Sums of floors and ceilings of consecutive logarithms

For in-class use only in CSC 501/401 course

Dr. Marek A. Suchenek ©

March 25, 2015

Copyright by Dr. Marek A. Suchenek.

This material is intended for future publication.

Absolutely positively no copying no printing
no sharing no distributing of ANY kind please.

Abstract

For every natural number $n \geq 1$,

$$\sum_{i=1}^{n} \lfloor \lg i \rfloor = (n+1) \lfloor \lg n \rfloor - 2^{\lfloor \lg n \rfloor + 1} + 2 =$$

$$= (n+1) \lfloor \lg (n+1) \rfloor - 2^{\lfloor \lg (n+1) \rfloor + 1} + 2 =$$

$$= (n+1) (\lg (n+1) + \varepsilon (n+1)) - 2n,$$

where ε , given by:

$$\varepsilon(n) = 1 + \theta - 2^{\theta}$$
 and $\theta = \lceil \lg n \rceil - \lg n$,

is a continuous function of n on the set of reals > 1, with the minimum value 0 and and the maximum (supremum, if n is restricted to integers) value

$$\delta = 1 - \lg e + \lg \lg e \approx 0.0860713320559342.$$

Hence,

$$(n+1)\lg(n+1) - 2n \le \sum_{i=1}^{n} \lfloor \lg i \rfloor \le (n+1)\lg(n+1) - 1.913n + 0.0861.$$

For every natural number $n \geq 1$,

$$\sum_{i=1}^{n} \lceil \lg i \rceil = n \lceil \lg n \rceil - 2^{\lceil \lg n \rceil} + 1 =$$

$$= n \lceil \lg(n+1) \rceil - 2^{\lceil \lg(n+1) \rceil} + 1 =$$

$$= n \lfloor \lg n \rfloor - 2^{\lfloor \lg n \rfloor + 1} + n + 1 =$$

$$= n (\lg n + \varepsilon(n)) - n + 1.$$

Hence

$$n \lg n - n + 1 \le \sum_{i=1}^{n} \lceil \lg i \rceil \le n \lg n - 0.913n + 1.$$

Moreover, for every natural number $n \geq 1$,

$$\sum_{i=1}^{n} (\lceil \lg i \rceil - \lfloor \lg i \rfloor) = n - \lfloor \lg n \rfloor - 1.$$

1 A sum of floors of consecutive logarithms

Theorem 1.1 For every natural number $n \geq 1$,

$$\sum_{i=1}^{n} \lfloor \lg i \rfloor = (n+1) \lfloor \lg n \rfloor - 2^{\lfloor \lg n \rfloor + 1} + 2. \tag{1}$$

Note. The right-hand side of (1) is not a continuous function.

Figure 1: Functions $\sum_{i=1}^n \lfloor \lg i \rfloor$ and $(n+1) \lfloor \lg n \rfloor - 2^{\lfloor \lg n \rfloor + 1} + 2$.

```
Proof in the file (easy, by solving equation x+y=n+1; x+\frac{y}{2}=2^{\lfloor \lg n\rfloor}) /media/Suchenek/Courses/CSC401/Slides/2-trees.htm and in the file (by direct calculation with Rieman's sum method) /media/Suchenek/Courses/CSC311/Materials_for_text/Balanced_tree.pdf
```

Theorem 1.2 For every natural number $n \geq 1$,

$$\sum_{i=1}^{n} \lfloor \lg i \rfloor = (n+1) \lfloor \lg(n+1) \rfloor - 2^{\lfloor \lg(n+1) \rfloor + 1} + 2. \tag{2}$$

Note. The right-hand side of (2) is a continuous function.

Figure 2: Functions $\sum_{i=1}^{n} \lfloor \lg i \rfloor$ and $(n+1) \lfloor \lg(n+1) \rfloor - 2^{\lfloor \lg(n+1) \rfloor + 1} + 2$.

Note. Function $f(n) = \sum_{i=1}^{n} \lfloor \lg i \rfloor = (n+1) \lfloor \lg (n+1) \rfloor - 2^{\lfloor \lg (n+1) \rfloor + 1} + 2$ is a linear interpolation of itself restricted to $n = 2^k$. In particular, it is a

linear interpolation of the function $g(k) = k(2^k + 3) + 2 = (n+3) \lg n + 2$ for k > 0.

Proof We have:

$$\sum_{i=1}^{n} \lfloor \lg i \rfloor = \sum_{i=1}^{n+1} \lfloor \lg i \rfloor - \lfloor \lg(n+1) \rfloor =$$

[by (1)]

$$= (n+2) \lfloor \lg(n+1) \rfloor - 2^{\lfloor \lg(n+1) \rfloor + 1} + 2 - \lfloor \lg(n+1) \rfloor = (n+1) \lfloor \lg(n+1) \rfloor - 2^{\lfloor \lg(n+1) \rfloor + 1} + 2.$$

It turns out that the value of

$$x |\lg x| - 2^{\lfloor \lg x \rfloor + 1}$$

(which is a part of the right-hand side of (2) for x = n+1) oscillates between

$$x(\lg x - 2)$$

and

$$x(\lg x - 2 + 0.08607133205593432).$$

If $x = 2^k$ then $\lg x = k$, which is an integer number, so $\lfloor \lg x \rfloor = \lg x$ and, indeed,

$$x | \lg x | - 2^{\lfloor \lg x \rfloor + 1} = x \lg x - 2 \times 2^{\lg x} = x \lg x - 2x = x(\lg x - 2).$$

Figure 3: Functions $x(\lg x - 2)$ (bottom), $x\lfloor \lg x \rfloor - 2^{\lfloor \lg x \rfloor + 1}$ (middle), and $x(\lg x - 2 + 0.08607133205593432)$ (top).

We will show that for $x \neq 2^k$, value of $x \lfloor \lg x \rfloor - 2^{\lfloor \lg x \rfloor + 1}$ is (only slightly) larger than $x(\lg x - 2)$ and not larger than $x(\lg x - 2 + 0.08607133205593432)$, as the Figure 3 shows.

Theorem 1.3 For every x > 0,

$$x\lfloor \lg x \rfloor - 2^{\lfloor \lg x \rfloor + 1} = x(\lg x + \alpha(x) - 2), \tag{3}$$

where α is given by:

$$\alpha(x) = 2 - \varphi - 2^{1-\varphi}$$
 and $\varphi = \lg x - \lfloor \lg x \rfloor$.

Figure 4: Graph of $\alpha(x) = 2 - (y - \lfloor y \rfloor) - 2^{1 - (y - \lfloor y \rfloor)}$ as a function of $y = \lg x$.

Proof. Substituting definition of φ to the definition of α , we obtain:

$$\alpha(x) = 2 - (\lg x - |\lg x|) - 2^{1 - (\lg x - \lfloor \lg x \rfloor)},$$

or

$$\alpha(x) = 2 - \lg x + \lfloor \lg x \rfloor - \frac{2^{\lfloor \lg x \rfloor + 1}}{2^{\lg x}},$$

or

$$\lg x + \alpha(x) - 2 = \lfloor \lg x \rfloor - \frac{2^{\lfloor \lg x \rfloor + 1}}{x},$$

or

$$x(\lg\,x + \alpha(x) - 2) = x\lfloor\lg\,x\rfloor - 2^{\lfloor\lg\,x\rfloor + 1}.$$

Theorem 1.4 For every x > 0,

$$x\lceil \lg x \rceil - 2^{\lceil \lg x \rceil} = x(\lg x + \varepsilon(x) - 1), \tag{4}$$

where ε is given by:

$$\varepsilon(x) = 1 + \theta - 2^{\theta} \text{ and } \theta = \lceil \lg x \rceil - \lg x.$$

Figure 5: Graph of $\varepsilon(x) = 1 + (\lceil y \rceil - y) - 2^{\lceil y \rceil - y}$ as a function of $y = \lg x$.

Proof. Substituting definition of θ to the definition of ε , we obtain:

$$\varepsilon(x) = 1 + \lceil \lg x \rceil - \lg x - 2^{\lceil \lg x \rceil - \lg x},$$

or

$$\lg x + \varepsilon(x) - 1 = \lceil \lg x \rceil - \frac{2^{\lceil \lg x \rceil}}{2^{\lg x}},$$

or

$$\lg x + \varepsilon(x) - 1 = \lceil \lg x \rceil - \frac{2^{\lceil \lg x \rceil}}{x},$$

or

$$x(\lg x + \varepsilon(x) - 1) = x\lceil \lg x \rceil - 2^{\lceil \lg x \rceil}.$$

Theorem 1.5 For every x,

$$\varepsilon(x) = \alpha(x),\tag{5}$$

where ε is given by:

$$\varepsilon(n) = 1 + \theta - 2^{\theta}$$
 and $\theta = \lceil \lg x \rceil - \lg x$,

and α is given by:

$$\alpha(x) = 2 - \varphi - 2^{1-\varphi}$$
 and $\varphi = \lg x - \lg x$.

Proof. If for some integer k, $x = 2^k$ then

$$\lg x = k = \lceil \lg x \rceil = |\lg x|.$$

In such a case,

$$\theta = \varphi = 0,$$

SO

$$\varepsilon(x) = 1 + \theta - 2^{\theta} = 1 + 0 - 2^{0} = 0 = 2 - 0 - 2^{1-0} = 2 - \varphi - 2^{1-\varphi} = \alpha(n).$$

Thus $\varepsilon(n) = \alpha(x)$ in such a case.

Otherwise, $\lg x$ is not an integer, so

$$\lceil \lg x \rceil = \lfloor \lg x \rfloor + 1,$$

and

$$\theta = \lceil \lg x \rceil - \lg x = \lfloor \lg x \rfloor + 1 - \lg x = 1 - (\lfloor \lg x \rfloor - \lg x) = 1 - \varphi.$$

From this we conclude

$$\varepsilon(x) = 1 + \theta - 2^{\theta} = 1 + 1 - \varphi - 2^{1-\varphi} = 2 - \varphi - 2^{1-\varphi} = \alpha(x).$$

Corollary 1.6 For every x > 0,

$$x\lfloor \lg x \rfloor - 2^{\lfloor \lg x \rfloor + 1} = x(\lg x + \varepsilon(x) - 2), \tag{6}$$

where ε is given by:

$$\varepsilon(x) = 1 + \theta - 2^{\theta} \text{ and } \theta = \lceil \lg x \rceil - \lg x.$$

Proof by direct application of Theorem 1.5 to Theorem 1.3. \Box

Corollary 1.7 For every natural number $n \geq 1$,

$$(n+1)\lg\frac{n+1}{4} + 2 \le \sum_{i=1}^{n} \lfloor \lg i \rfloor \le (n+1)(\lg\frac{n+1}{4} + 0.08607133205593432) + 2.$$
(7)

Figure 6: Functions $(n+1) \lg \frac{n+1}{4} + 2$ (bottom), $(n+1) \lfloor \lg (n+1) \rfloor - 2^{\lfloor \lg (n+1) \rfloor + 1} + 2$ (middle, same as $\sum_{i=1}^{n} \lfloor \lg i \rfloor$ for all integer $n \geq 1$), and $(n+1) (\lg \frac{n+1}{4} + 0.08607133205593432) + 2$ (top).

Proof. Putting x = n + 1 in equality (6) of Theorem 1.3 yields:

$$(n+1)\lfloor\lg(n+1)\rfloor-2^{\lfloor\lg(n+1)\rfloor+1}+2=(n+1)(\lg(n+1)+\alpha(\lg(n+1))-2)+2=$$

$$= (n+1)(\lg(n+1) + \alpha(\lg(n+1)) - \lg 4) + 2 = (n+1)(\lg \frac{n+1}{4} + \alpha(\lg(n+1))) + 2.$$

Hence, by the equality (2) of Theorem 1.2,

$$\sum_{i=1}^{n} \lfloor \lg i \rfloor = (n+1)(\lg \frac{n+1}{4} + \alpha(\lg(n+1))) + 2.$$
 (8)

Since, as Figure 4 shows, $0 \le \alpha(x) \le 0.08607133205593432$ (use Mathematica to find the minimum and the maximum of $\alpha(x)$ or refer to the Lemma 1.8), we conclude (7).

Lemma 1.8 For every y,

$$0 \le \alpha(y) \le 0.08607133205593432,\tag{9}$$

where $\alpha(y) = 2 - (y - \lfloor y \rfloor + \frac{2}{2^{y - \lfloor y \rfloor}})$ (see Figure 4).

Proof. Function $\alpha(y)$ is periodic with period 1, that is for every y,

$$\alpha(y) = \alpha(y+1).$$

Therefore, in order to find the minimum and the maximum of $\alpha(x)$ it suffices to find it on the closed interval [0,1].

$$\alpha(0) = \alpha(1) = 0.$$

For any $0 \le y \le 1$, $\lfloor y \rfloor = 0$, so

$$\alpha(y) = 2 - (y - \lfloor y \rfloor + \frac{2}{2^{y - \lfloor y \rfloor}}) = 2 - (y + \frac{2}{2^y}) = 2 - y - 2^{1 - y}.$$

Let us compute the derivative $\alpha'(y)$ of $\alpha(y)$ on the open interval (0,1).

$$\alpha'(y) = [2 - y - 2^{1-y}]' = 2' - y' - [2^{1-y}]' =$$

$$= 0 - 1 - \ln 2 \times 2^{1-y} \times [1 - y]' = -1 - \ln 2 \times 2^{1-y} \times (-1) = 2^{1-y} \ln 2 - 1.$$

Let us solve the equation

$$\alpha'(y) = 0$$

for 0 < y < 1. We have:

$$\alpha'(y) = 2^{1-y} \ln 2 - 1 = 0,$$

so

$$2^{1-y} \ln 2 = 1,$$

or

$$2^{1-y} = \frac{1}{\ln 2},$$

or

$$2^{1-y} = \lg e,$$

or

$$\lg 2^{1-y} = \lg \lg e,$$

 $1 - y = \lg \lg e,$

or

$$y = 1 - \lg \lg e \approx 0.4712336270551024.$$

Substituting
$$y = 1 - \lg \lg e$$
 in $\alpha(y) = 2 - y - 2^{1-y}$, we obtain

$$\alpha(1 - \lg \lg e) = 2 - (1 - \lg \lg e) - 2^{1 - (1 - \lg \lg e)} = 1 + \lg \lg e - 2^{\lg \lg e} = 1 + \lg \lg e - \lg e - \lg e = 1 + \lg \lg e - \lg e$$

$$= 1 - \lg e + \lg \lg e \approx 0.08607133205593431,$$

as $\lg e \approx 1.4426950408889634$ and $\lg \lg e \approx 0.5287663729448976$.

From the above calculations, we conclude that 0 is the minimum and 0.08607133205593431 is the approximate maximum of function $\alpha(y)$ on the closed interval [0, 1].

Hence, for all y.

$$0 \le \alpha(y) \le 0.08607133205593432.$$

Note. The constant

$$1 - \lg e + \lg \lg e \approx 0.08607133205593431$$

has been known as the $Erd\ddot{o}s$ constant δ . Erd\"os used it around 1955 in order to establish an asymptotic upper bound for the number M(k) of different numbers in a multiplication table of size $k \times k$ by means of the following limit:

$$\lim_{k \to \infty} \frac{\ln \frac{k \times k}{M(k)}}{\ln \ln(k \times k)} = \delta.$$

In other words,

$$M(k) \sim \frac{k^2}{(2 \ln k)^{0.08607133205593431}}.$$

Corollary 1.9 For every natural number $n \geq 1$,

$$(n+1)\lg\frac{n+1}{4} + 2 \le \sum_{i=1}^{n} \lfloor \lg i \rfloor \le (n+1)(\lg\frac{n+1}{4} + 0.08607133205593432) + 2.$$
(10)

Figure 7: Functions $(n+1) \lg \frac{n+1}{4} + 2$, $(n+1) \lfloor \lg (n+1) \rfloor - 2^{\lfloor \lg (n+1) \rfloor + 1} + 2$, and $(n+1) (\lg \frac{n+1}{4} + 0.08607133205593432) + 2$.

2 A sum of ceilings of consecutive logarithms

Theorem 2.1 For every natural number $n \ge 1$,

$$\sum_{i=1}^{n} \lceil \lg i \rceil = n \lceil \lg n \rceil - 2^{\lceil \lg n \rceil} + 1. \tag{11}$$

Note. The right-hand side of (11) is a continuous function.

Figure 8: Functions $\sum_{i=1}^{n} \lceil \lg i \rceil$ and $n \lceil \lg n \rceil - 2^{\lceil \lg n \rceil} + 1$.

Note. Function $F(n) = \sum_{i=1}^{n} \lceil \lg i \rceil = n \lceil \lg n \rceil - 2^{\lceil \lg n \rceil} + 1$ is a linear interpolation of itself restricted to $n = 2^k$. In particular, it is a linear interpolation of the function $G(k) = (k-1)2^k + 1 = n(\lg n - 1) + 1$.

Proof We have

$$\sum_{i=1}^{n} \lceil \lg i \rceil = \sum_{i=2}^{n} \lceil \lg i \rceil =$$

Figure 9: Functions $n\lceil \lg n \rceil - 2^{\lceil \lg n \rceil}$ (top) and $n(\lg n - 1)$ (bottom); the former is a linear interpolation of the latter between points $n = 2^{\lceil \lg n \rceil}$.

$$\begin{aligned} [\text{by } \lceil \lg i \rceil &= \lfloor \lg (i-1) \rfloor + 1] \\ &= \sum_{i=2}^{n} (\lfloor \lg (i-1) \rfloor + 1) = \sum_{i=2}^{n} \lfloor \lg (i-1) \rfloor + \sum_{i=2}^{n} 1 = \sum_{i=2}^{n} \lfloor \lg (i-1) \rfloor + n - 1 = \sum_{i=1}^{n-1} \lfloor \lg (i) \rfloor + n - 1 = \\ [\text{by } (1)] \\ &= n \lfloor \lg (n-1) \rfloor - 2^{\lfloor \lg (n-1) \rfloor + 1} + 2 + n - 1 = \end{aligned}$$

$$\begin{split} & [\text{by } \lfloor \lg(n-1) \rfloor = \lceil \lg n \rceil - 1] \\ & = n(\lceil \lg n \rceil - 1) - 2^{\lceil \lg n \rceil - 1 + 1} + 2 + n - 1 = n \lceil \lg n \rceil - n - 2^{\lceil \lg n \rceil} + 2 + n - 1 = n \lceil \lg n \rceil - 2^{\lceil \lg n \rceil} + 1. \\ & \qquad \qquad (\text{See also [Knu97].}) \end{split}$$

Corollary 2.2 For every natural number $n \geq 1$,

$$n \lg \frac{n}{2} + 1 \le \sum_{i=1}^{n} \lceil \lg i \rceil \le n (\lg \frac{n}{2} + 0.08607133205593432) + 1.$$
 (12)

Figure 10: Functions $n \lg \frac{n}{2} + 1$, $n \lceil \lg n \rceil - 2^{\lceil \lg n \rceil} + 1$, and $n (\lg \frac{n}{2} + 0.08607133205593432) + 1$.

Theorem 2.3 For every natural number $n \geq 1$,

$$\sum_{i=1}^{n} \lceil \lg i \rceil = n \lceil \lg(n+1) \rceil - 2^{\lceil \lg(n+1) \rceil} + 1. \tag{13}$$

Note. The right-hand side of (13) is not a continuous function.

Figure 11: Functions $\sum_{i=1}^n \lceil \lg i \rceil$ and $n \lceil \lg(n+1) \rceil - 2^{\lceil \lg(n+1) \rceil} + 1$.

Proof We have:

$$\sum_{i=1}^{n} \lceil \lg i \rceil = \sum_{i=1}^{n+1} \lceil \lg i \rceil - \lceil \lg(n+1) \rceil =$$

$$=(n+1)\lceil\lg(n+1)\rceil-2^{\lceil\lg(n+1)\rceil}+1-\lceil\lg(n+1)\rceil=n\lceil\lg(n+1)\rceil-2^{\lceil\lg(n+1)\rceil}+1.$$

Theorem 2.4 For every natural number $n \geq 1$,

$$\sum_{i=1}^{n} \lceil \lg i \rceil = n \lfloor \lg n \rfloor - 2^{\lfloor \lg n \rfloor + 1} + n + 1. \tag{14}$$

Proof By (13) we have:

$$\sum_{i=1}^{n} \lceil \lg i \rceil = \sum_{i=1}^{n+1} \lceil \lg i \rceil - \lceil \lg(n+1) \rceil = n \lceil \lg(n+1) \rceil - 2^{\lceil \lg(n+1) \rceil} + 1 =$$

$$= n(\lfloor \lg n \rfloor + 1) - 2^{\lfloor \lg n \rfloor + 1} + 1 = n \lfloor \lg n \rfloor - 2^{\lfloor \lg n \rfloor + 1} + n + 1.$$

Theorem 2.5 For every natural number $n \geq 1$,

$$\sum_{i=1}^{n} \lceil \lg i \rceil = n(\lg n + \varepsilon(n)) - n + 1. \tag{15}$$

Proof By (14) we have:

$$\sum_{i=1}^{n} \lceil \lg i \rceil = n \lfloor \lg n \rfloor - 2^{\lfloor \lg n \rfloor + 1} + n + 1 =$$

[by (6)]

$$= n(\lg n + \varepsilon(n) - 2) + n + 1 = n(\lg n + \varepsilon(n)) - 2n + n + 1 = n(\lg n + \varepsilon(n)) - n + 1.$$

3 A sum of the differences

Theorem 3.1 For every natural number $n \ge 1$,

$$\sum_{i=1}^{n} (\lceil \lg i \rceil - \lfloor \lg i \rfloor) = n - \lceil \lg(n+1) \rceil = n - \lfloor \lg n \rfloor - 1.$$
 (16)

Proof. We have

$$\sum_{i=1}^{n} (\lceil \lg i \rceil - \lfloor \lg i \rfloor) = \sum_{i=1}^{n} \lceil \lg i \rceil - \sum_{i=1}^{n} \lfloor \lg i \rfloor =$$

[by (1) and (14)]

$$n\lfloor \lg n\rfloor - 2^{\lfloor \lg n\rfloor + 1} + n + 1 - ((n+1)\lfloor \lg n\rfloor - 2^{\lfloor \lg n\rfloor + 1} + 2) = n - \lfloor \lg n\rfloor - 1.$$

Figure 12: Function $n - \lfloor \lg n \rfloor - 1$.

References

[Knu97] Donald E. Knuth. *The Art of Computer Programming*, volume 3. Addison-Wesley Publishing, 2nd edition, 1997.