Sums of floors and ceilings of consecutive
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February 26, 2012

The formulas in this paper are used in derivation of a more exact form of
the Master Theorem.

1 A sum of floors of consecutive fractions

Theorem 1.1 For every natural number n and every positive natural number
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2 A sum of ceilings of consecutive fractions

Theorem 2.1 For every natural number n and every positive natural number
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Proof.Let n = km + [, where 0 <[ < m.
We have
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