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P and NP

NP-Complete Problems
Approximation Algorithms
Bin Packing

The Knapsack and Subset Sum
Problems

Graph Coloring



Graph Coloring

A coloring of a graph G =(V, E) is a mapping C:V—S, where S is a finite set (of
“colors™), such that if vw € E then C(v) # C(w); in other words, adjacent vertices are
not assigned the same color. The chromatic number of G, denoted X(G), is the smal-
lest number of colors needed to color G, that is, the smallest k£ such that there exists
a coloring C for G and |C(V)| = k.

Optimization problem: Given G, determine X(G) (and pfoducc an optimal
coloring, i.e., one that uses only X(G) colors).

Decision problem: Given G and a positive integer &, is there is a coloring of G
using at most £ colors? (If so, G is said to be k-colorable.)












Job Scheduling with Penalties

Suppose that n jobs Jy, ..., J n, are to be executed one at a time. We are given exe-
cution times ?y,. .., f,, deadlines d,, ..., d, (measured from the starting time for
the first job executed), and penalties for missing the deadlines py,..., p,. Assume
that the execution times, deadlines, and penalties are all positive integers. A
schedule for the jobs is a permutation © of {1,2,..., n}, where J ) is the job done

first, Jy() is the job done next, and so forth. The total penalty for a particular
schedule is

n
7 5 E [iftn(l)+ v +trr(j)>dn(j) then Prij) else OJ
j=l o -



Optimization problem: Determine the minimum possible penalty (and find an
optimal schedule, i.e., one that minimizes the total penalty).

Decision problem: Given, in addition to the inputs described, a nonnegative
integer k, is there a schedule with P, <k?



Bin Packing

Suppose we have an unlimited number of bins each of capacity 1, and 7 objects with
sizes §y,..., s,, where 0 <s; <1.

Optimization problem: Determine the smallest number of bins into which the
objects can be packed (and find an optimal packing).

Decision problem: Given, in addition to the inputs described, an integer k, do
the objects fit in k bins?



Knapsack

Suppose we have a knapsack of capacity C (a positive integer) and n objects with
sizes s,..., s, and “profits” py, ..., p, (where s,...,s, and p,, ..., p, are
positive integers).

Optimization problem: Find the largest total profit of any subset of the objects
that fits in the knapsack (and find a subset that achieves the maximum profit).

Decision problem: Given k, is there a subset of the objects that fits in the
knapsack and has a total profit at least k?



Subset Sum

The input is a positive integer C and n objects whose sizes are positive integers
Sy 005 Sy ‘ ' ‘

Optimization problem: Among subsets of the objects with sum at most C,
what is the largest subset sum?

Decision problem: s there a subset of the objects whose sizes add up to
exactly C?



Hamilton Paths and Hamilton Circuits

A Hamilton path (Hamilton circuit, or cycle) in a graph or digraph is a path (cycle)
that passes through every vertex exactly once. (Circuit is another term for cycle, and
Hamilton cycles are most commonly called Hamilton circuits.)

Decision problem: Does a given graph or digraph have a Hamilton path (cir-
cuit)? |
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Minimum Tour (Traveling Salesman Problem)

Optimization Problem: Given a weighted graph, find a minimum weighted
Hamilton circuit.

This problem is widely known as the traveling salesperson problem; the
salesperson wants to minimize total traveling while visiting all the cities in a terri-
tory. Other applications include routing trucks for garbage pickup and package
delivery.

Decision Problem: Given a weighted graph and an integer %, is there a Ham-
ilton circuit with total weight at most k? |



CNF-satisfiability

A logical (or Boolean) variable is a variable that may be assigned the value frue or
false. If v is a logical variable, then v, the negation of v, has the value frue if and
only if v has the value false. A literal is a logical variable or the negation of a log-
ical variable. A clause is a sequence of literals separated by the Boolean or operator
(v). A logical expression in conjunctive noi mal form (CNF) is a sequence of clauses

separated by the Boolean and operator (™. An example of a logical expression in
CNF is

(pvavs)N@VIA(EVIAGFV)A(P VTV,
where p, ¢, r, and s are logical variables.

Decision problem: Is there a truth assignment i.e., a way to assign the values

true and false, for the variables m the expression so that the expression has value
true?
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Example 1 Nondeterministic graph coloring

Let k =4 and let the graph G in Fig. .1 be the input. For simplicity, we will
denote colors by letters B (blue), R (red), G (green), O (orange), and Y (yellow).
(This is not a satisfactory notation in general because large graphs may need more

than 26 colors.) Here is a list of a few possible strings s and the output that would
result.



Input: 4, 5, (1,2) (1,4) (2,4) (2,3) (3,5) (2,5) 3,4) (4,5)

S - ~
k number edges of G
of vertices

Input for nondeterministic graph coloring



Qutput

Reason

RGRBG
RGRB
RBYGO
RGRBY
R%*,G@

Nno
no
no
yes
no

v, and v, both green, are adjacent
Not all vertices are colored

More than & colors

A valid 4-coloring

Bad syntax




Since there is one possible computation of the algorithm that produces a yes output,
the answer for the input G is yes.



The Class P

Definition P is the class of decision problems that are polynomial bounded.
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The Class NP

A nondeterministic algorithm has two phases:

The nondeterministic phase. Some completely arbitrary string of characters, s,
iIs written beginning at some designated place in memory. Each time the algo-
rithm is run, the string written may differ. (This string may be thought of as a
guess at a solution for the problem, so this phase may be called the guessing
phase, but s could just as well be gibberish.)

The deterministic phase. A deterministic (i.e., ordinary) algorithm begins exe-
cution. In addition to the decision problem’s input, the algorithm may read s,
or it may ignore 5. Eventually it halts with an output of yes or no — or it may
go into an infinite loop and never halt. (Think of this as the checking phase —

the deterministic algorithm is checking s to see whether it is a solution for the
decision problem’s input.)



Non-deterministic algorithm (solution) A(I) for a decision
problem "P(I)?"

1. Given an instance 1 of input I, "guess" string s.

2. Given an instance 1 of input I and s, determine if s 1s a
|witness of "The answer to P(I)? 1s YES".

3. If step 2 (above) ended with the positive determination,
output "YES" and stop. Otherwise, stop.



Extra condition not mentioned in the text.

4. For every valid instance 1 of the input I for the problem
P(l):

there exists a ““guess” s for which A(1) outputs "YES™
if, and only if,

"YES" 1s the correct answer to the instance "P(1)?" of the
problem "P(I)?".



Definition NP is the class of decision problems for which there is a polynomial-

bounded nondeterministic algorithm. (The name NP comes from “nondeterministic
polynomial bounded.”)

Theorem .1  Graph coloring, the Hamilton path and circuit problems, job
scheduling with penalties, bin packing, the subset sum problem, the knapsack
problem, CNF-satisfiability, and the traveling salesperson problem are all in NP,

Theorem .2 P c NP.
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Polynomial Reductions

i el = T(x) ; Algorithm | . i s o
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Algorithm for 11

. Reduiction of problem IT, to problem I1,. I1,’s answer for T(x) must be the
same as I1,’s answer for x.



Example A simple reduction

Let the problem IT, be: Given n Boolean variables, does at least one of them have
the value frie? (In other words, this is a decision-problem version of computing
Boolean or.) Let IT, be: Given n integers, is the maximum of the integers positive?
Let T(xy,Xg, ..., %) = Y1s¥2. ..., Yn where y; =1 if x; =true, and y; =0 if
x; = false. Clearly an algorithm to solve I1,, when applied to y, Y2, ..., Vi, solves
[Ty for xy, x9,. .., Xp. B



Definition Let T_be a function from the input set for a decision problem I, into the

input set for a decision problem II,. T.is a polynomial reduction (also called a poly-
nomial transformation) from I1; to II; if

1.

T can be computed in polynomial-bounded time, and
2.

For every input x for Iy, the correct answer for I, on T(x) is the same as the
correct answer for I on x,

Ndokio: T, <o T



Definition T, is polynomially reducible (also called polynomially transformable) to
[T, if there exists a polynomial transformation from I1; to IT,. (We usually simply
say that I1, is reducible to Tl,; the polynomial bound is understood.) The notation
IT, <, 11, is used to indicate that I, is reducible to I,.



| Theorém .3 If 1, <, 1T, and [T is in P, then I, is in P.

Definition A problem I1 is NP-complete if it is in NP and for every other problem
[T in NP, IT §9H.

Theorem .4 If any NP-complete problem is in P, then P = NP.



Theorem .5 (Cook’s theorem) The CNF-satisfiability problem is NP-complete.

Theorem .6  Graph coloring, the Hamilton path and circuit problems, job
scheduling with penalties, bin packing, the subset sum problem, the knapsack
problem, and the traveling salesperson problem are all NP-complete.
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hond To show that the problem I1
is NP-complete, choose. some known NP-complete problem IT" and reduce IT" to I,
not the other way around. The logic is as follows:

Since IT is NP-complete, all problems in NP <pIT'.
Show IT £, I1.
Then all problems in NP < ,IL

Therefore, I1 is NP-complete.
honoko
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What Makes a Problem Hard?

The 3-CNF satisfiability problem is the CNF-satisfiability problem restricted to
expressions with exactly three literals per clause. It is NP-complete. If there are at
most two literals per clause, satisfiability can be checked in polynomial-bounded

time.



A k-cligue in a

graph is a subgraph consisting of k mutually adjacent vertices (i.e., a complete graph
on k vertices.)

" The problem of determining whether a graph has a k-clique is NP-
complete, but for planar graphs it is in P because a planar graph cannot have a clique
with more than four vertices. (The clique problem is also in P for graphs with

bounded degrees.)



Determining if a graph is 2- colorable is easy; determining if it is 3-colorable is
NP-complete, It is still NP- complete if the graphs are planar and the maximum
degree 1S 4. i

These examples do not yield any nice generalizations about why a problem is

NP-complete. There are still a great many open questions ifi this field, the main one
being, of course, Does P = NP?
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