CSC 501/401

Lectures on Analysis of Algorithms

by

Dr. Marek A. Suchenek ©

Computer Science
CSUDH

Copyrighted material

All rights reserved

Copyright by Dr. Marek A. Suchenek ©

CSC 501/401

Chapter 7 Graphs and Graph Traversals

Depth-First Search Breadth-First Search

This will not be covered by Test 2

Definitions and Representations

A Minimum Spanning Tree Algorithm

A Shortest-Path Algorithm

Traversing Graphs and Digraphs

Definitions and Examples

graph, G, is a pair (V, E)

 $V = \{SF, OAK, SAC, STK, FRES, LA, SD\}$

E = {{SF, STK}, {SF, SAC},
 {SF, LA}, {SF, SD},
 {SF, FRES}, {SD, OAK},
 {SAC, LA}, {LA, OAK},
 {LA, FRES}, {LA, SD},
 {FRES, STK}, {SD, FRES}}.

A digraph, G, is a pair (V, E)

$$V = \{1, 2, ..., 7\}$$

$$E = \{(1,2), (2,3), (3,4), (3,5), (4,5), (5,6), (5,7), (7,3)\}$$

(v, w) is represented in the diagrams as $v \rightarrow w$.

(x,y)
in E
iff

Star

Cycle

 $\left(\begin{array}{c}5\end{array}\right)$

 $\left(\begin{array}{c}6\end{array}\right)$

 $\left(0\right)$

 $\begin{pmatrix} 1 \end{pmatrix}$

 $\left(2\right)$

 $\left(3\right)$

4

Cycle

(5, 6, 0, 1, 2, 3, 4)

Gra

SUB GRAPH

PATH: 53124

CYCLE: 53124

Finding Connected Components of a Graph

Figure 4.7 A graph with three connected components.

Computer Representation

adjacency matrix
$$A = (a_{ij})$$

Let
$$G = (V, E)$$

$$a_{ij} = \begin{cases} 1 & \text{if } (v_i, v_j) \in E \\ 0 & \text{otherwise} \end{cases}$$

If
$$G = (V, E, W)$$

$$a_{ij} = \begin{cases} W(v_i v_j) & \text{if } v_i v_j \in E \\ c & \text{otherwise} \end{cases}$$

```
class DiGraph {
20
21 private int size; //number of vertices
22 private boolean[][] AdjMtrx; //adjacency matrix
23 private boolean[] mark; //to mark "visited"
```


Figure 4.10 Representations for a graph.

(a) A weighted digraph.

(b) Its adjacency matrix.

Traversing Graphs and Digraphs

Depth-first and Breadth-first Searches

Depth-first search is a generalization of preorder traversal of trees.

In a breadth-first search, vertices are visited in order of increasing distance from the starting point


```
public static void DFS(DiGraph G, int v) {
  int w;
  if (!G.IsVisited(v)) {
   G.Visit(v);
  for (w = G.FirstAdj(v); w != -1; w = G.NextAdj(v, w)) DFS(G, w);
  System.out.println("Back out of " + v);
}
```

```
void preOrderTraversal(TreeNode T) {
                                                      // let S be an initially e
            Stack S = new Stack();
                                                   // N points to nodes durin
            TreeNode N;
5
                                          // push the pointer T onto the em
            S.push(T);
            while (!S.empty()) {
                                                           // pop top pointer
                 N = (TreeNode)S.pop();
                 if (N != null) {
                                                                    ·// print N
                      System.out.print(N.info);
                                                         // push the right poi
                      S.push(N.rlink);
                                                          // push the left poi
                      S.push(N.llink);
5
```

```
268
      public static void DFSnrec(DiGraph G, int v) {
269
          //Adjacency is reversed by pushing on a stack
270
           if (!G.IsVisited(v)) {
271
               STACK S = new STACK():
272
               S.push(v);
273
               while (!S.isEmpty())
274
275
                   v = S.pop();
276
                   G.Visit(v);
277
                   for (int w = G.LastAdj(v); w != -1; w = G.PreviousAdj(v, w))
278
                       if (!G.IsVisited(w)) S.push(w);
279
280
281
```

```
void levelOrderTraversal(TreeNode T) {
             Queue Q = new Queue();
                                                      // let Q be a
             TreeNode N;
                                                    // N points to
5
            . Q.insert(T);
                                                      // insert the
             while (! Q.empty()) {
                   N = (TreeNode) Q.remove();
                                                              // re
10
                   if (N != null ) {
                       System.out.print(N.info);
                       Q.insert(N.llink)
                                                         // insert
                       Q.insert(N.rlink)
                                                        // insert ri
15
```

```
177 □ public static void BFS(DiGraph G, int v) {
178
          if (!G.IsVisited(v)) {
              QUEUE Q = new QUEUE();
179
180
              int w;
181
              Q.enqueue(v);
182
              while (!Q.isEmpty())
183
184
                  v = Q.dequeue();
185
                  if (!G.IsVisited(v)) G.Visit(v);
186
                  for (w = G.FirstAdj(v); w != -1; w = G.NextAdj(v, w))
187
                      if (!G.IsVisited(w)) Q.enqueue(w);
188
              }
189
190
```

```
177 □ public static void BFS(DiGraph G, int v) {
178
          if (!G.IsVisited(v)) {
              QUEUE Q = new QUEUE();
179
180
              int w;
181
              Q.enqueue(v);
182
              while (!Q.isEmpty())
183
184
                  v = Q.dequeue();
                  if (!G.IsVisited(v)) G.Visit(v);
185
186
                  for (w = G.FirstAdj(v); w != -1; w = G.NextAdj(v, w))
187
                      if (!G.IsVisited(w)) Q.enqueue(w);
188
              }
189
190
```

```
177 □ public static void BFS(DiGraph G, int v) {
178
          if (!G.IsVisited(v)) {
              QUEUE Q = new QUEUE();
179
180
              int w;
181
              Q.enqueue(v);
182
              while (!Q.isEmpty())
183
184
                  v = Q.dequeue();
                  if (!G.IsVisited(v)) G.Visit(v);
185
186
                  for (w = G.FirstAdj(v); w != -1; w = G.NextAdj(v, w))
                      if (!G.IsVisited(w)) Q.enqueue(w);
187
188
              }
189
190
```


nager Sanggeffen

(a) A digraph.

Edges are numbered in the order traversed.

(b) Depth-first search beginning at A; order in which vertices are visited: A B C H G I E F

(c) Breadth-first search beginning at A; order in which vertices are visited: A B F C G E I H

(a) A digraph.

Edges are numbered in the order traversed.

(b) Depth-first search beginning at A; order in which vertices are visited: A B C H G I E F

Variant

(c) Breadth-first search beginning at A; order in which vertices are visited: A B F C G E I H

Q						
		Q				
				Q		
	Q					
			Q			

Demo of Graph progr. in java

compile-single:

run-applet:

Dump start

AdjList[0]: 1 2

AdjList[1]: 3

AdjList[2]: 3 4

AdjList[3]:

AdjList[4]: 0 1 3

AdjList[5]: 7

AdjList[6]: 5 8

AdjList[7]: 6

AdjList[8]: 9

AdjList[9]: 6

Dump end

0 1 3 Back out of 3 Back out of 1 2 4 Back out of 4 Back out of 2 Back out of 0

Level 0: 0

Level 1: 1 2

Level 2: 3 4


```
0 1 3 Back out of 3
Back out of 1
2 4
A cycle: 0 2 4 there is an edge from here to 0
Back out of 4
Back out of 2
Back out of O
5 7 6
A cycle: 5 7 6 there is an edge from here to 5
89
A cycle: 6 8 9 there is an edge from here to 6
Back out of 9
Back out of 8
Back out of 6
Back out of 7
Back out of 5
```

DFS PES

0 1 3 Back out of 3 Back out of 1 A cycle: 0 2 4 there is an Back out of 4 Back out of 2 Back out of 0 5 7 6 A cycle: 5 7 6 there is an 8 9 A cycle: 6 8 9 there is an Back out of 9 Back out of 8 Back out of 6

Back out of 7

Back out of 5

This all will be covered on Final

