Computer Algorithms Introduction to Design and Analysis

- Based on slides provided by
- Dr. Ben Choi
- Ph.D. in EE (Computer Engineering),
 The Ohio State University
- System Performance Engineer,
 Lucent Technologies Bell Labs Innovations
- Pilot, FAA certified pilot for airplanes and helicopters

http://www2.latech.edu/~choi/Bens/To

→ BenChoi.info

Computer Science

Analysis Tool: Probability

Elementary events (outcomes)

Suppose that in a given situation an event, or experiment, may have any one, and only one, of k mutually exclusive outcomes, e_1 , e_2 , ..., e_k .

- Universal set (the *universe*) The set of all elementary events is called the universal set and is denoted $U = \{e_1, e_2, ..., e_k\}$.
- Probability Pr of e_i is a function from U into reals such that:
- $0 \le \Pr(e_i) \le 1$ for $1 \le i \le k$;
- $Pr(e_1) + Pr(e_2) + ... + Pr(e_k) = 1$

Event

- Let $S \subseteq U$. Then S is called an *event*, and
- $Pr(S) = \sum_{e \in S} Pr(e)$
- Sure event $U = \{e_1, e_2, ..., e_k\}$, Pr(U) = 1
- Impossible event 0, Pr(0) = 0

Complement event "not S" or -S: U - S, Pr(-S) = 1 - Pr(S)

Note: Elementary event e is <u>not</u> an event. {e} is.

(Events are sets of elementary events.)

Conditional Probability

• The conditional probability of an event S *given* an event T is defined as

$$Pr(S \mid T) = Pr(S \cap T) / Pr(T)$$

$$= (\sum_{e \in S \cap T} Pr(e)) / (\sum_{e \in T} Pr(e))$$

Independent events

S and T are stochastically independent events (or *independent events*) iff

$$Pr(S \cap T) = Pr(S) \times Pr(T)$$

Random variable and their Expected value

- A random variable f is a function from U into reals.
 - f(e) represents an outcome of event e.
- Expected value of a random variable f
 - Let f be a random variable defined on a set of elementary events U. The expected value of f, denoted as E(f), is defined as
- $E(f) = \sum_{e \in U} f(e) \times Pr(e)$
 - Some call it weighted average of f.
- Conditional expected value of a random variable f

•
$$E(f \mid S) = \sum_{e \in U} f(e) \times Pr(e \mid S) =$$

= $\sum_{e \in S} f(e) \times Pr(e \mid S)$