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Abstract

For every natural number n ≥ 1,
n∑
i=1
blg ic = (n+ 1)blgnc − 2blgnc+1 + 2 =

= (n+ 1)blg(n+ 1)c − 2blg(n+1)c+1 + 2 =

= (n+ 1)(lg(n+ 1) + ε(n+ 1))− 2n,

where ε, given by:

ε(n) = 1 + θ − 2θ and θ = dlg ne − lg n,

is a continuous function of n on the set of reals > 1, with the minimum
value 0 and and the maximum (supremum, if n is restricted to integers)
value

δ = 1− lg e+ lg lg e ≈ 0.0860713320559342.

Hence,

(n+ 1) lg(n+ 1)− 2n ≤
n∑
i=1
blg ic ≤ (n+ 1) lg(n+ 1)− 1.913n+ 0.0861.
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For every natural number n ≥ 1,
n∑
i=1
dlg ie = ndlgne − 2dlgne + 1 =

= ndlg(n+ 1)e − 2dlg(n+1)e + 1 =

= nblgnc − 2blgnc+1 + n+ 1 =

= n(lgn+ ε(n))− n+ 1.

Hence
n lgn− n+ 1 ≤

n∑
i=1
dlg ie ≤ n lgn− 0.913n+ 1.

Moreover, for every natural number n ≥ 1,
n∑
i=1

(dlg ie − blg ic) = n− blgnc − 1.

3



1 A sum of floors of consecutive logarithms
Theorem 1.1 For every natural number n ≥ 1,

n∑
i=1
blg ic = (n+ 1)blg nc − 2blgnc+1 + 2. (1)

Note. The right-hand side of (1) is not a continuous function.
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Figure 1: Functions ∑n
i=1blg ic and (n+ 1)blg nc − 2blgnc+1 + 2.
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Proof in the file (easy, by solving equation x+ y = n+ 1;x+ y
2 = 2blgnc)

/media/Suchenek/Courses/CSC401/Slides/2-trees.htm
and in the file (by direct calculation with Rieman’s sum method)
/media/Suchenek/Courses/CSC311/Materials_for_text/Balanced_tree.pdf

. �
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Theorem 1.2 For every natural number n ≥ 1,
n∑
i=1
blg ic = (n+ 1)blg(n+ 1)c − 2blg(n+1)c+1 + 2. (2)

Note. The right-hand side of (2) is a continuous function.
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Figure 2: Functions ∑n
i=1blg ic and (n+ 1)blg(n+ 1)c − 2blg(n+1)c+1 + 2.

Note. Function f(n) = ∑n
i=1blg ic = (n + 1)blg(n + 1)c − 2blg(n+1)c+1 + 2

is a linear interpolation of itself restricted to n = 2k. In particular, it is a
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linear interpolation of the function g(k) = k(2k + 3) + 2 = (n+ 3) lg n+ 2 for
k > 0.

Proof We have:
n∑
i=1
blg ic =

n+1∑
i=1
blg ic − blg(n+ 1)c =

[by (1)]

= (n+2)blg(n+1)c−2blg(n+1)c+1+2−blg(n+1)c = (n+1)blg(n+1)c−2blg(n+1)c+1+2.

�

It turns out that the value of

xblg xc − 2blg xc+1

(which is a part of the right-hand side of (2) for x = n+1) oscillates between

x(lg x− 2)

and
x(lg x− 2 + 0.08607133205593432).

If x = 2k then lg x = k, which is an integer number, so blg xc = lg x and,
indeed,

xblg xc − 2blg xc+1 = x lg x− 2× 2lg x = x lg x− 2x = x(lg x− 2).
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Figure 3: Functions x(lg x − 2) (bottom), xblg xc − 2blg xc+1 (middle), and
x(lg x− 2 + 0.08607133205593432) (top).

We will show that for x 6= 2k, value of xblg xc − 2blg xc+1 is (only slightly)
larger than x(lg x−2) and not larger than x(lg x−2+0.08607133205593432),
as the Figure 3 shows.

Theorem 1.3 For every x > 0,

xblg xc − 2blg xc+1 = x(lg x+ α(x)− 2), (3)
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where α is given by:

α(x) = 2− ϕ− 21−ϕ and ϕ = lg x− blg xc.
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Figure 4: Graph of α(x) = 2− (y−byc)−21−(y−byc) as a function of y = lg x.

Proof. Substituting definition of ϕ to the definition of α, we obtain:

α(x) = 2− (lg x− blg xc)− 21−(lg x−blg xc),

or
α(x) = 2− lg x+ blg xc − 2blg xc+1

2lg x ,

or
lg x+ α(x)− 2 = blg xc − 2blg xc+1

x
,

or
x(lg x+ α(x)− 2) = xblg xc − 2blg xc+1.

�
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Theorem 1.4 For every x > 0,

xdlg xe − 2dlg xe = x(lg x+ ε(x)− 1), (4)

where ε is given by:

ε(x) = 1 + θ − 2θ and θ = dlg xe − lg x.
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Figure 5: Graph of ε(x) = 1 + (dye − y)− 2dye−y as a function of y = lg x.

Proof. Substituting definition of θ to the definition of ε, we obtain:

ε(x) = 1 + dlg xe − lg x− 2dlg xe−lg x,

or
lg x+ ε(x)− 1 = dlg xe − 2dlg xe

2lg x ,

or
lg x+ ε(x)− 1 = dlg xe − 2dlg xe

x
,

or
x(lg x+ ε(x)− 1) = xdlg xe − 2dlg xe.

�
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Theorem 1.5 For every x,

ε(x) = α(x), (5)

where ε is given by:

ε(n) = 1 + θ − 2θ and θ = dlg xe − lg x,

and α is given by:

α(x) = 2− ϕ− 21−ϕ and ϕ = lg x− blg xc.

Proof. If for some integer k, x = 2k then

lg x = k = dlg xe = blg xc.

In such a case,
θ = ϕ = 0,

so

ε(x) = 1 + θ − 2θ = 1 + 0− 20 = 0 = 2− 0− 21−0 = 2− ϕ− 21−ϕ = α(n).

Thus ε(n) = α(x) in such a case.
Otherwise, lg x is not an integer, so

dlg xe = blg xc+ 1,
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and

θ = dlg xe − lg x = blg xc+ 1− lg x = 1− (blg xc − lg x) = 1− ϕ.

From this we conclude

ε(x) = 1 + θ − 2θ = 1 + 1− ϕ− 21−ϕ = 2− ϕ− 21−ϕ = α(x).

�

Corollary 1.6 For every x > 0,

xblg xc − 2blg xc+1 = x(lg x+ ε(x)− 2), (6)

where ε is given by:

ε(x) = 1 + θ − 2θ and θ = dlg xe − lg x.

Proof by direct application of Theorem 1.5 to Theorem 1.3. �

Corollary 1.7 For every natural number n ≥ 1,

(n+1) lg n+ 1
4 +2 ≤

n∑
i=1
blg ic ≤ (n+1)(lg n+ 1

4 +0.08607133205593432)+2.

(7)
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Figure 6: Functions (n + 1) lg n+1
4 + 2 (bottom), (n + 1)blg(n + 1)c −

2blg(n+1)c+1 + 2 (middle, same as ∑n
i=1blg ic for all integer n ≥ 1), and

(n+ 1)(lg n+1
4 + 0.08607133205593432) + 2 (top).

Proof. Putting x = n+ 1 in equality (6) of Theorem 1.3 yields:

(n+1)blg(n+1)c−2blg(n+1)c+1 +2 = (n+1)(lg(n+1)+α(lg(n+1))−2)+2 =

= (n+1)(lg(n+1)+α(lg(n+1))−lg 4)+2 = (n+1)(lg n+ 1
4 +α(lg(n+1)))+2.
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Hence, by the equality (2) of Theorem 1.2,
n∑
i=1
blg ic = (n+ 1)(lg n+ 1

4 + α(lg(n+ 1))) + 2. (8)

Since, as Figure 4 shows, 0 ≤ α(x) ≤ 0.08607133205593432 (use Mathemat-
ica to find the minimum and the maximum of α(x) or refer to the Lemma
1.8), we conclude (7). �

Lemma 1.8 For every y,

0 ≤ α(y) ≤ 0.08607133205593432, (9)

where α(y) = 2− (y − byc+ 2
2y−byc ) (see Figure 4).

Proof. Function α(y) is periodic with period 1, that is for every y,

α(y) = α(y + 1).

Therefore, in order to find the minimum and the maximum of α(x) it suffices
to find it on the closed interval [0, 1].

α(0) = α(1) = 0.
For any 0 ≤ y ≤ 1, byc = 0, so

α(y) = 2− (y − byc+ 2
2y−byc ) = 2− (y + 2

2y ) = 2− y − 21−y.
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Let us compute the derivative α′(y) of α(y) on the open interval (0, 1).

α′(y) = [2− y − 21−y]′ = 2′ − y′ − [21−y]′ =
= 0− 1− ln 2× 21−y × [1− y]′ = −1− ln 2× 21−y × (−1) = 21−y ln 2− 1.

Let us solve the equation

α′(y) = 0
for 0 < y < 1. We have:

α′(y) = 21−y ln 2− 1 = 0,

so
21−y ln 2 = 1,

or
21−y = 1

ln 2 ,
or

21−y = lg e,
or

lg 21−y = lg lg e,
1− y = lg lg e,

or
y = 1− lg lg e ≈ 0.4712336270551024.
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Substituting y = 1− lg lg e in α(y) = 2− y − 21−y, we obtain

α(1−lg lg e) = 2−(1−lg lg e)−21−(1−lg lg e) = 1+lg lg e−2lg lg e = 1+lg lg e−lg e =

= 1− lg e+ lg lg e ≈ 0.08607133205593431,

as lg e ≈ 1.4426950408889634 and lg lg e ≈ 0.5287663729448976.
From the above calculations, we conclude that 0 is the minimum and

0.08607133205593431 is the approximate maximum of function α(y) on the
closed interval [0, 1].

Hence, for all y.

0 ≤ α(y) ≤ 0.08607133205593432.

�

Note. The constant

1− lg e+ lg lg e ≈ 0.08607133205593431

has been known as the Erdös constant δ. Erdös used it around 1955 in order
to establish an asymptotic upper bound for the number M(k) of different
numbers in a multiplication table of size k × k by means of the following
limit:

lim
k→∞

ln k×k
M(k)

ln ln(k × k) = δ.
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In other words,
M(k) ∼ k2

(2 ln k)0.08607133205593431 .

Corollary 1.9 For every natural number n ≥ 1,

(n+1) lg n+ 1
4 +2 ≤

n∑
i=1
blg ic ≤ (n+1)(lg n+ 1

4 +0.08607133205593432)+2.

(10)
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Figure 7: Functions (n + 1) lg n+1
4 + 2, (n + 1)blg(n + 1)c − 2blg(n+1)c+1 + 2,

and (n+ 1)(lg n+1
4 + 0.08607133205593432) + 2.

2 A sum of ceilings of consecutive logarithms
Theorem 2.1 For every natural number n ≥ 1,

n∑
i=1
dlg ie = ndlg ne − 2dlgne + 1. (11)

Note. The right-hand side of (11) is a continuous function.
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Figure 8: Functions ∑n
i=1dlg ie and ndlg ne − 2dlgne + 1.

Note. Function F (n) = ∑n
i=1dlg ie = ndlg ne − 2dlgne + 1 is a linear inter-

polation of itself restricted to n = 2k. In particular, it is a linear interpolation
of the function G(k) = (k − 1)2k + 1 = n(lg n− 1) + 1.

Proof We have
n∑
i=1
dlg ie =

n∑
i=2
dlg ie =
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Figure 9: Functions ndlg ne−2dlgne (top) and n(lg n−1) (bottom); the former
is a linear interpolation of the latter between points n = 2dlgne.

[by dlg ie = blg(i− 1)c+ 1]

=
n∑
i=2

(blg(i−1)c+1) =
n∑
i=2
blg(i−1)c+

n∑
i=2

1 =
n∑
i=2
blg(i−1)c+n−1 =

n−1∑
i=1
blg(i)c+n−1 =

[by (1)]
= nblg(n− 1)c − 2blg(n−1)c+1 + 2 + n− 1 =

20



[by blg(n− 1)c = dlg ne − 1]

= n(dlg ne−1)−2dlgne−1+1+2+n−1 = ndlg ne−n−2dlgne+2+n−1 = ndlg ne−2dlgne+1.

(See also [Knu97].) �
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Corollary 2.2 For every natural number n ≥ 1,

n lg n2 + 1 ≤
n∑
i=1
dlg ie ≤ n(lg n2 + 0.08607133205593432) + 1. (12)
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Figure 10: Functions n lg n
2 + 1, ndlg ne − 2dlgne + 1, and n(lg n

2 +
0.08607133205593432) + 1.
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Theorem 2.3 For every natural number n ≥ 1,
n∑
i=1
dlg ie = ndlg(n+ 1)e − 2dlg(n+1)e + 1. (13)

Note. The right-hand side of (13) is not a continuous function.

10 15 20

10

20

30

40

50

60

70

Figure 11: Functions ∑n
i=1dlg ie and ndlg(n+ 1)e − 2dlg(n+1)e + 1.

Proof We have:
n∑
i=1
dlg ie =

n+1∑
i=1
dlg ie − dlg(n+ 1)e =
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[by (11)]

= (n+1)dlg(n+1)e−2dlg(n+1)e+1−dlg(n+1)e = ndlg(n+1)e−2dlg(n+1)e+1.

�

Theorem 2.4 For every natural number n ≥ 1,
n∑
i=1
dlg ie = nblg nc − 2blgnc+1 + n+ 1. (14)

Proof By (13) we have:

n∑
i=1
dlg ie =

n+1∑
i=1
dlg ie − dlg(n+ 1)e = ndlg(n+ 1)e − 2dlg(n+1)e + 1 =

= n(blg nc+ 1)− 2blgnc+1 + 1 = nblg nc − 2blgnc+1 + n+ 1.

�

Theorem 2.5 For every natural number n ≥ 1,
n∑
i=1
dlg ie = n(lg n+ ε(n))− n+ 1. (15)
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Proof By (14) we have:
n∑
i=1
dlg ie = nblg nc − 2blgnc+1 + n+ 1 =

[by (6)]

= n(lg n+ε(n)−2)+n+1 = n(lg n+ε(n))−2n+n+1 = n(lg n+ε(n))−n+1.

�

3 A sum of the differences
Theorem 3.1 For every natural number n ≥ 1,

n∑
i=1

(dlg ie − blg ic) = n− dlg(n+ 1)e = n− blg nc − 1. (16)

Proof. We have
n∑
i=1

(dlg ie − blg ic) =
n∑
i=1
dlg ie −

n∑
i=1
blg ic =

[by (1) and (14)]

nblg nc − 2blgnc+1 + n+ 1− ((n+ 1)blg nc − 2blgnc+1 + 2) = n− blg nc − 1.

�
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Figure 12: Function n− blg nc − 1.
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