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2-trees 

A 2-tree          is either: 

1. An empty 2-tree    

2. A node          (the root of the 2-tree) and two 2-subtrees attached below it 

                             root 

                                                         2-tree                                     2-tree 

 

                                 left 2-subtree              right 2-subtree 

2-trees of kind 2 (above) are non-empty.  They are visualized as:            

            the root 

               descendents  

                                                proper descendents 

 

Nodes          are also called internal nodes. 

Empty trees          are also called external nodes. 

Let n be a node (  n   ) in a tree T: 

                                                      parent of n 

                                                                                    m 

                          

                         n            

 

m is the parent of n and n is a child of m.  

       m                                                                 m 

 

          n                                                                                     n 

left child of m                                                                                                                 right child of m 

 

 

The root has no parents.   

A leaf is an internal node (       ) whose both 2-subtrees are empty. 

               a leaf 

 

 

 

 

Property of 2-trees: Each internal node has 2 children (       „s,        „s, or        and         ). 

 

 



   

Decision tree is a 2-tree. 

In decision trees, internal nodes (       ) represent decisions, while external nodes (       ) represent 

outcomes. 

 

A binary tree is a 2-tree pruned of its external nodes (       ). 

 

Examples of 2-trees: 

- the empty tree (it has no root). 

 

- a tree with only one node (the root). 

 

 

 

 

  
1       level 0 = {1} 

      2                    3                 level 1 = {2, 3} 

       5                    7    level 2 = {5, 7}     in a given tree 

         level 3 = { } = 0 

         level 4 = level 5 = … = 0   

Definition of level 

 Each level is a set of nodes. 

 Levels are enumerated with natural numbers:                                                                                                                                 

level 0, level 1, level 2, … 

 If the tree is empty then all its levels are empty. 

 If the tree is non-empty then its level 0 consists of one node only: its root. 

 In the tree T 

 

 

 

 

 the level of any node n of T is equal to the level of n in         plus 1.  

 All other levels of the tree are empty. 

 

The level of a node          in a decision tree T is the number of decisions made in T before making 

decision        . 

 

The number of decisions made in a decision tree T in order to reach outcome       is equal to the level of 

the parent of that outcome       plus 1. 

 

 

 

 

 

 

 

n 



v 

       

Example        level 0 

           

         level 1 

 

         level 2 

 

         level 3 (last level)   

  

         the external level 4    

  

The number of decisions made before reaching decision        is level (      ) = 3. 

The number of decisions made to reach outcome       is level (      ) + 1 = 3 + 1 = 4 (the external level 

of        ). 

 

Definition of the depth of tree T 

It is the level number of the last non-empty level of T. 

 

Example 

1 level 0 = {1} 

 

          2           3      level 1 = {2, 3} 

 

        4                   5                                            7   level 2 = {4, 5, 7} 

 

          8         level 3 = {8} 

 

        the external level 4 = 0 

 

The above tree has depth 3. (= ⌊ lg 8 ⌋)  

 

WARNING 

Note Some authors (including myself) use the term “height” in the meaning of “depth”. 

Some others use “height” as “depth + 1”. 

Make sure you read relevant definition first before jumping to the text. 

 

Internal path length in 2-tree T 

 

ipl (T) = ∑   
         level (i)  

  

where I (T) is the set of all internal nodes of T. 

 

External path length in 2-tree T 

 

 epl (T) = ∑    
         level (i) 

 

 where E (T) is the set of all external nodes of T. 

 

Note.  With appropriate enumeration of nodes of the tree (like the one that was used in examples), the 

level level(i) to which a node i belongs is given by this formula: 

v 

v v
v



 level (i) = ⌊ lg i ⌋ 
This formula was derived in Data Structures class (heaps, priority queues).  We will derive it later. 
 
Under such arrangement 
 ipl (T)  ∑   

         ⌊ lg i ⌋ 

and 
 epl (T) = ∑   

         ⌊ lg i ⌋ 

This convention greatly simplifies proofs of several theorems in the textbook. 
 

 

Theorem 1  For every 2-tree Tn with n internal nodes,  

   epl (Tn) = ipl (Tn) + 2n 

 

Proof in file Internal_External_Path_Length.pdf 

 

The above fact can be used to prove that if a search in an ordered array by decision tree is average-case 

optimal then it is worst-case optimal; the average number of comps is 

 

 Cavg = 
           

 
 =    

 

 
   

 

where D is a decision tree of the search on a n-element ordered array, so if it is minimal then epl (D) is 

minimal, too.  This can only happen if D has external nodes on last 2 levels only, and that implies that D 

is the shortest decision tree, thus making the search in question optimal. 

 

  



Balanced 2-trees 
Definition 

A 2-tree T with n internal nodes is called a balanced 2-tree if, and only if, it has the shortest epl (T) 

among all 2-trees with n internal nodes. 

 

It follows that T is balanced iff it has the shortest ipl (T) among all such 2-trees (ipl (T) = epl (T) - 2n) 

 

Theorem A 2-tree T has the shortest epl (T) among all 2-trees with n internal nodes if, and only if, 

there are no external nodes        above the last level of T. 

 

Examples:  

                          level 1 

n = 5           last level 2   

   

                          last level 3 

                         Shortest epl  

         epl = 2 + 2 +3 + 3 + 3 + 3 = 16    not shortest epl 

       epl = 1 + 3 + 3 + 3 + 4 + 4 = 18 

 

Proof  Because epl (T) = ipl (T) + 2n, it suffices to prove that the above condition characterizes the 

shortest ipl (T). 

Indeed, since given any tree T on n nodes, 

 ipl (T) = ∑   
         ⌊ lg i ⌋, 

ipl (T) has the minimal value iff the values of ⌊ lg i ⌋ are minimal for all i   I  T . 
In order to accomplish that, all internal nodes i of T must be pushed up as far as possible.  That 
would mean that all levels of T, except perhaps in the leaf level of T, must have the maximal 
numbers of nodes: This would leave no room for any external nodes above the leaf level of T. 
This completes the proof. 
 

  



Here is the proof from the textbook: 

Proof by contradiction. 

Let Tn be a 2-tree with n internal nodes, and an external node        above the last non-empty level of Tn, 

and the shortest epl (Tn) among all 2-trees with n nodes. 

 
           

       level C 

 

                 last level D 

 

 

Let‟s consider a 2-tree T‟n that was a result of swapping a leaf       and its empty subtrees                  

with the external node     .         Tn  

 

          level C 

 

          last level D  

 

This swap will result in this 2-tree: 

                           Tn               T‟n 

    

    level C      level C 

 

          last level D                    last level D 

 

 

As a result of the swap, two paths were shortened by D-C and one path were prolonged by D-C.  In total, 

epl (T‟n) = epl (Tn) - (D - C). 

So, epl (T‟n) < epl (Tn), contradicting the assertion that epl (Tn) was the shortest among all 2-trees with n 

internal nodes. 

This completes the proof. 

One can conclude from the above theorem that binary search is optimal in class of search of an ordered 

array by a decision tree, because the decision tree D of binary search had external nodes on last two levels 

only, so it had minimal ipl (D), which means that  

Cavg = 
         

 
 =    

 

 
       was minimal as well. 

  



We will visualize balanced 2-trees as if their all internal nodes in the last level was flushed all the way to 

the left: 

 

             internal 

                    nodes 

          nodes                last level D 

                   external   

Properties of balanced 2-trees 

Let‟s enumerate, level-by-level, from the left to the right all internal nodes of a balanced 2-tree: 

                                                           

What is the level of node k? 

 level (k) = max { i | 2
i 
 ≤  k } 

or (because lg is an increasing function) 

 level (k) = max { i | lg 2
i 
 ≤  lg k } 

that is, 

 level (k) = max { i | i
 
 ≤  lg k } 

(Recall that ⌊ x ⌋ = max { i | i  ≤  x } and substitute lg k for x. ) 

            x              x 

max { i | i  ≤  lg k } = ⌊ lg k ⌋ 

 

Hence, level  k    ⌊ lg k ⌋. 

 

In particular, since the last node belongs to the last non-empty level, and the depth of any tree is the 
number of its last non-empty level, the depth of any balanced 2-three on n nodes is 

 

 D   level  n    ⌊ lg n ⌋. 

 

  

                 0 

            1 

      2 

3 

 

   i 

 

level 0 

   level 1 
                             . 
                                 . 
                                    . 

level of node k is i 

          . . .         n     nodes 

external 



External path length in balanced 2-tree 

          T 

               level D – 1 = ⌊ lg n ⌋ - 1 

             

        level D = ⌊ lg n ⌋   n      external nodes 

              x 

                                                              y 

 epl (T) = (⌊ lg n ⌋ - 1 + 1) x + (⌊ lg n ⌋ + 1) y  

                ⌊ lg n ⌋ x   ⌊ lg n ⌋ y   y   ⌊ lg n ⌋  x   y    y  
                ⌊ lg n ⌋(n + 1) + y 
All we have to do is to find y. 
  



See file BS_decision_tree_slides.pdf for derivation of this equation: 

       
 

 
  2 ⌊ lg n ⌋ 

Combining it with   x + y = n + 1, we conclude 

     
 

 
      2⌊ lg n ⌋ 

   or 
     y = 2n – 2 ⌊ lg n ⌋ + 1 + 2 
   Hence, 
    epl  T     n     ⌊ lg n ⌋   2n – 2⌊ lg n ⌋ + 1 +2 
Since     ipl (T) = epl (T) – 2n, 
              ipl (T)    n     ⌊ lg n ⌋ - 2 ⌊ lg n ⌋     +2n + 2 – 2n  
              =  n      ⌊ lg n ⌋ - 2 ⌊ lg n ⌋    + 2. 
  



  n 

i = 1 

  n 

i = 1 

 
 
Since for balanced tree,   ipl  T    ∑ ⌊ lg i ⌋,  we obtained a useful result: 

 
  ∑ ⌊ lg i ⌋    n      ⌊ lg n ⌋ - 2 ⌊ lg n ⌋     + 2   
 
Also, see file Knuth-Suchenek_formulas_sums_of_floors_ceilings_logs.pdf 
 
Also, one can show (exercise: show it using the method in the proof presented in class of the worst-
case number of comps by Mergesort, figure 4.14 in textbook) that the best-case number of comps 
done by Quicksort while sorting n-element array is the same as ipl (T) where T is a balanced 2 tree 
of n nodes, that is:   n     ⌊ lg n ⌋ - 2 ⌊ lg n ⌋     + 2. 
 
  



Finally, simplifying expression for epl (T), we conclude 
 epl (T)    n       ⌊ lg n ⌋      – 2 ⌊ lg n ⌋     + n + 1  
  =  n      ⌈ lg  n      ⌉ - 2 ⌈ lg  n      ⌉ + n + 1 
  =  n       ⌈ lg  n      ⌉      – 2 ⌈ lg  n      ⌉ 
  = m  ⌈ lg m ⌉      – 2 ⌈ lg m ⌉ 

where   m = n + 1  is the number of external nodes in T. 
  



Note: epl (T) in a balanced 2-tree with n nodes is quite close to the worst-case number of comps by 
Mergesort on n-element array: 

 n ⌈ lg  n      ⌉ - 2 ⌈ lg  n      ⌉ +1 

 = n ⌈ lg (n  ⌉ - 2 ⌈ lg  n  ⌉ +1 

Make sure you never confuse these two! 

We will use the formula for epl in order to establish tight lower bound for average number of comps 
while sorting an n-element array by decision tree. 

We will provide close approximation for epl, too. 

The formula for ipl is used, among other things, to quickly derive lower bound on search by 
decision tree and optimality of binary search. 

 

 

 
  



This section is optional 

Average ipl (T)  

Now, we will compute the ipl (Tn) in an “average 2-tree Tn” with n nodes, which we define as an 
“average binary search (or simply, B.S.) 2-tree”. 
  



 6 

      2                 11 

 1 3 8 

5 9 

10 

Here is example of a B.S. 2-tree for unsuccessful search that has been constructed by a sequence of 
consecutive insertions of 6, 2, 1, 3, 5, 4, 11, 8, 7, 9, 10 into initially empty B.S. 2-tree. 

 

 

  

 

  

 

 

 

 
  

v 
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What we call an “average B.S. tree Tn” with n nodes is a result of consecutive insertion of “average” 
permutation of first n natural numbers , …, n into an initially empty B.S. tree. 

(This process is sometimes referred to as the B.S. tree sort if followed by the in-order traversal of 
the tree Tn constructed this way.) 

We assume that all n! permutations of these numbers have the same probability  
 

  
 

 In other words, the probability distribution on the set of all B.S. trees with n nodes is not 

even: the probability of a B.S. tree T is 
 

  
  times the number of permutations of numbers  , …, n that 

– if inserted consecutively to an initially empty tree – result in the tree T. 

We will call such a permutation the creative permutation of T. 
  



It follows (show it!) that the total number of comps during construction (by means of consecutive 
insertions) of the tree Tn is equal to ipl (Tn) after all said insertions took place. 

Now, think of the creative permutation π as a sequence of pivots that Quicksort will select while 
sorting some  perhaps different  permutation of numbers  , …, n. 

 It follows that the number of comps during the execution of that Quicksort is the same as 
the number of comps while constructing a B.S. tree T out of creative permutation π, or – in other 
words – to ipl (T). 

(Exercise: Prove it!) 
  



File average_case_Quicksort.nb contains derivation (by means of experimental mathematics) of this 
number 

 A (n) = 1.386 (n + 1) lg n – 2.846n – 2.156 + 
 

  
  -  

 

    

which is equal to ipl (Tn) in an “average B.S. 2-tree Tn” with n internal nodes.  

From this we conclude that the epl (Tn) in an average 2-tree of n internal nodes is 

 A (n) + 2n = 1.386 (n + 1) lg n – 0.846n – 2.156 + 
 

  
  -  

 

    

  



In conclusion, we derive formulas for an average number of comparisons in an unsuccessful and 
successful searches in an “average B.S. 2-tree” with n nodes. 

Successful search: 

    
        

 
   

       = 
 .              .      .    

 

  
 

 

   

 
   

       =  . 8 lg    .8    . 8 
   

 
 

 .   

 
 

 

    
 

    

(since these are n successful searches in Tn, and the number of comps along a path p in Tn is the 
length of  p + 1). 
  



Avg. number of comps Cn in successful search 

 
          The difference between the 
          two lines here is about 0.0001  
         and it converges to 0 faster 

         than 
 

   

 

 

 

 

 
  

exact number 



Unsuccessful search: 

    
        

   
  

 .                .        .      
 .   

 
   

 .   

  

     
 

          . 8 lg n –   .8    
 

 
 

 

   
 

 

    

(since there are  n + 1  unsuccessful searches in Tn). 
  

‘

1



The detailed calculations are in the file Average_search_BS_tree.nb 

     
         
        The difference between the two lines 
         here is < 0.000001 and it converges 

         to 0 faster than 
 

   

 
 
 
 
 
 

approximation given above 


