(c1) v ... v cp(cl,l), and i7 = i 
is an abbreviation for A I < ~ ~ N ( T ~  = a). We denote 
by mPos the set of all modally positive formulas of 
L A / ,  that  is, formulas without occurrence of any of 
the modalities C ,  Kl, .., K N  in a scope of negation. 
For example, K ~ T ( T ~  = TJ) is an element of mPos 
while ~ K ~ ( T z  = TJ) is not. 

The formulas of L h f  are partitioned on groups with 
respect to the depth of modai negation, the so called 
rcmb, according to the following definition. 

If cp E mPos then Rank(y)  = 0; 
Rank(K,p) = Rank(cp); 
Rank(cp v $) = nurz{Rank(cp), Rank($)}; 
Rank(cp A $) = mz{Rank(cp) ,  Rank($)}; 

if (o s $ is a propositional tautology then 
Rank((o) = Rank($). 
For instance, Rank(lK11K2T(r1 = c ) )  = 2. Rou- 

tine induction shows that every formula of LAf has 
a uniquely defined rank. Therefore, Rank is a total 
function on LA[, and defines a position of on non- 
empty sets Lt), L!:), ..., given by: 

Rank( lKn9)  = 1 + Rank(cp); 

L E )  = {p E Lnr I Rank(cp) = k } .  

Formulas of rank = 0 (modally positive formulas) 
are particularly important because of their regular se- 
mantic properties. They will be given special attention 
in this paper. For instance, modal-free formulas rep- 
resent the objective knowledge. Formulas of rank > 0, 
e.g., K1 lK2lKz(.rrl = c),  are somewhat troublesome. 
In particular, the statement “and nothing else is ob- 
jectively known” may not have a unique interpretation 
when applied to such formulas. 

A formula cp is closed for rqotlal operator K, iff cp is 
a Boolean combination of formblas of the form K,$. 

4 Mesh models for LA1 

As we already mentioned, a model M for the 
agents’ knowledge is a non-empty set of possible 
worlds, including the actual (but possibly unknown) 
y e .  We assume that each world M is an N-tuple 
i = [ i l l  ..., tN] of constants from 1, so that M C I N .  
Each model M provides the semantics for terms and 
formulas of  LA^. The meaning of a term or a formula 
in model M is a function defihed for each element 7 
of M as follows. For constants c: c[q = c; for status 
variables: .rr,[q = in. For atomic formulas: I [ d  = I; 
T[d = T; (q = r 2 ) [ 4  = T ikq[d = r 2 [ 4 ,  I other- 
wise. The meaning of logical connectives are defined 
by routine induction, with K,cp[d = T iff for every 3 
E M with a, = in, cpm = T, I otherwise. (Ccp[d is 
defined later in this section.) In the case cp[d = T, 
we apply the usual notation M k cp[d. Myeover, we 
use M k cp iff M b (o(q holds for every a E M, and 
for the set C of formulas, M E iff M b cp for all 
cpE E. 
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For instance, if M = IN and N > 1 then for every 
~ V ~ E I  :€ M, M b V c e I K n ( r n  = c)[q and M 

Kn(7rm = c)[d, where n,m 5 N, n # m. 

Because every model M is a subset of the Cartesian 
product IN, we may represent it as a mesh, e.g., (for 
N = 2 and I = { 0 , 1 , 2 , 3 , 4 , 5 ) ) :  

5 

4 -  

3 

2 

1 

0 
0 1 2 3 4 5  

“1 

Fig. 1. 

where joints 0 represent possible worlds. The above 
mesh visualiEes model M = {[0,5], [ l ,  21, [l ,  41, [2, 11, 
[2,2], [3,0], [3,3], [4,0], [4,3]). If the actual world 
is [2,1] then A ,  knows that (A I  = 2) A ((q = 1) V 
( t ~  = 2)) and A2 knows that ( t l  = 2) A (x2 = l), i.e. 
M K ~ ( ( t l  = 2) A ( ( t 2  = 1) V (7r2 = 2)))[2,1] and 
M t= Kz((x1 = 2) A (x2 = 1))[2,1]. Consequently, if 
the actual world is [2,2], A2 does not know ( x i  = 2), 
but also A1 does not know that A I  does not know 
that ( X I  = 2), i.e., M - X 2 ( 7 r 1  = 2)[2,2] and M 
l K l l K 2 ( t 1  = 2)[2,2]. 

By connecting those joints of this mesh which lie on 
the same coordinate line (rl = const or q = const) 
one obtains a graph whose connected components pro- 
vide the semantics for the common knowfedge modal- 
ity C. Namely, M b Cp[d iff for each j E M-which 
belongs to the same connected component as i does, 
M cpm. For M of Fig. 1 ,  M k C ( x 1  = 1 V = 
2)[1,4], but M pt C(*i = 1)[1,4]. 

If mesh M is implemented as a mesh network of 
autonomous processors, each of them representing a 
possible world, then the computation of logical values 
of formulas of  LA^ in M may be executed in paral- 
lel. For instance, to evaluate Kz( t1  = 2)[2,2], the 
formula (tl = 2) would have to be sent along bus 
1r2 = 2 to all nodes of the form [i,2] (in the above 
case, to [1,2], and to [2,2]) for evaluation. Then 

K2(xl = 2) would be assumed true iff (XI = 2) 
was found true in all these nodes, and false otherwise 
(in the above case, (q = 2)[1,2] would return false, 
hence Kz(r l  = 2)[2,2] would evaluate to false), that 
is, M + -.K2(7rl = 2)[2,2]. Similarly, to evaluate 
K11Kz(nl = 2)[2,2], the formula lKz(7rl = 2) would 
have to be sent along bus x1 = 2 (in the above case, to 
nodes [2,1] and [2,2]), and each recipient node would 
subsequently send formula (tl = 2) along bus r 2  = 1 
or = 2, respectively (in our case, X I  = 2 would have 
been sent to nodes [1,2], [2,1], [2,2], and evaluated to 
false in [2,1], thus making K14f2(7rl = 2)[2,23 false, 
that is M b - K ~ T K Z ( T I  = 2)[2,2]). Evaluating for- 
mulas Ccp[q would involve bu’ ding and traversing a 
spannine tree of a connected component of M con- 
taining i .  For instance, M k Cl(nz = 3)[2,1]. 

M is called a minima2-knowledge model of set C 
of formulas iff M t= C and for every Af C, if 
M C hf then M = Id, (i.e. M is maximal w.r.t. 
set-theoretical inclusion). Minimal-knowledge model 
of C is represented by a mesh with a maximal ar- 
rangement of joints. As we will see in Section 6, it 
may be calculated from an initial mesh by the suc- 
cessive elimination of those joints which violate the 
constraint imposed by C. 

It  may be easily verified by induction that for ev- 
ery formula cp of rank 0 (i.e., modally positive), and 
every two models M, hf, with M 5 Af, if hf cp 
then M k cp, but not necessarily vice versa. Con- 
sequently, the larger the model the less objective for- 
mulas it satisfies, that is, the less objective knowledge 
it represents. Thus minimal-knowledge models expli- 
cate an implicit assumption “and nothing else is ob- 
jectively known to the agents”, which is customarily 
used in formal specifications of distributed knowledge, 
particularly when mathematical induction is used as 
the definition vehicle. Because IN is finite, every set of 
formulas which has a model has a minimal-knowledge 
model as well. We call a set X of formulas definite 
iff it has a t  most one minimal-knowledge model. For 
instance, every set of modal-free formulas is definite. 

Restriction of the semantics of to minimal- 
knowledge models has a profQund consequence. The 
logical entailment I- defined by: 

3 

C k cp iff every model of C is a model of cp 

is no longer adequate, because a sentence cp which is 
true in all minimal-knowledge models of C, and there- 
fore a consequence of C in the sense of this restricted 
semantics, may happen to  be false in a certain non- 
minimal model of C and, therefore, not entailed by 
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C. This undesirable situation gives rise to the follow- 
ing relation of minimal-knowledge entailment t m i n  de- 
fined for every set of formulas I: and every formula 'p 

by: 

C t m i n  'p iff for every minimal-knowledge 
model M of E, C + 'p. 

Minimal-knowledge entailment is the central concept 
in this paper. I t  allows for adequate reasoning about 
knowledge in a distributed system. As any entailment 
based on minimiration, i t  is nonmonotonic. 

For example, if Z t m i n  'p but C If 'p then 
C U { ~ c p )  has a minimal-knowledge model, therefore 
C U (lp} lfmin 'p. In other words, there are I:, C', 
with C C', such that for some formula 'p, C t m i n  'p 

but C' l jmin 'p. Logics based on nonmonotonic entail- 
ments, so called nonmonotonic logics are essentially 
different from those based on classic, monotonic en- 
tailments. Obviously, their expressive power is greater 
because of the narrower respective semantics. For in- 
stance, the empty set of sentences 0 with IN as its only 
minimal-knowledge model expresses the fact that all 
elements for I N  are possible worlds; a statement which 
is not expressible by any set of objective formulas un- 
der the standard (i.e., non minimal one) semantics. 
Most remarkably, non-monotonic entailments are con- 
siderably more difficult for syntactic characterisations 
than monotonic ones. As one can see, axioms and fa- 
miliar rules of inference can only define a monotonic 
entailment. 

In the next section we will provide a complete syn- 
tactic characterisation of Fmin  for modal-free C's in 
terms of provability within multimodal logic S5. 

5 Multi-epistemic logic ME 

First we define the monotonic part of ME logic, 
which is based on the multimodal variant of logic S5 
(see [Hin62, Sat761 for details). 
Axioms of S6 

P1: Propositional tautologies (e.g. 'p v 19) 

5: p 3 K n p  (only for p closed for K n ) .  
T: Knp 2 

K: K n ( ~ l  2 9 2 )  2 (Knpl 2 KnVz) 
Rules of inference 
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where n = 1, ..., N, and 'p, HI , and ' p ~  are arbitrary 
(except for axiom 5) formulas of Lnl. In addition, we 
include the following axioms: 
Equality axioms 

7 = 7; 

71 = 
TI = 72 As2 = rj 3 TI = rj; 

3 72 = r1;  

where r, r 1  , 72,  rj are terms; 
Unique names axioms 

where c and d are different elements of I; 
Domain closure axioms 

where n = 1, ..., N; 
Status knowledge axioms 

where c E I and n = 1, ..., N (they assure that agent 
A, knows the value of rn). 

We call the above system MS5+ (Multimodal S5 
+ the above axioms). We use Cnnfss+ as the conse- 
quence relation defined by M S 5 + .  

The nonmonotonic part of logic ME consists of the 
following rule of inference 

T(C = d )  

VeEl(rn = C )  

(*n = C )  3 Kn(rn = C )  

where n = l , . . . ,N ,  c E I, and 'p is an arbitrary for- 
mula of LAI . 

The nonmonotonic consequence operation Cnnr E 
of logic ME is defined inductively for every C C LA/ : 

nO(q = CnAfs,+(C), 

h.+ l (C)  = CnAfsE.+(NRN(nk(C))), 

CnnfE(C) = U IIk(I:), 
k E w  

where NRN(IIc(C)) = ( ( rn  = C) 3 ' K n V  I ( r n  = 
c)  3 cp E L g )  \ IIt(C), n = 1, ..., N, and c E I 3. The 
above definition of CnnfE restricts, in fact, the use 
of NRN rule to a stratified one, in the sense that the 
NRN rule which infers a formula of rank k + 1 may be 
used only after stratum IIk(X'J has been completed. 

Here is the main result of the paper (in what fol- 
lows, the common knowledge modality C is not al- 
lowed to occur in C or in p). 

The Completeness Theorem 6.1 For every set C 
of modal-free formulas of L,-,l , and every formula 'p of 
Lnf , 

C t m i n  'p iff 9 E Cnnf.@). 



Proof. We prove by induction on Rank('p), that 

C kmin 'p if€ 'p E nRonk(lp)(C)* 

C Fmin 'p iff 'c U Atioms Fs5 'p, 

(1) 

(i) Rank('p) = 0 (i.e., 'p E mPos). First, we prove 
that 

(2) 

where X t-s5 'p means that 'p is true in all Kripke mod- 
els of X, and Atiomu is the set of all instances of the 
equality axioms, unique names axioms, domain closure 
axioms, and status knowledge axioms (all of them are 
elements of mPos). Because every mesh model sat- 
isfies Aaioms, it suffices to demonstrate implication 
to the right in ( 2 ) .  Let C F m i n  cp and let a Kripke 
structure K b C U A z h s .  Let mesh M be defined 
by : 

Because K c , b  Azioms,  for every w E K there is ex- 
actly one i E I N  with K + ($ = q [ w ] .  Hence, 
for ejery modal-free $ and every U, w E K ,  and ev- 
ery i E I N ,  if K: + (17 = g[w], K: + $[w] ,  and 
1c + (? = a [ u ] ,  then K k $[U]. In particular, M 
and K satisfy the same modal-free formulas. Thus 
M E, and M cp. Moreover, because K sat- 
isfies the status knowledge axioms, if w %,, U in K 
then there is c E I with K b (n,, = c) [w]  and 
K I= (nn = .)[U]. From that, straightforward induc- 
tion shows that for every $ E mPos, if M + $ then 
K I= $. Hence, K b cp, which proves (2). By the 
completeness theorem of multimodal 55 (see [Sat76]), 
( 2 )  implies C Emin  cp iff Q E Cns5(C U Azioms),  that 
is, C kmin  'p iff 'p E Cnh/ss+(C), which yields (1). 
(ii) If cp = i K n $  and Rank($) = k then we 
have C Fmin i K n $  iff [by the definiteness of 
C] M lKn$ iff AceyM + (*n = C) 2 
lKn$ iff Ace/A\7E,M M k (rn = .)[A or 

;E M iff K ~ ( 1 7  = 9. 

M + iKn$[d if€ AccIA- iEM:i,=c M + lKn$[fl 

iff A ~ E I  ArcM:i , ,=c V;EM:j ,=i ,  M b iff 
A r E / V i E M : j ; = c M  k $LJ iff A c e /  F (nn = 
c) 3 $ iff [by induction hypothesis, because 

C) 2 $ 9 flk(Z) Acc,(rn = C) 3 lKn$ E 
NRN(IIk(C)) iff [by the domain closure axiom] 
l K n $  E Cnhls5+(NRN(IIk(C))) iff [by definition 
of f l~r+~(C)]  TKn$ E b + l ( C ) -  
(iii) If cp = $1 A $2 then the inductive step is obvious. 

Ranle((~n = C )  2 $) = Rank($) = k]  A c c I ( n n  = 
iff 

there is such a partition with C U-{-($ = ?) I 7 E I N  \ 
Xi) t-min $1 and CU{l(+ = I i E IN \Xa} kmin  $2 
if€ [by inductive hypothesis] $1 E 
;E IN\X , )  and $2 E IIk(CU{i(ii 
if€ [by the domain closure axiom, because I I k  is closed 
under Cnhfs5+] $ ~ V $ Z  E IIk(C). Finally, weconclude 
that C kmin 'p if€ (0 E UkEw IIk(C) if€ [bydefinition 
of Cnni~l v E CnnrE(C). 
(v) If 'p = K n $  then I: Fmin Kn$ iff [by definite- 
ness of CJ M b Kn$ iff M + $ iff C Emin $ iff 
[by inductive hypothesis] 4 E nRonk(q l ) (C)  iff Kn$ E 
nRank(p)(X)* 0 

Theorem 5.1 gives this corollary. 

Corollary 6.2 For every modal-free C and every 
'p,$ E An/, 

bmin cp 2 C+ iff A cp 2 A+ E Cn,tE(x), 

4 c  K Il I - 1 

where Kk denotes the set of all sequences of elements 
of (XI, ..., K N )  of length k. 
Proof follows from the fact that any mesh M can- 

0 not have a simple path longer than l I N \  - 1. 

6 Updates of public knowledge 

Information broadcasted by an agent to the other 
agents may change the public knowledge. Specifically, 
if the knowledge before broadcast 'p by agent An was 
represented by a mesh M then after this broadcast, 
all worlds ?of M in which A,, doesn't know cp, that is, 
M pt Kn'p[d, must be eliminated from M ,  so that the 
M I'K,'p represents the knowledge after the broad- 
cast. Formally, M I $ is defined by: 

M I$ = {;E M 1 M k 4[fl). 
In the case of a sequence of broadcasts by various 
agents (a broadcast dialogue), a mesh M which rep- 
resents public knowledge shrinks as the dialogue pro- 
ceeds and the amount of public knowledge in the sys- 
tem grows. The following result comes in handy when 
evaluating the final public knowledge in the system by 
proof-theoretic means, without calculating a sequence 
of mesh models. 

Let Q, + be formulas of LA!. Relatiuazation of $ to 
'p (notation: $ 9 )  is defined by induction. 

If $ is modal-free then $+' = $; (7w = 1($9); 
($1 A $z)+' = $7 A $;; ($1 v $tz)+' = $7 v $Ti 
(Kn$)'P = Kn(9 2 16'). 
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Theorem 6.1 For every formula ‘p, $ of LA[ and ev- 
ery model M, and every i E M, 

M I cp I= $[4 iff M l= (’PA $p)[q. 
Proof by induction on the length of +. 
(i) Assume $ is mzdal-free. Then for every 7 E M, 
M I“p b iff i E M 1.9 and M b +[A if€ [by 
definition of M I ‘p] M b ‘p[d and M b $~[q ifF M b 
(‘p A $)[q if€ (by definition of $p) M b (‘p A $p)[d. 

(ii) Assume $ = K,6. Then for every E ,MI 
M (‘‘p b $[q i f f ?  E M [‘‘p and for every j in 
M 1‘9 with j ,  = in, M I ‘ Q  b d[j7 iff M ‘p[d 
and for every 3 with M ‘p[js and with j ,  = i n ,  
[by the induction hypothesis] M b (‘p A d p ) M  iff 
M b ‘p[d and for every 3 with M ‘pbljs and with_ 
j ,  = in, M b P[j7 iff M b ‘p[d and for every j 
with j ,  = in,  M b (‘p 2 d p ) [ d  if€ M I= ‘p[d and 
M b Kn(‘p 2 d*)[d iff M b (9 A $p)[d. 

(iii) Cases of $ = 18, $ = 81 V 82, and $ = 81 A 82 
are straightforward. 0 

Theorem 6.1 yields the following 

Corol lary 6.2 For every formula ‘p, $ of LA[, and 
every model M, 

M tvb$ i i f fM b ‘ p 3 4 ~ .  

Proof. M I‘P k $ iff A;,-,dIp M I’P b $GI iff [by 
theorem 6.11 A;,-,G,~ M (pA$p)[q iff [by definition 
of M I ‘p] A;,-,,,, if M b ‘p[d then M b (‘p A @“)[d iff 
A;EM M I= (v 3 (9 A P ) ) [ d  M b (9 3 P). 0 

The above result allows for purely syntactic (that 
is, without explicit reference to any model) evaluation 
of public knowledge &er the dialogue (PI, ..., ‘p, took 
place, as states the following 

Theorem 6.3 For every set C of modal-free formulas 
of Lnf , the following conditions are equivalent: 

for every minimal-knowledge model M of E, 

( ( M  I V I ) * - * )  I 9,) I= 4 (3) 

and 

7 Mr. Sum and Mr. Product Puzzle 

We use the following classic example to illustrate 
how these two approaches work. 

There are two logically omniscient and fully intro- 
spective agents S and P ,  for whom a possible world is 
a pair (a+ b, a x b) where a and b are natural numbers 
with 2 5 a ,  b 5 100. Agent S knows the value of sum 
a + b, and agent P knows the value of product a x b. 
This i n  all that is known in this system. (In particular, 
agent S knows that agent P knows the product and 
no more than the product, etc.) 

The following dialogue takes place. 

S: “I don’t know the value of a x L, but P doesn’t 
know the value of a + b, either”. 

P: “But now, I do know the value of a + b”. 

S: “Now, I know the value of a x b, too”. 

What are these values? 

Unlike most examples used in Artificial Intelligence 
articles, this pussle is far from being trivial, i.e., not 
every math major will be able to solve it. (We suggest 
that the reader tries it before proceeding). The formal 
specification of the initial situation is 

C = ( ~ ( ( x s  = c) A up = 11) I x + y = c and 
x x y = d has no solutions}. 

It is clear that C is definite, that is, it has a unique 
minimal-knowledge model, say, M. The dialogue be- 
tween S and P is formalised as follows. 
S’s first statement: 

P’s first statement: 

S’s second statement: 

The problem is to find x, y which satisfy: 

v = K s ~  v4(c(200 KP(*s = c). 

$ = V4<c<200KP(*S = c). 

6 V4<c<10,000KS(*P = c). 

M I= ‘pO[x, Yl, 
M I v I= $[z, Yl, 
(M I v )  I $  b d[xlYl. 

[z, Yl E ( ( M  I ’p) t $1 Id. 
The last condition is equivalent to 

One can calculate (using a suitable program) mod- 

are visualised on Figures 2, 3, 4, and 5. Fig. 2 visual- 
ises a lower left corner of the initial mesh M. Joints ; 
with M b $[q (those for which P knows up front the 
value of a+b) are encapsulated in squares. Rows of M 
containing a squared asterisk (and consequently, those 

e l s M , M  tv, (M Iv) t $ a n d ( ( M  tv) I$) Yd. They 
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for which S cannot predict that P does not know a+b) mesh ((M 19) $) 6, visualised in Fig. 5. 
have been crossed out with solid horizontal lines. 4 1  .......................................................................... 

40 .......................................................................... 

a i  ....................................... .................................... 
Jg ......................................................................... 
U .................. ........................................................ ..................................................................... _. .................... 
,1 .......................................................... =....... ....... i a  ......................................................................... 
a i  ......................................................................... 
1. .................................................... ..................... .......... 
a5 .......................................................................... 
21 ......................................................................... 

17. .  ........................................................................ 
14 ................................. ; ...................................... 
l a  ..................... 2. ............................................. .................................. ...................... 
11 ................. I....&.. ............................................ 

........... ......-.. ....................................... ........................ 
11 ......................................................................... 

v .......... =................---,.....m."-. 

1-...=.- .............................. ................................... 
6 6  

1 - V  

a 

IO ............ ....e.. - .................................................... 
........ 

._,",,,,,,,,,,m,mm""""m""" .................. 
~ a g ~ ~ ~ ~ a i ~ , ' ~ ~ ~ ~ i a ~ ~ , ~ 7 a 5 ~ l a ~ ~ ~ ' . ? I ~ l a ~ ~ , ~ ~ a ~ ~ l a ~ ~ ~ " a v ~ i a ~ ~ a ' ~ o , ~ i ~ J ~ a ~ ~  

Fig. 2. 

a4 .......................................................................... 
11 .......................................................................... 
i a  .......................................................................... 
a i  .......................................................................... 
39 .......................................................................... 
a )  ......................................................................... 
a1 .......................................................................... 
a.? ......................................................................... 
a( .......................................................................... 
aa .......................................................................... 
a4 .......................................................................... 
aa ......................................................................... 
aa .......................................................................... 
a i  .......................................................................... 
ao .......................................................................... 
15 .......................................................................... 
I8 .......................................................................... 
17 .......................................................................... 
1g .......................................................................... 
1D .......................................................................... 
I4 .......................................................................... 

Because the last mesh contains only one joint, pair 
[17,52] (that is, a = 4, b = 13), we conclude that it is 
the solution of the pussle. Fig. 3 visualises a lower left corner of the mesh M I cp 

(after S's first statement). It is the result of the re- 

horisontal lines of Fig. 2. Columns of M I cp contain- 

4 1  40 .......................................................................... .......................................................................... 
moval from M all the joints which lie on the solid 1) .......................................................................... 

::: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1:: : : : : : : : : : : : : : : : : : : : : : : : :: : : : : - . .  
ing more that one asterisk (those for which P does not 
know a + b) have been crossed out with solid vertical 
lines. 

I1 I t  

IO 11 One can easily evaluate the common knowledge be- 
tween S and P using the above meshes. v a 7 

........................................................................... 4 ................................................................... 
1 t 1 4 a G 7 

~ ~ ~ ~ ~ ~ ~ a i ~ ~ ~ ~ ~ ~ o i a i ~ a ~ i ~ ~ o ~ a i ~ a ~ . ? ~ ~ o ~ i i ~ a ~ ~ ~ ~ o i a a ~ ~ ~ ~ a ~ o i a ~ ~ ~ ~ ~ ~ ~ o ~ a ~ ~ ~ ~ ~  

Fig. 3. 

Fig. 4 visualises a lower left corner of the mesh 
( M  I 'p) $. It is the result of removal from M all the 
joints which lie on the solid vertical lines of Fig. 3. 
Rows of (M rcp) 14 containing more than one aster- 
isk (those for which S does not know a x b) have been 
crossed out with solid horizontal lines. After remov- Fin. 6. - 
ing all the worlds which lie on these lines, one obtains 
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As we noted in Section 4, this problem re- 
duces to traversing the connected_ component C(i') 
of M containing a given joint i. 
Cp[A holds iff C(4  + p. For instance, one 
can easily see from Fig. 6, which visualises a 
lower left corner of the connected component of 
M containing [17,52], that M b C(rs 2 7) A 
-C(rs 2 8)[17,52] (a known fact from [Pan92]). 
Similarly, A4 I cp C(rs 1 l l ) A - C ( r s  1 12)[17,52], 
and obviously, (M Ip) I $  b C(rs = 17)[17,52]. 

In the case where mesh is too large to  be effectively 
computed (for instance, if upper limit on a and b is 
lifted), a method of direct evaluation in the minimal- 
knowledge model of C leads to a faster verification of 
a solution. It follows from Theorem 6.1 that [z, y] is a 
solution of the pussle iff 

that is, after simplification 

Then M 

M I= Y A $* A (@)*[=, yIl 

M I= 4% Yll  
M I= KP(Y 3 US = z)[zl Y], and 
M K s ( K p ( v  3 r s  = 2) 3 * P  = y)[zly]. 
It is a matter of straightforward although tedious 

calculations (a program can do that) to check that 
[17,52] satisfies the above conditions. 

Because for every 7 E M and p E Lnr, M I= p[q 
is equivalent to M + (G = 8 3 p, it foIlows from 
Theorem 5.1 that the same can be done by means of a 
proof within ME logic. Examples of such proofs were 
presented in [Suc92b] and [SO92]. 

The nonmonotonicity of ME logic was necessary to  
assure the proper treatment of the above puaale. For 
instance, let 

C' = { p  I p is modal-free and M I (o p). 

Obviously, C & C' and C Fmin (5 = [17,52]) 3 i$, 

but C' Ymin (5 = [17,52]) 2 14. This means that 
the increase in public knowledge invalidated some of 
its earlier consequences. 
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