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Abstract

For every natural number n > 1,

S llgi] = (n+1)[lgn) — 20+ 4o =
i=1

= (n+ 1) lg(n +1)] - 2V 4o =
=n+1)(Ign+1)+e(n+1)) —2n,

where ¢, given by:
e(n)=14+60—2%and 0 = [lg n] —lg n,

is a continuous function of n on the set of reals > 1, with the minimum
value 0 and and the maximum (supremum, if n is restricted to integers)
value

0=1-lge+l1glge ~ 0.0860713320559342.

Hence,

(n+1)1g(n+1)—2n <Y |lgi] < (n+1)lg(n+1) —1.913n +0.0861.
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For every natural number n > 1,

n

Z[lgﬂ =n[lgn] —2Me"l 41 =
i=1

= n[lg(n+1)] — 2/ L1 =
=n|lgn| —2len+ 4y 41 =

=n(lgn+e(n)) —n+1.
Hence

nlgn —n+1< Z[lgﬂ <nlgn —0.913n + 1.
i=1

Moreover, for every natural number n > 1,

n

> (Ngil - lgi]) =n — [lgn] — 1.

i=1



1 A sum of floors of consecutive logarithms

Theorem 1.1 For every natural number n > 1,

zn:ng’J =(n+1)|lgn| — ollen+l 4 o (1)

i=1
Note. The right-hand side of (1) is not a continuous function.
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Figure 1: Functions 37, |lgi| and (n + 1)|lgn| — 2Usn+t 4 2.



Proof in the file (easy, by solving equation z +y =n+1;z + £ = 2len])

/media/Suchenek/Courses/CSC401/Slides/2-trees.htm

and in the file (by direct calculation with Rieman’s sum method)

/media/Suchenek/Courses/CSC311/Materials _for text/Balanced tree.pdf
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Theorem 1.2 For every natural number n > 1,
Solgi] = (n+1)[Ig(n + 1)) — 2D 4o (2)
i=1

Note. The right-hand side of (2) is a continuous function.
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Figure 2: Functions 37 ,|lgi] and (n 4 1)|lg(n + 1)] — 2UsM+DI+1 4 9

Note. Function f(n) = 0, [lgi| = (n + 1)|lg(n + 1)] — 2let+DI+1 4 9
is a linear interpolation of itself restricted to n = 2*. In particular, it is a
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linear interpolation of the function g(k) = k(2% +3)+2 = (n+3)lgn +2 for
k> 0.

Proof We have:

Slei) = Sl - Lo +1)] =

[by (1)]

= (n+2)[1g(n+1) | 2"+ L2—|Ig(n+1)| = (n+1)lg(n+1) | -2 DI 49,
0

It turns out that the value of
z|lgx| — 2lls=l+t
(which is a part of the right-hand side of (2) for z = n+ 1) oscillates between
z(lgx —2)

and
z(lgx — 2+ 0.08607133205593432).

If x = 2* then lgz = k, which is an integer number, so |lgz| = lgz and,
indeed,

zllgz| — 28It — glgx — 2 x 218% = glgx — 22 = 2(lgz — 2).
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Figure 3: Functions z(lgx — 2) (bottom), z|lgz| — 221+ (middle), and
2(lgz — 2 + 0.08607133205593432) (top).

We will show that for = # 2%, value of z|lgz| — 218241 is (only slightly)
larger than z(lg x —2) and not larger than z(lg x —2+0.08607133205593432),
as the Figure 3 shows.

Theorem 1.3 For every x > 0,

z|lgz| — 2% = 2(lgz 4+ a(z) — 2), (3)



where o is given by:

az)=2—p—2"%and p=1g v — |lg z|.
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Figure 4: Graph of a(z) =2~ (y — |y]) —2'"¢~D as a function of y = Ig .

Proof. Substituting definition of ¢ to the definition of a, we obtain:
alz)=2—-(gx—|lg x]) - ol-(lg z—lg zJ))

or

ollg z]+1
alz)=2—-lgz+ [lg =] — TTER
or
2|_1g z|+1
lgz+a(x) —2=|lg x| — ,
T
or

z(lg x4+ a(r) —2) = z|lg x| — ollg z)+1



Theorem 1.4 For every x > 0,
2llga] — 27 = p(lga + <(z) — 1), (4)
where ¢ is given by:
e(x)=14+0—-2% and 0 = [lg v] — g z.
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Figure 5: Graph of e(z) = 1 + ([y] — y) — 2/¥I7¥ as a function of y = Igx.

Proof. Substituting definition of # to the definition of £, we obtain:
e(x) =1+ [lgz] — gz —2leel-lex

or
oflg ]
lg x4+ e(x) — 1 =[lg x| ~ e
or
2flg ]
lgz+e(r)—1=[lgz] - ,
x
or

z(lg x +e(x) — 1) = z[lg 2] — 2=l
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Theorem 1.5 For every z,

where € is given by:
e(n)=1+60—-2" and 0 = g 2] — g =,
and « is given by:

az)=2—p—2"%and p=1g v — |lg z|.

Proof. If for some integer k, z = 2* then

lgx=Fk=]lgz| =|lgz].

In such a case,

SO
x)=140-20=140-2"=0=2-0-2""=2—p 2" =qa(n).

Thus €(n) = a(x) in such a case.

Otherwise, lg z is not an integer, so
g z] = |lg =| + 1,
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and

O=[lgz]-lgz=|lgz|+1-lgx=1—(|lgz] —lgz)=1—¢.
From this we conclude

cx)=140-20=1+1—-p—-2"9=2—p 277 =qa(z).

O
Corollary 1.6 For every x > 0,
zllgz| —2leelt = z(lgz + e(z) — 2), (6)
where € is given by:
e(x)=14+0—-2% and 0 = [lg v] — g x.
Proof by direct application of Theorem 1.5 to Theorem 1.3. 0
Corollary 1.7 For every natural number n > 1,
1 " 1
(n+1)lg ”Z +2< 3 |lgi| < (n+1)(Ig "I +0.08607133205593432) + 2.
i=1
(7)
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Figure 6: Functions (n + 1)lg” + 2 (bottom), (n + 1)|lg(n + 1)| —
2Uem+1I+1 4 9 (middle, same as 7, |lgi| for all integer n > 1), and
(n+ 1)(lg X + 0.08607133205593432) + 2 (top).

Proof. Putting = n + 1 in equality (6) of Theorem 1.3 yields:

(n+1)|1lg(n+1)] —2UeCtDIH L9 — (n 1 1) (Ig(n+1)+a(lg(n+1))—2)+2 =

= (n+1)(Ig(n+1)+a(lg(n+1))—1g4)+2 = (n+1)(lg ni—lJra(lg(nJrl)))wLQ.
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Hence, by the equality (2) of Theorem 1.2,
G +1
> llgi] = (n+1)(1g —— +allg(n + 1)) +2. (8)
i=1

Since, as Figure 4 shows, 0 < a(z) < 0.08607133205593432 (use Mathemat-
ica to find the minimum and the maximum of «(z) or refer to the Lemma
1.8), we conclude (7). O

Lemma 1.8 For every y,

0 < a(y) < 0.08607133205593432, (9)
where a(y) =2 — (y — y] + 5257) (see Figure 4).
Proof. Function «a(y) is periodic with period 1, that is for every v,
a(y) = aly +1).

Therefore, in order to find the minimum and the maximum of «(x) it suffices
to find it on the closed interval [0, 1].

a(0) = a(l) =0.
For any 0 <y <1, |y|] =0, so
=2 2 )_9 2) 9 2!7v
aly) =2-(y—-lyl+5g)=2-+5)=2-y-27"
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Let us compute the derivative o/(y) of a(y) on the open interval (0, 1).

o) =[2—y-2" =2 =y -2V =

=0—-1-I2x2"¥x[1—y/=-1-m2x2"¥x (=-1)=2"YIn2 - 1.

SO

or

or

or

or

Let us solve the equation
a'(y) =0
for 0 <y < 1. We have:

o(y) =2"YIm2—-1=0,

21¥In2 =1
ol-y _ L

In2’
217 = Ige,

lg2'7¥ =lglge,
-y =lglge,

y=1-lglge ~ 0.4712336270551024.
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Substituting y = 1 — Iglge in a(y) = 2 — y — 2!, we obtain
a(l1-lglge) = 2—(1-lglge)—21~(-telee) — 1 {]g]lge—2'%1e = 14lglge—Ilge =

—1—lge +lglge =~ 0.08607133205593431,
as lg e ~ 1.4426950408889634 and lglg e a2 0.5287663729448976.

From the above calculations, we conclude that 0 is the minimum and
0.08607133205593431 is the approximate maximum of function a(y) on the
closed interval [0, 1].

Hence, for all y.

0 < a(y) < 0.08607133205593432.

Note. The constant
1 —lge+lglge ~ 0.08607133205593431

has been known as the Erdios constant §. Erdos used it around 1955 in order
to establish an asymptotic upper bound for the number M (k) of different
numbers in a multiplication table of size £ x k by means of the following
limit: ok
In
koo TnIn(k x k)
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In other words,
k2

M(k) ~ (2 In k)0.08607133205593431 ’

Corollary 1.9 For every natural number n > 1,

1 n 1
(n+1)1g ”Z+2 <3 llgi) < (n+1)(lg "L 1 0.08607133205593432) +-2.

i=1 4
(10)
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Figure 7: Functions (n + 1) lg ”TH +2, (n+ 1) |lg(n + 1) | — 2l 4 o
and (n + 1)(lg L + 0.08607133205593432) + 2.

2 A sum of ceilings of consecutive logarithms

Theorem 2.1 For every natural number n > 1,
S gi] =n[lgn] — 2" 4 1. (11)
i=1
Note. The right-hand side of (11) is a continuous function.
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Figure 8: Functions 37, [lgi] and n[lgn] — 2/&" 4 1.

Note. Function F(n) = 31", [lgi] = n[lgn] — 28" + 1 is a linear inter-
polation of itself restricted to n = 2¥. In particular, it is a linear interpolation
of the function G(k) = (k — 1)2F + 1 =n(lgn — 1) + 1.

Proof We have

n

> Mgl = Mlgi] =

1=2
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Figure 9: Functions n[lgn]—2M""! (top) and n(lgn—1) (bottom); the former
is a linear interpolation of the latter between points n = 281,

[by [lgi] = [lg(i = 1)) +1]

3
3
3
—

En: ([lg(i—1)|+1) = zn:[lg(i—l)j—kz = g(i—1)|+n—1= itlg(z)j +n—1=

=2 i=2 =1

by (1)]
= n|lg(n —1)] —20eC=DIHL Loy 1 =
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by [lg(n —1)] = [lgn] —1]

(See also [Knu97].) O
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Corollary 2.2 For every natural number n > 1,

nlg% +1< S [lgi] < n(lg g +0.08607133205593432) + 1. (12)

=1

Figure 10: Functions nlg% + 1, nflgn] — 2/"8" + 1 and n(lg2 +
0.08607133205593432) + 1.
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Theorem 2.3 For every natural number n > 1,

n

S gi] = nflg(n + 1)] — 2MeC T 41, (13)

i=1
Note. The right-hand side of (13) is not a continuous function.
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Figure 11: Functions 37 ,[lg¢] and n[lg(n + 1)] — 2MeC+D1 4 1,

Proof We have:
n+1

ilﬂgﬂ = 3Tl - Tla(n + 1] =
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[by (11)]

= (n+1)[lg(n+1)] —2M+DT 11 _(lg(n+1)] = n[lg(n+1)] -2+ 41,

OJ
Theorem 2.4 For every natural number n > 1,
S Ngi] =n|lgn| — 2% 40 41 (14)
i=1
Proof By (13) we have:
n n+1
> Ngil =Y MNgi] — Ng(n+1)] = n[lg(n+1)] — 280V +1 =
i=1 i=1
=n([lgn| +1) -2+ 41 = pn|lgn) — 28T 4 p 11
OJ
Theorem 2.5 For every natural number n > 1,
> Ngi] =n(lgn+e(n)) —n+ 1. (15)
i=1
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Proof By (14) we have:

>-Mgi] =nllgn| — 288 4 n 41 =

[by (6)]
=n(lgn+e(n)—2)+n+1 =n(lgn+e(n))—2n+n+1=n(lgn+e(n))—n+1.
0

3 A sum of the differences

Theorem 3.1 For every natural number n > 1,

n

> (Ngi] — [lgi]) =n —[lg(n+1)] =n — [lgn] — 1. (16)

=1

Proof. We have

i(“gl — |lgi]) :é lgi] —itlg” —
[by (1) and (14)]
nllgn) — 215 40+ 1 — ((n+ 1)|lgn) — 2057 4 2) = — [lgn] — 1.

OJ
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Figure 12: Function n — |lgn| — 1.
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