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Theorem For every 2-tree Tn with n internal nodes, 

 epl (Tn) = ipl (Tn) + 2n 

Proof by induction on n. 

Basic step (n = 1) 

 

 

ipl (T1) = 0 

epl (T1) = 1 + 1 = 2 

So,   epl (T1) = ipl (T1) + 2 × 1 

This completes the basic step.  

Inductive step 

Inductive hypothesis assume that for sum n ≥ 1, and for every 2-tree Tn with n internal nodes, 

 epl (Tn) = ipl (Tn) + 2n 

We are going to prove that for every 2-tree Tn+1 with  n + 1  internal nodes,  

 epl (Tn+1) = ipl (Tn+1) + 2(n + 1). 

Let Tn+1 be any 2-tree with  n + 1 internal nodes. 

2-tree Tn+1 with  n + 1  internal nodes (        ) 

 

 

 

 

 

 

 

 

 

 

 

 



Let’s remove one internal leaf from Tn+1. (It must have an internal leaf befause it is non-empty and finite.)  
The resulting 2-tree Tn has n internal leaves, so the inductive hypothesis does apply! 

 epl (Tn) = ipl (Tn) + 2n 

2-tree Tn+1 with  n+1  internal nodes (        )  

 

2-tree Tn with n internal nodes (        ) 

   



The differences are: 

 epl (Tn+1) – epl (Tn) 
 = k + 1 + k + 1 – k 
 = k + 2 

 ipl (Tn+1) – ipl (Tn) 
 = k – 1 + k – (k - 1) = k 
Now, 

 epl (Tn + 1) = epl (Tn) + k + 2 
 = (by the inductive hypothesis) 
 ipl (Tn) + 2n + k + 2 
 = ipl (Tn+1) + 2 (n + 1). 
 
This completes the inductive step which completes the proof. 


