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Abstract
This paper offers two elementary yet precise derivations of an exact formula

I

W(n)=> [lgi] =n[lgn] — 2" +1

t=1

for the maximum number W(n) of comparisons of keys performed by
MergeSort on an n-element array. The first of the two, due to its struc-
tural regularity, is well worth carefully studying in its own right.

Close smooth bounds on W(n) are derived. It seems interesting that
W (n) is linear between the points n = 2!'8") and it linearly interpolates its
own lower bound nlgn —n + 1 between these points.
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1. Introduction

MergeSort is one of the fundamental sorting algorithms that is being
taught in undergraduate Computer Science curricula across the U.S. and
elsewhere. Its worst-case performance, measured by the number of com-
parisons of keys performed while sorting them, is optimal for the class of
algorithms that sort inductively! by comparisons of keys.? Historically, it?
was the first sorting algorithm to run in O(nlgn) time*.

So it seems only fitting to provide an exact formula for MergeSort’s worst-
case performance and derive it precisely. Unfortunately, many otherwise
decent texts offer unnecessarily imprecise® variants of it, and some with quite
convoluted, incomplete, or incorrect proofs. Due to these imperfections, the
fact that the worst-case performance of MergeSort is the same as that of
another benchmark sorting algorithm, the binary insertion sort of [5], has
remained unnoticed®.

In this paper, I present two elementary yet precise and complete deriva-
tions of an exact formula

Wn) = Zn:[lgﬂ =n[lgn] — 2"l 41

i=1

for the maximum number W(n) 7 of comparisons of keys performed by
MergeSort on an n-element array. The first of the two, due to its struc-
tural regularity, is well worth carefully studying in its own right.

ITnductive sorting of n keys sorts a set of n — 1 of those keys first, and then “sorts-in”
the remaining n-th key.

2In its standard form analyzed in this paper, MergeSort is not an inductive sorting
algorithm. However, its worst-case performance, measured by the number of comparisons
of keys performed while sorting them, is equal to the worst-case performance of the binary
insertion sort first described by Steinhaus in [5] that is worst-case optimal in the class of
inductive sorting algorithms that sort by comparisons of keys; see [3] page 186.

3A bottom-up version of it that was invented by John Neumann.

4In the worst case.

5Notable exceptions in this category are [2] and [4] that derive almost exact formulas,
but see Section 8 page 29 for a brief critique of the results and their proofs offered there.

6Even in [3].

"Elementary derivation of an exact formula for the best-case performance B(n) of
MergeSort, measured by the number of comparisons of keys performed while sorting them,
has been done in [7]; see Section 9 page 32 of this paper.
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Unlike some other basic sorting algorithms® that run in O(nlgn) time,
MergeSort exhibits a remarkably regular® worst-case behavior, the elegant
simplicity of which has been mostly lost on its rough analyses. In particular,
W (n) is linear!® between the points n = 2llenl and it linearly interpolates its
own lower bound nlgn —n + 1 ! between these points.

2. Some Math prerequisites

R is the set of all reals. Z is the set of all integers. N is the set of all non-
negative integers. The functions floor'? and ceiling are defined, respectively,
for every x € R as follows:

|z| = max{k € Z | k < z} (1)

and
[z] = min{k € Z | z < k}. (2)

One can verify that for every z € R and n € Z,
x > n if, and only if, |z]| > n, (3
z < nif, and only if, [z] < n, (4

x > n if, and only if, [z] > n, (5
n n+1

31= 1551, (6

and

5+ T51=n. (")

Indeed, equalities (3) and (4) are direct consequences of definitions (1) and
(2), respectively. Equality (5) is the contrapositive of (4). Equalities (6) and
(7) can be verified by inspection for odd and even values of n.

8For instance, Heapsort; see [6] for a complete analysis of its worst-case behavior.

9As revealed by Theorem 5.2, page 18.

10Gee Figure 6 page 19.

1Gjven by the left-hand side of the inequality (28) page 18.

12Java applies floor to the result of evaluation of any expression of type int if that
expression evaluates to a non-negative value; otherwise, it applies ceiling. In particular, if
n is of type int and is non-negative then Java expression n/2 is of type int and evaluates

to [3).
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Here is a clever derivation of a well-known!? closed-form formula for

S Ngi]. It proves insightful in my worst-case analysis of MergeSort as
its right-hand side will occur on page 9 in the fundamental equality (12) and
serve as an instrument to derive the respective exact formula for MergeSort’s
worst-case behavior.

Lemma 2.1. For every integer n > 1,

n Mgn|-1
D> lgil= > (=2, (®)

Proof. The equality (8) may be neatly derived by inverting the function
y = [lgi] (the result is a relation and not a function) and changing the
control variable in the summation of the left-hand side of (8) from ¢ to y, as
it has been illustrated on Figure 1. One can notice that the shaded area is
given by each side of (8); the left-hand side by adding the vertical rectangles

and the right-hand side by adding the horizontal ones. g
4 y=Tlgin ‘
n=- 23
3 - -
11—22
2 ‘ :
11—21
1 ——
: n-29
2 4 6 8 10 12 n

Figure 1: Computation of Y- [lg7] as quliéﬂ—l(n ~2¥) for n = 13.

Corollary 2.2. For every integer n > 1,

n

> Mgi] =n[lgn] — 2" + 1. ' (9)

i=1

13See [3].
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Proof. Observation that

[lgn]—1 [lgn]—1 [lgn]—1
. =2)= 3 n- Y 2=nflgn] -2+,
y=0 y=0 y=0
by virtue of (8), completes the proof. O

A 2-tree is a finite binary whose every non-leaf has two children.
Theorem 2.3. Fvery non-empty 2-tree with m non-leaves has m+ 1 leaves.

Proof Every non-empty finite tree with & nodes has & — 1 edges. Clearly,
there are 2m edges in a 2-tree T' with m non-leaves. Therefore, there are
2m + 1 nodes in T, 2m + 1 — m = m + 1 of which must be leaves. O

3. MergeSort and its worst-case behavior W (n)

A call to MergeSort inherits an n-element array A of integers and sorts
it non-decreasingly, following the steps described below.

Algorithm MergeSort 3.1. To sort an n-element array A do:

1. If n <1 then return A to the caller,
2. If n > 2 then
(a) pass the first | 5] elements of A to a recursive call to MergeSort,
(b) pass the last [ elements of A to another recursive call to MergeSort,
(¢) linearly merge, by means of a call to Merge, the non-decreasingly
sorted arrays that were returned from those calls onto one non-
decreasingly sorted array A,
(d) return A" to the caller.

A Java code of Merge is shown on the Figure 2.1

A typical measure of the running time of MergeSort is the number of
comparisons of keys, which for brevity I call comps, that it performs while
sorting array A.

14 A Java code of MergeSort is shown in Appendix A Figure A.8 page 32.




Suchenek: Elementary Yet Precise Worst-case Analysis of MergeSort (MS) 7

70

71 private static int[] Merge(int[] A, int[] B)

72 // Merges two sorted arrays into one sorted array
73 @ {

74 | int[] C = new int[A.length + B.length];

75 | int indexA = 0, indexB = 0, indexC = 0;

76 | while ((indexA < A.length) & (indexB < B.length))

77 | {

78 | if (AlindexA] < B[indexB] & Bent.incr()) // move AlindexA] to C
79 ClindexC++] = AlindexA++];

80 else // move B[indexA] to B

81 C[indexC++] = B[indexB++];

82 }

83 '/ copy ths remaining part of A or B

84 if (indexA < A.length) // copy the 1ing part of A
85 for (int i = indexA; i < A.length; i++)

86 | ClindexC++] = A[i];

87 else copy the remaining part of B

88 for (int i = indexB; i < B.length; i++)

89 ClindexC++] = B[i];

90 nt2.incr();

91 return C;

92 "}

93

Figure 2: A Java code of Merge, based on a pseudo-code from [1]. Calls to Boolean method
Bent.incr() count the number of comps for the purpose of experimental verification of the
worst-case analysis of MergeSort.

Definition 3.2. The worst-case running time
W(n)

of MergeSort is defined as the mazimum number of comps it performs while
sorting an array of n distinct'® elements.

Clearly, if n = 0 then W(n) = 0. From this point on, I am going to
assume that n > 1.16

Since no comps are performed outside Merge, W(n) can be computed
as the sum of numbers of comps performed by all calls to Merge during the
execution of MergeSort. Moreover, the number of comps performed by Merge
on two sorted list is maximal if, and only if, the last elements of those lists
end up being compared to one another. This, of course, happens if, and only
if, the two largest elements between those lists do not belong to the same
list. In such a case, the number of comps performed by Merge on two sorted
lists of sizes k and m, respectively, is equal to k+m — 1 because each element

15This assumption is superfluous for the purpose of worst-case analysis as the mere
presence of duplicates does not force MergeSort to perform more comps.
16This assumption turns out handy while using expression lgn.
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of those list, except for the largest one, loses one comparison to an element
from another list before it is moved to the merged list (list C in the code of
Figure 2). The above observations allow for a straightforward construction
of a recursive program (its Java code is shown in the Appendix B) that
unsorts given sorted array by breaking it on two sorted subarrays so that
none contain two largest elements between them.!

This way we proved the following well-known fact:

Theorem 3.3. The mazimum number of comps performed by Merge on two
sorted list of total number n of elements s n — 1.

Moreover, if the difference between the lengths of merged list is not larger
than 1 then no algorithm that merges sorted lists by means of comps beats
Merge in the worst case, that is, has a lower than n — 1 maximum number
of comps.'®

4. An easy yet precise derivation of W(n)

MergeSort is a recursive algorithm. If n > 2 then it spurs a cascade of
two or more recursive calls to itself. A rudimentary analysis of the respective
recursion tree T}, shown on Figure 3, yields a neat derivation of the exact
formula for the maximum number W (n) of comps that MergeSort performs
on an n-element array.

The idea behind the derivation is strikingly simple. It is based on the
observation® that for every k € N, the maximum number Cj of comps
performed at each level?® k of T}, is given by this neat formula:*!

Cy, = max{n — 2 0}. (10)

1THere is an inductive construction of a worst-case permutation of {L,...,n} for any
n > 1. l-element worst-case permutation of {1} is a l-element list (1). For n > 1,
in order to construct a worst-case pernmtation of {1,..,n}, when for all m < n the
worst-case permutations of {1,...,m} have already been constructed, use the worst-case
permutation (a1, ..., a2 ) and the worst-case permutation (b1, ..., br=1) and construct from
them the permutation ZQal, - 2aL%J ,2b1—1, ..., 2b[%1 —1) of {1, ...,n}. A routine induction
argument shows the correctness of the above construction.

18Proof in [3], Sec. 5.3.2 page 197.

19Which I will prove later as Theorem 4.6 on page 14.

20Empty or not.

2174 is a simplification of formulas used in derivation presented in [2] and discussed in
Section 8 page 29; in particular, it does not refer to the depth A of the decision tree 7).
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Figure 3: A sketch of the recursion 2-tree T}, for MergeSort for a sufficiently large n, with
level numbers shown on the left and the numbers of nodes in the respective level shown
on the right. The nodes correspond to calls to MergeSort and show sizes of (sub)arrays
passed to those calls. The last non-empty level is h; it only contains nodes with value 1.
(Level h — 1 may also contain nodes with value 1 - not shown on the sketch - somewhere
to the left of the last node with value 2.) The empty levels (all those numbered > h)
are not shown. The root corresponds to the original call to MergeSort. If a call that is
represented by a node p executes further recursive calls to MergeSort then these calls are
represented by the children of p; otherwise p is a leaf. The wavy line ~~~~ represents a
path in T,,.

Since n — 2¥ > 0 if, and only if, n > 2% if, and only if, lgn > k if, and only
if, by virtue of (5), [lgn] > k if, and only if, [lgn] — 1 > k, that is,
n—2% > 0if, and only if, [lgn] — 1 >k, (11)

the Corollary 2.2 will allow me to conclude from (10) and (11) the main
result of this paper:

[lgn}-1 n
W)=Y Ci= Y. (n—2%)=n[lgn] —2"" +1=> [lgi]. (12)
keN k=0 i=1

A glimpse at Figure 1 page 5 reveals a remarkable structural regularity
of the above derivation; a common part Z,Elig]'l(n — 2% occurs both in that
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Figure and in the equality (12), thus explaining how the sum Y ., [lg?],
quite obviously?? the worst-case number of comps for the binary insertion
sort, ended up as a the MergeSort’s worst-case running time W(n). In
terms of the graph shown on Figure 1, the worst-case formula >, [lg] for
binary insertion sort ads the comps needed for consecutive binary insertions
as areas of the conesPondmg vertical rectangles on that graph, while the
worst-case formula nl-1 — 2F) for MergeSort adds them level-by-level

of the recursive tree T )

The rest of this Section contains all?® the missing details. Naturally, their
only purpose is to prove the equality (10) for all £ € N, as the rest, shown in
(12), easily follows from it. The following observation is one of the three key
steps towards this objective: since the number of comps that Merge needs
in order to merge two sorted sub-arrays into one of size m is m — 1 in the
worst case, the total number of comps performed in the worst case at any
level of the recursion tree T, is equal to the sum of sizes of all sub-arrays at
that level minus 1 the number of nodes at that level. The second key step
is to prove that at any level k, if n > 2% then the sum of the said sizes is n
and the number of nodes at that level is 2%, thus making Cj, = n — 2*. And
the third step is to prove that if n < 2* then all the sizes of the sub-arrays,
if any, at the level k are 1, thus making Cr = 0. The last two steps, once
completed, will yield (10).24

Here are the details.

The nodes in the recursion tree T;, (visualized on Figure 3) correspond
to calls to MergeSort and show sizes of (sub)arrays passed to those calls.
The root corresponds to the original call to MergeSort. If a call that is
represented by a node p executes further recursive calls to MergeSort then

22Tt helps to remember that, for any positive integer 4, [lg7] +1 = [lg(¢ +1)] in order
to see that binary insertion of an i-th key into the already sorted ¢ — 1 keys takes [lg1]
comps in the worst case.

23Some of them could have been omitted for the sake of brevity; virtually all could have
been replaced with brief intuitive sketches.

24 A “clever” way to accomplish the same would be to get rid of the condition n > 2% in
the second step and to replace the last step with an intuitively appealing observation that
C, cannot be negative, trying to conclude (10) from that fact; this, however, would be an
invalid inference.
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these calls (two, to be exact) are represented by the children of p; otherwise
p is a leaf. Thus, T}, is a 2-tree®.

The levels in tree T, are enumerated from 0 to co. h is the number of
the last non-empty level of the tree, or - in other words - the depth of T5,.
On Figure 3, the level numbers, up to h, are shown on the left side of the
tree. The root is at the level 0, its children (if any) are at level 1, its grand
children (if any) are at level 2, its great grand children (if any; not shown on
the sketch) are at level 3, and so on. Clearly, since every call to MergeSort
on a sub-array of size > 2 executes two further recursive calls to MergeSort
and the calls to a sub-array of size 1 execute none, only the nodes that show
value 1 are the leaves and all other nodes have 2 children each. Thus, since
all nodes in the last non-empty level h are leaves, they all show value 1. And
since the original input array gets split, eventually, onto n l-element sub-
arrays, the number of all leaves in T), is n. (This, however, does not mean
that the last level h necessarily contains all the leaves of T7,.)

I will use the following sequence notation:

(yifn>m
(ai)it, = (13)
{an, ..., ay,) otherwise,

and denote by
{ai | p(i)iZ, (14)
the subsequence of {(a;)7, consisting of all those, and only those, elements

=N
a; of {a;)™,, for which the condition (i) is true.
The following Lemma characterizes exactly what values are shown at
the nodes in the level & of the recursion tree T,,. It allows for brute-force,

straightforward derivation of the formula (10).
The Main Lemma 4.1. The sizes of sub-arrays at any level *® k of the
recursion tree T,, are given by this sequence

o = (1) [+ (i mod 26°71) > 29251, (15)

25A binary tree whose every non-leaf has exactly 2 children.

28Empty or not.

27The condition n+(i mod 2¥~1) > 2% in the sequence (15) is the continuation condition
for the recursion within the MergeSort. It assures that the parent subarray that was split
and sent to the corresponding recursive call had at least two elements.
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not necessarily in this order.

An example of the recursion tree T, is shown on Figure 4.

n

/”///
n n-+1
5] 122
n n-+2 n+1 n+3
15 1 Rty 1

LQJ n+4 n+2 Ln+6J tn—i—lJ Ln—g—‘éJ Ln+3J Ln+7J

Figure 4: A complete example of the recursion tree T (n = 6) derived from the sketch on
Figure 3, with the equality (6) applied recursively to the nodes of the tree. Nodes shaded
gray arc missing in the last nonempty level of Ty (level 3) because the condition n + (¢
mod 2F~1) > 2% in (15) is false for those missing nodes.

Proof. By induction on k.
Basis step. k= 0.

00 = {["o5") [ m+ (6 mod 27) > 225" = (2] | n > 1) = ()2

Since the level 0 contains one node that shows value n, this completes the
basis step.

Inductive step. Assume that the sizes of sub-arrays at level k are given by the
sequence oy, of the equality (15) for some k > 0 (the inductive hypothesis).

28Recall the assumption n > 1 of page 7.
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Prove that the sizes of sub-arrays at level k + 1 are given by this sequence

n-+1 , k
Ok41 = <L‘2kﬁ'J | n+ (i mod 2%) > 2 31 ! (16)

From the inductive hypothesis and the description of MergeSort on page 6,
Algorithm 3.1, step 2, we conclude that since any node at the level k in the
recursion tree T, has children if, and only if, it shows value | %] > 2, the
sizes of sub-arrays at level k + 1 are given by this sequence:

5]

(| : J,LL" 2J~1—1 n+1

15 | >2An+ (i mod 2871) > 28201 =

n+z Ln+z+2 J

n+i L J_H nti n+i —
by |523] = g, |5 = |2 J—L;i’fJaﬂdL—;{—J>2—
by(3))n+z>2’”+1—n+z 2’”>2’”z¢>n+(zmod2" 1) > 2% for any
0 << 2

—~

n+i,  n+i+2F
:<L2k+1J’L okt 1 I

n4i> 2k+1>§i61’

which [since 0 < i < 2¥ implies (+2%) mod 2* = 1] is equal to, not necessarily
in this order, the sequence oy of the equality (16). This completes the
inductive step. O

I will use the following immediate consequences of the Lemma 4.1.

Lemma 4.2. For every k with n > 2%, the sizes of sub-arrays at level k of
the recursion tree T, are given by this sequence

n + /1» ok __1

o = (" V2" (17)
not necessarily in this order.
Proof. If n. > 2% then for any i > 0,
n+ (i mod 2871) > n > 2k,

Thus the condition n+(imod 2¥~1) > 2% in the sequence o}, of (15) is satisfied
for all 4 and (17) holds. O

Lemma 4.3. Every level k with n > 2% of the recursion tree T, contains ok
nodes.
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Proof. The length of the sequence oy, of (17) is 2%, from which observation
the thesis of this Lemma follows. O

Lemma 4.4. For every k with n < 2F, the sizes of sub-arrays at level k
of the recursion tree T, are given by the empty sequence oy = () or by this

sequence
o = (1,...,1). (18)

Proof. If n < 2* then for any i with 0 <4 < 2% —1,

"4 i ko ok _
< P <) = (19)

If a node with value | % | occurs at the level k of T}, then from the condition
n+ (¢ mod 28-1) > 2% in (15) we conclude that n+4 > n+ (i mod 2F71) > 2
and [ ] > 1. Thus, by (19), | %] = 1 so if o), is non-empty then it is
equal to (1,...,1). O

Here is a known technical result that indicates sizes of elements of the
“even” partition of an n-element set onto m sets.* For m = 2k it states
intuitively obvious fact that the sum of sizes of sub-arrays at each full level
k 30 of the recursion tree Ty, is n. Its special case for m = 2, namely [ 2] +
|2 | = n, is a direct consequence of the equalities (6) and (7) page 4.

Theorem 4.5. For every natural number n and every positive natural number
m}

S = (20

Proof See, for instance, Theorem Appendix B.0.5 in [7]. O
At this point, the derivation of (10) page 8 becomes an easy exercise.

Theorem 4.6. The mazimum number Cy of comps performed at each level
k of the recursion tree T, is gwen by the formula (10).

29The sum of the differences between the sizes those m sets is minimal; the inequal-
ity (46) page 25 applies.
30A level k that contains 2% nodes.
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Proof. Recall, that by the Theorem 3.3, the maximum number of comps
performed at node p that shows a value of m is m — 1. Thus if n > 2F then,
by the Lemmata 4.2 and 4.3,

‘ 2k—1 " 2k—1 S
Co= S -y = T o=
i=0 i=0
[by (20), put m = 2|
=n— 2"

If n < 2% then Cj, = 0 if level k is empty or, by Lemma 4.4, is

Ce=) (1-1)=0.
Thus C}, = 0 in this case.
Hence, (10) holds. O

This concludes the derivation of the main result (12) stated on page 9.
This way I have proved the following.

The Main Theorem 4.7. The number W(n) of comparisons of keys that
MergeSort performs in the worst case while sorting an n-element array is

Win) = Zﬂg i] = nflgn] — 2™ + 1. (21)
=1
Proof follows from the above derivation. O

From that we can conclude a usual rough characterization of W{n):
W(n) <n(gn+1)—28"+1=nlgn+n—-n+1l=nlgn+1

and
W(n)>nlgn —2%"" +1=nlgn —2n+ 1.

Therefore,
W(n) € ©(nlogn).

S-% 1 [lg1] allows to conclude that W (n) is exactly equal®® to the number
of comparisons of keys that the binary insertion sort, considered by H. Stein-
haus in [5] and analyzed in [3], performs in the worst case. Since the binary

3113] contains no mention of that fact.
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insertion sort is known to be worst-case optimal®? in the class of algorithms
that perform incremental sorting, MergeSort is worst-case optimal in that
class®3, too.

5. Close smooth bounds on W (n)

Our formula for W(n) contains a function ceiling that is harder to ana-
lyze than arithmetic functions and their inverses. In this subsection, I will
derive close lower and upper bounds on W (n) that are expressible by simple
arithmetic formulas. I will show that these bounds are the closest to W (n)
in the class of functions of the form nlgn+cn+ 1, where c is a real constant.

Using the function e (analyzed briefly in [3] and [6]), a form of which is
shown on Figure 5, given by:

e=1+60-2%and § = [lg n] —lgn, (22)

one can conclude3* that, for every n > 0,

n[lgn] — 218" = n(lgn + ¢ — 1), (23)
which yields
W(n)=n(lgn+e—-1)+1=nlgn+(e—-1)n+ 1 (24)
—0.913928
-1
0 0.471234 1 1.47123 2

Figure 5: Graph of € — 1 as a function of Ign.

32With respect to the number of comparisons of keys performed.
33 Although it is not a member of that class.
34See [6], Thm. 12.2 p. 94 for a proof.
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Property 5.1. Function € given by (22) is a continuous function of n on
the set of reals > 0. It assumes the minimum O for every n = 2len] gnd the
mazimum
§=1—1lge+lglge ~ 0.0860713320559342, 3 (25)
for every
n= 2Llnn+lg1gej In2 (26)
and only suchn. The function € restricted to integers never reaches the value
§. However, § is the supremum of € restricted to integers.

Proof. Let’s consider € a function of y = lgn, given on R by

2(y) =1+ ([y] —y) — 2V,

Since €(y) is a periodic function with period 1, it suffices to prove the desired
properties of it on the closed interval [0, 1]. Continuity of ¢(y) on the open
interval (0,1) is obvious. Continuity of e(y) at y = 0 and y = 1 follows from
the fact lim,_o+ £(y) = 0 = limy_,;- e(y). The derivative ¢’(y) = 2'"¥In2—1
of e(y) exists on (0,1) and is equal to 0 at one point yo = 1 —Iglge *° =
0.4712336270551024 only. Since £(0) = 0 = ¢(1) and e(yo) = 1—lge+lglge 7
~ 0.0860713320559342, the minimum of £(y) on R is 0 and is assumed for
all integer y, and only such y, and its maximum on R is § and is assumed for
y = k —lglge, where k is any integer, that is, for

y=|y+lglge] —lIglge, (27)

and only such y.

Let’s go back to the function € of n = 2Y. Clearly, it is continuous,
since (y) is, and has the minimum 0 assumed for every n = ollen] and the
maximum § assumed, by virtue of (27), for n = 2ly+leleel-lglge — 2—@;1;2?—#

= glinntlglge] |y 9 which yields (26). Since In2 is an irrational number®, so

35The constant 1 — lge + Iglge has been known as the Erdds constant §. Erdds used
it around 1955 in order to establish an asymptotic upper bound for the number M (k) of
different numbers in a multiplication table of size k x k by means of the following limit:
kxk
lim M_ -6
koo Inln(k x k)

36Proof by direct inspection.
37By direct computation.
38Here, I only use the fact that In2 does not have finite binary representation.
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is every n that satisfies (26). In particular, no such n is an integer. Thus the
function € restricted to integers never reaches the value §. However, one can
easily show that limy_, (|28 In2]) = §,% which makes § the supremum of
e restricted to integers. O

Characterization (24) and Property 5.1 yield close smooth bounds of
W (n). They are both of the form nlgn + cn + 1 and they sandwich tightly
W (n) between each other. If one sees W (n) as an infinite polygon®, its lower
bound circumscribes it and its upper bound inscribes it.

Theorem 5.2. W(n) is a continuous concave function, linear between the
points n = 28" that for every n > 0 satisfies this inequality:

nlgn—n+1<W(n)<nlgn—(1-80n+1<nlgn—-0913n+1, (28)

with the left < becoming = for everyn = 2U8™ and the right < becoming = for
every n = 2U&n+glzel In 9 and only for such n. Moreover, the graph of W (n)
is tangent to the graph of nlgn—(1—8)n+1 at the points n = 2llen+lsle elln?2,
and only at such points.

Proof. Continuousness of W (n) follows from (24) and continuousness of € as-
certained by the Property 5.1. That it is linear between the points
n = 287 and concave, follows directly from (21). Inequality (28) follows
from (24) and the miminum and maximum of € established in the Prop-
erty 5.1, as does the rest of Theorem 5.2. O

The bounds given by (28) are really close*! to the exact value of W (n),
as it is shown on Figure 6 page 19. The exact value n[lgn] — 28" + 1 is
a continuous function (if n is interpreted as a real variable) despite that it
incorporates discontinuous function cesling.

3ndeed, 0 < 28In2 — [2%In2] < 1, while limy_,002¥In2 = 0o and ¢ is a continuous
function of n on the set of reals > 0 differentiable on its domain minus the countable set
of n = 2Ue7) and limg, nl#nooo € (1) = 0, so that the limy_s00 (e(2F In2) — ([2% In 2]))
= 0. Thus limg_ e £(]28 In2]) = limg 00 £(2¥ In2) = 4.

4O0Which it is.

HThe distance between them is less than én ~ 0.0860713320559342n for any positive
integer n.

|
i
i
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9.63553

2.54518

1
0.386294

1.38629 2 2.77259 4 5.64518

Figure 6: W (n) = n[lgn] — 2871 41 (the middle line) and its bounds nlgn —n +1
and nlgn — (1 —06)n+1 ~ nlgn—0.913n + 1, all three treated as functions of a positive
real variable n, plotted for n € [1,6]. W (n) is linear between the points n = 218" and it
linearly interpolates its lower bound nlgn —n + 1 between these points. Its upper bound
nlgn — (1 — 8)n + 1 inscribes it and is tangent to it at the points n = 2llen+lsle eln2.

Note 5.3. It seems interesting that W(n) = n[lgn] — 28" + 1 (whether
n is interpreted as a real variable or an integer variable) is linear between
points n = 208" and linearly interpolates its own lower bound nlgn —n + 1

between these points.

For n restricted to positive integers, the inequality (28) can be slightly
enhanced by replacing the < symbol with <, with the following result.

Theorem 5.4. 1 — § is the greatest constant ¢ such that for every integer
n>1,

W(n) <nlgn—cn+ 1. (29)
Proof. Proof follows from the fact, stated by Property 5.1, that ¢ is a supre-
mum of € restricted to integers. O

Theorem 5.4 can be reformulated as follows.
Corollary 5.5.
inf{ce R|Vn e N\ {0},W(n) <nlgn—cn+1} =1-4. (30)
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Proof. Proof follows directly from Theorem 5.4 and the definition of infimum.
d

No upper bound of W(n) that has a form nlgn — cn + 1 can coincide
with W{(n) at any integer n, as the following fact ascertains.

Corollary 5.6. There is no constant ¢ such that for every integer n > 1,
Wi(n) <nlgn—cn+1 (31)
and for some integer n > 1,
Wi(n)=Ilgn—cn+1. (32)
Proof. 1f c satisfies (31) then, by Theorem 5.4,
c<1-—46, (33)
for otherwise a constant

_c+1—5

d
2

would satisfy, for every integer n > 1,
c>d>1-—¢and W(n) <nlgn—dn+1,

which would contradict Theorem 5.4. From (29) and (33) we infer the nega-
tion of (32). This conclusion completes the proof. O

In particular??,

inf{ce R|Vn e N\ {0}, W(n) <nlgn—cn+1}=1-0. (34)

Moreover, we can conclude from Theorem 5.4 the following fact.

Corollary 5.7. 1 — § is the greatest constant ¢ such that for every integer
n>1,
W(n) < [nlgn —cn]. (35)

“2Note the < symbol in (34).
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Proof. By the equivalence (5) page 4,
W(n) <nlgn—cn+1if W(n) <[nlgn—cn+1] =[nlgn—cn] + 1.

Hence,
W(n) <nlgn—cn+1iff W(n) < [nlgn—cn].
Thus Theorem 5.4 implies Corollary 5.7. O

Since for any integer n > 1, W{n) is integer, the lower bound given by
(28) yields, by virtue of the equivalence (4) page 4,

W(n) > [nlgn—n+1] =[nlgn] —n+ L (36)
Combining (35) and (36) yields, for every integer n > 1,
[nlgn] —n+1<W(n)<[nlgn—(1-2¥dn], (37)

and
[nlgn] —n+1<W(n) < [nlgn—0913n]. (38)

By virtue of Corollary 5.7, for some integers n > 1,% '
W(n) > [nlgn —0.914n]. (39)

Although the bounds given by (38) % are tighter than those given by (28),
they nevertheless involve the discontinuous ceiling function, so that they may
not be as easy to visualize or analyze as some differentiable functions, thus
losing their advantage over the precise formula W(n) = n[lgn] — 21" + 1.
Therefore, the bounds given by (28) appear to have an analytic advantage
over those given by (38).

6. Other properties of the recursion tree T,

This sections contains some well-known auxiliary facts that I didn’t need
for the derivation of the exact formula for W(n) but am going to derive from
the Lemma 4.1 for the sake of a thoroughness of my analysis of the decision
tree 1,,.

43For instance, for n = 11.
44 Almost the same bounds were given in [2]; see Section 8 for more details on this.
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Theorem 6.1. The depth h of the recursion tree T), 1s
h = [lgn]. (40)

Proof. As I have mentioned above, h is the level number of the last non-
empty level of Ty, or - in other words - the largest integer k£ for which the
sequence (15) is non-empty. For that to happen, it is necessary and sufficient
that h is the largest integer k that satisfies at least one condition in the
sequence (15), that is, h is the largest integer that satisfies

(3 < 2" — 1)(n + (i mod 2"71) > 2M). (41)

Since 7 mod 2"! is maximal if ¢ = 2" — 1, in which case it has a value of
2h=1 — 1, formula (41) is equivalent to

n420t—1> 9k

or
n—1>2 okt
or
n > 21
or
lgn > h—1,
Or? by (5)7
lgn] > h—1,
or
[lgn] > h. (42)
Thus, since h is the largest integer that satisfies (42), the equality (40) is
true. [

Note 6.2. Theorem 6.1 allows for quick derivation of fairly close upper bound
on the number of comps performed by MergeSort on an n-element array.
Since at each level of T, less than n comparisons are performed by Merge
and at level h no comps are performed, and there are h = [lgn]| levels below
level h, the total number of comps is not larger than

(m—1Dh=m-1)([lgn]) < (n—1)(Ign+1) € O(nlogn).  (43)
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A cut of a tree T, is a set T of nodes of T" such that every branch*® in T,
has exactly one element in I'.

Theorem 6.3. The sum of values shown at the elements of any cut of T}, is
n.

Proof. The thesis follows from the equality (7) and the fact that for every
tree T' of height not larger than w %6 whose nodes are labeled with numbers
in such a way that the label of any parent is the sum of labels of its children,
the sum of labels of the elements of any cut of T' is equal to the label of the
root of T'. O

Theorem 6.4. The number of leaves in the recursion tree T, is n.

Proof. Since all values shown at nodes of T}, are positive integers and for
every k > 2, |£| < [£] <k, every path in T, is finite. Thus the set of leaves
of T, is a cut of T},. Since each leaf of T;, shows value 1, the number of leaves
in T, is equal to the sum of values shown at the leaves of T,,. Application of
Theorem 6.3 completes the proof. (]

The following corollary provides some statistics about recursive calls to
MergeSort.

Corollary 6.5. For every integer n > 0,

(i) T3 has 2n — 1 nodes.
(ii) The number or recursive calls spurred by MergeSort on any n-element
array s 2(n — 1).
(iii) The sum S, of all values shown in the recursion tree T,, on Figure 3 is
equal to:

S, =nflgn] —2M8™ 4 2n = n(lgn + ¢ + 1). (44)
(iv) The average size A, of array passed to any recursive call to MergeSort
while sorting an n-element array 1s:

1 1 1
Ap = 5(1 + g—_—l)(lgn +e) = i(lgn—i—a)‘ (45)

45 A maximal path.
48The least infinite ordinal.
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Proof. (i) By virtue of Theorems 2.3, page 6, and 6.4, T}, is a 2-tree with n
leaves and it has n — 1 non-leaves and a total of 2n — 1 nodes.

(ii) By virtue of (i), the number or recursive calls spurred by MergeSort on
any n-element array is 2(n — 1).

(iii) By virtue of (i) and Theorems 4.6, page 14, and 6.4, the sum S5, of all
values shown in the recursion tree 7;, on Figure 3 is equal to:

S, = Z Cr+2n—1=nllgn] — ollenl 4 on.
k=0
Applying (23) page 16 to the above yields:

Sp=n(lgn+e—1)+2n=n(lgn+e+1).

(iv) By virtue of (iii), the average size A, of array passed to any call to
MergeSort while sorting an n-element array is, by virtue of Theorems 2.3 and
6.4, excluding the size n of the array passed to the original call to MergeSort

and applying (ii), is

1 1) — 1 1
n(lgn +¢+1) n_*(1+7ib___1‘)(lgn+5)z

2= 1) =3 (Ign+e¢).

A, =

1
2
0

Here is a very insightful property. It states that MergeSort is splitting
its input array fairly evenly?” so that at any level of the recursive tree, the
difference between the lengths of the longest sub-array and the shortest sub-
array is < 1. This fact is the root cause of good worst-case performance of
MergeSort.

Property 6.6. The difference between values shown by any two nodes in the
same level of of the recursion tree T, is < 1. ‘
Proof. *® Clearly, by virtue of the Lemma 4.1, the value %i,:lj shown at any
node of level & of T, must satisfy

n+1 n—{-2’”—1

) < 15 <1 J

17The sizes of the sub-arrays passed to recursive calls at any non-empty level &k of the
decision tree T, above the last non-empty level h are the same as the sizes of the elements
of the maximally even partition of an n-element set onto 2* subsets.

48 A direct proof of the the Property 6.6 without any reference to the Lemma 4.1 has
been archived in [7], Property Appendix A.0.1. page 33.
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Since |MZ=1] = |2l +1< [ B +1,

n —I— 1 n
and the thesis of the Property follows. a

Property 6.6 has this important consequence that Merge is, by virtue of
the observation on page 8 after the Theorem 3.3 page 8, worst-case comparison-
optimal while merging any two sub-arrays of the same level of the recursion
tree. Thus the worst-case of MergeSort cannot be improved just by replacing
Merge with some tricky merging X as long as X merges by means of compar-
isons of keys.

Corollary 6.7. Replacing Merge with any other method that merges sorted
arrays by means of comps will not improve the worst-case performance of
MergeSort measured with the number of comps while sorting an array.

Proof. Proof follows from the above observation. O

Since a parent must show a larger value than any of its children, the
Property 6.6 has also the following consequence.

Corollary 6.8. The leaves in the recursion tree T,, can only reside at the
last two non-empty levels of T,.

Proof. Proof follows from the Property 6.6 as the above observation indicates.
O

As aresult, one can conclude?® that the recursion tree T), has the miminum
internal and external path lengths among all binary trees on 2n — 1 nodes.

Since all nodes at the level h of the recursion tree T, are leaves and show
value 1, no node at level h — 1 can show a value > 2. Indeed, level A —1 may
only contain leaves, that show value 1, and parents of nodes of level h that
show value 1+ 1 = 2. This observation and the previous result allow for easy
characterization of contents of the last two non-empty levels of tree T5,.

49¢f. [3], Sec. 5.3.1 Ex. 20 page 195.
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Corollary 6.9. For everyn > 2:

(i) there are 2" — n leaves, all showing value 1, at the level h — 1,
(ii) there are n — 2""! non-leaves, all showing value 2, at the level h — 1,
and
(iii) there are 2n — 2" %0 nodes, all leaves showing value 1, at the level h

of the recursion tree Ty, where h is the depth® of T,,.

Proof. Let x be the number of leaves at the level h — 1 and = be the number
of leaves at the level h. So far, by Corollary 6.8, we know that only levels
h — 1 and h can contain leaves. From this we infer that all levels from 0 to
h—1 are maximal. In particular, level h — 1 has 2"~ nodes. Therefore, there
are 21 — z non-leaves at level h — 1. The above observations allow yield
the following equations:

z+y=n, (47)

and
x4 202" —2) =n. (48)

Indeed, (47) is true by virtue of the Theorem 6.4. Since the level h — 1 is
maximal, it is a cut of T,,. Hence, (48) is true by virtue of the Theorem 6.3.
Solving (47) and (48) for  and y yields:

x=2"—n,
2h.~—1 = 2h—~l . (Qh . ’I'L) =1 — 2h—1’

and
y=2n — ok,

The above, together with the observation that all non-leaves et level h — 1
show value 2, complete the proof of (i), (ii), and (iii). O

50This value shows in the lower right corner of Figure 3 page 9 of a sketch of the recursion
tree T,; it was not need needed for the derivation of the main result (21) page 15, included
for the sake of completeness only.

51The level number of the last non-empty level of Tj,.
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7. A derivation of W(n) without references to the recursion tree

In order to formally prove Theorem 4.7 without any reference to the
recursion tree, I use here the well-known®? recurrence relation

W(n) = W(ng) + W([—;ﬁ) tn—1lifn>2 (49)

W(1) =0 (50)

that easily follows from the description (Algorithm 3.1 page 6) of MergeSort,
steps 2a, 2c and Theorem 3.3. T am going to prove, by direct inspection, that
the function W (n) defined by (21) satisfies equations (49) and (50).

By (21),
W) =1[lg1] -2 +1=0-1+1=0.
Thus W(n) satisfies (50).
Let n > 2. T am going to show that

nflgn] — 2™ 41 =

Wi(n)

— Sl )] — 2+ 14 2] g f57] = 270 14— 1 (51)

W(l2]) W(%7)
This will prove (49).
I consider two cases.

Case 1: n # 28" 1 1. In such a case,
n n
el )1 = Mg 2

Indeed, (49) is equivalent to 2181311 = 21181311 which means that the smallest
power of 2 that is not less than [%] (the left-hand side of the preceding
equation) is equal to the smallest power of 2 that is not less than [%] (the

52For instance, derived in [1] and [2].
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right-hand side of that equation). They may be different if, and only if,
|2] = 2% and [2] = 2" + 1, for some integer k > 0, that is, iff n = 281 4 1.

Substituting (52) to the right-hand side of (51) we get
(5] e[ 251 4 14 (21 g 511 ~2" T 414 n - 1=

N s
group together

by [$]+ 3] =n]
o211 #2881 41— (g2 4 1) — SO 1 =

[ S
factor

[by g[21] = [lg %] (left as an exercise for the reader) and [z]+1 = [z+1]]

f1g§+1]
— ~n lgn — ‘ (lgn]
—nﬂg—2—+1]—2 en +1=nl[lgn] —2"8" + 1.
N e’
lgn

Thus (51) is satisfied in this case.
Case 2: n = 28" 4+ 1. In such a case,
n n
el 511 =[le[51] — 1. (53)
Indeed, since as we argued in Case 1, n = 2187+ 1 implies [1g| 2]1 # [1g[2]].
Therefore [lg[2]] < [1g[2]] < [lg|3]]1 + 1, so that (53) must hold.
Also,
n ollen) 41 1
Dol T o= |gllen]-1 L 2 = gllsn]-1
By = | 2500 = (et
[because n is not a power of 2 so that g is not integer and |lgn] = [lgn]—1]

_ ollgn]-2 _ Mg 311

Thus
n

bj:z%ﬁA. (54)
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Substituting (53) to the right-hand side of (51) we get
|2 1(Ngl5 11 —1) — 2608010 4 14 (21 Mg 7] 203 + 14 m — 1 =
| S
group together
by [5]+ 3] =nl
— nlel™ n Nel311-1 _ oMel311 4 1 =
| —
factor
[by (54)]

= n(ﬂgfgﬂ 4 1) — 2Me31-1 _ olel$11-1 _ oflel$11 4 1 —
[by Mg[21] = [lg %] (left as an exercise for the reader) and [z]+1 = [z+1]]
= n[lgg +1] —2Nesl-1 _oMs31-1_ofle3l 1 =

=nllgn] — ole 31 _olle3] 4 1 — nflgn] — oMe 31+l 1 1 = nflgn] — ofgnl 4 1.
Thus (51) is satisfied in this case.

Since there are no more cases, this - by virtue of Corollary 2.2 page 5 -
competes the proof of Theorem 4.7.

8. Other work

Although some variants of parts of the formula (21) appear to have been
known for quite some time now, even otherwise precise texts offer derivations
that leave room for improvement. For instance, the recurrence relation for
MergeSort analyzed in [4] asserts that the least number of comparisons of
keys performed outside the recursive calls, if any, that suffice to sort an array
of size n is n rather than n — 1. This seemingly inconsequential variation
results in a solution W(n) = 37 (|lg4]+2) * on page 2, Exercise 1.4, rather
than the correct formula (12) W (n) = >, [lg 7] derived in this paper. (Also,
the relevant derivations presented in [4], although quite clever, are not nearly

551 saw W(n) = .77, |lg4] on slides that accompany [4].
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as precise and elementary as those presented in this paper.) As a result, the
fact that MergeSort performs exactly the same number of comparisons of
keys as does another classic, binary insertion sort, considered by H. Steinhaus
and analyzed in [3], remains unnoticed.

Pages 176 — 177 of [2] contain an early sketch of proof of
W(n) =nh —2" +1, (55)

where h is the depth of the recursion tree Tj,, with remarkably close® bounds
given by (56) page 31. It is similar®® to a simpler derivation based on the
equality (10), presented in this paper in Section 4 and outlined in (12) page 9
(except for the ) [lgi] part), which it predates by several years.

The [2]’s version of the decision tree T, (Figure 4.14 page 177 of [2],
shown here on Figure 7) was a re-use of a decision tree for the special case
of n = 28" with an ambiguous, if at all correct®, comment in the caption
that “[wlhenever a node size parameter is odd, the left child size parameter
is rounded up®” and the right child size is rounded down®®.” The proof of the
fact, needed for the derivation in [2], that T}, had no leaves outside its last
two levels (Corollary 6.8 page 25, not needed for the derivation presented in
Section 4) was waved with a claim “|w]e can® determine that |[...]”

54 Although not 100 percent correct.
55The idea behind the sketch of the derivation in [2] was based on an observation that

h-2 ) n—B
W(n)=> (n—-2)+ 5

i=0

where B was the number of leaves at the level h — 1 of the decision tree T3,; it was
sketchily derived from the recursion tree shown on Figure 7 and properties stated in the
Corollary 6.9 page 26 (with only a sketch of proof in [2]) not needed for the derivation
presented in Section 4.

56Tt may be interpreted as to imply that for any level k, all the left-child sizes at level
k are the same and all the right-child sizes at level k are the same, neither of which is a
valid statement.

57Should be: down, according to (49) page 27.

58Should be: up, according to (49) page 27.

59This I do not doubt.
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n—1

n—2

n—4

T @] @] @) o] @] @] o] o

7

Figure 4.14 Recursion tree for Mergesort. Wherever a node size parameter is odd, the left
child size is rounded up and the right child size is rounded down.

Figure 7: A snapshot from |2], page 177, showing a decision tree for MergeSort. Note:
This picture is copyrighted by Addison Wesley Longman (2000). It was reproduced here
from [2] for criticism and comment purposes only, and not for any other purpose, as
prescribed by U.S. Code Tittle 17 Chapter 1 para 107 that established the “fair use”

exception of copyrighted material.

Although h was claimed in [2] to be equal to [lg(n+1)] ® (and not to the
correct [lgn] given by the equality (40) page 22, a fact not needed for the
derivation presented in Section 4), somehow the mostly correct conclusion®
was inferred from it, however, with no details offered - except for a mention
that a function « that satisfies h = lgn+1g a, similar to function € shown on
Figure 5 page 16, was used. It stated that (Theorem 4.6, page 177, in [2]):

[nlgn —n+1] < W(n) < [nlgn — 0.914n]. (56)

It follows from (39) page 21 that the constant 0.914 that appears in (56)
is incorrect. It was a rounding error®?, I suppose, that produced a false upper
bound®3.

60Which claim must have produced an incorrect formula nflg(n + 1)] — 2/18(+01 4 1
for W (n) and precluded concluding the neat characterization W(n) = 3 7 [lgi].

61 Almost identical with (38) page 21, except for the constant 0.914.

620f 1 — &, where § is given by (25) page 17.

83For instance, if n = 11 then MergeSort performs 29 comparisons of keys while the
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9. Best-case analysis of MergeSort

It turns out that derivation of minimum number B(n) of comps performed
by MergeSort on an n-element array is a bit more tricky. A formula

llgn]

g(tlg n]+1)— ; 2" Zigzag (%% (57)

where
Zigzag(z) = min(z — |z], [z] — ),

has been derived and thoroughly analyzed in [7]. It has been also demon-
strated in [7] that there is no closed-form formula for B(n).

Incidentally, as it was pointed out in [7] , B(n) is equal to the sum A(n, 2)
of bits in binary representations of all integers < n.

Appendix A. A Java code of MergeSort

Figure A.8 shows a Java code of MergeSort.

93

94 public static int[] Sort(int[] A, int lo, int hi)
95 // input constrain: lo <= hi

96 {

97 | if ((hi - lo) == 0)

98 {

99 return ({A[lol});

100 int[] C = {A[lol};

101 return C;

102 }

103 | int splitPoint = (lo + hi)/2; // floor of ...
104 return Merge(Sort(A, lo, splitPoint),

105 Sort(A, splitPoint + 1, hi));

106 - }

107

Figure A.8: A Java code of MergeSort. A code of Merge is shown on Figure 2.

value of the upper bound [nlgn — .914n] given in [2], Theorem 4.6. p. 177, is 28; this is
a significant error as 28 or less comps while sorting any 11-element array beats the binary
insertion sort that requires Y, [lgi] = 29 comps in the worst case.
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Appendix B. Generating worst-case arrays for MergeSort

Figure B.9 shows a self-explanatory Java code of recursive method unSort
that given a sorted array A reshuffies it, in a way resembling InsertionSort®,
onto a worst-case array for MergeSort.

115 public static void unSort(int[] A, int lo, int hi)
116 // turns A onto a worst-case array

117 // input constrain: lo <= hi and A is sorted

118 [ {

119 if ((hi - lo) <= 1) return; // already worst
120 int splitPoint = (lo + hi)/2; // floor of ...
121 int max = A[hi]; // will be sent to left array
122 for (int i = hi; i > splitPoint; i--)

123 A[i]l = A[i-1]1; //A[hi] is now 2nd largest
124 A[splitPoint] = max;

125 unSort(A, lo, splitPoint); // still sorted
126 unSort(A, splitPoint + 1, hi); // still sorted
127 -~ }

Figure B.9: A Java code of unSort that, given a sorted array A, reshuffles it onto a worst-
case array for MergeSort. Its structure mimics the Java code of MergeSort shown on

Figure A.8.

For instance, it produced this array of integers between 1 and 500:

1,500, 2, 3,4, 7,5, 6,8, 15,9, 10, 11, 14, 12, 13, 16, 31, 17, 18, 19, 22, 20,
91, 23, 30, 24, 25, 26, 29, 27, 28, 32, 62, 33, 34, 35, 38, 36, 37, 39, 46, 40, 41,
42, 45, 43, 44, 47, 61, 48, 49, 50, 53, 51, 52, 54, 60, 55, 56, 57, 59, 58, 63,
124, 64, 65, 66, 69, 67, 68, 70, 77, 71, 72, 73, 76, 74, 75, 78, 92, 79, 80, 81,
84, 82, 83, 85, 91, 86, 87, 88, 90, 89, 93, 123, 94, 95, 96, 99, 97, 98, 100, 107,
101, 102, 103, 106, 104, 105, 108, 122, 109, 110, 111, 114, 112, 113, 115, 121,
116, 117, 118, 120, 119, 125, 249, 126, 127, 128, 131, 129, 130, 132, 139, 133,
134, 135, 138, 136, 137, 140, 155, 141, 142, 143, 146, 144, 145, 147, 154, 148,
149, 150, 153, 151, 152, 156, 186, 157, 158, 159, 162, 160, 161, 163, 170, 164,
165, 166, 169, 167, 168, 171, 185, 172, 173, 174, 177, 175, 176, 178, 184, 179,
180, 181, 183, 182, 187, 248, 188, 189, 190, 193, 191, 192, 194, 201, 195, 196,
197, 200, 198, 199, 202, 216, 203, 204, 205, 208, 206, 207, 209, 215, 210, 211,

64 Although not with InsertionSort’s sluggishness; the number of moves of keys it
performs is only slightly more than the minimum number (57) of comps performed by
MergeSort on any n-element array.
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912, 214, 213, 217, 247, 218, 219, 220, 223, 221, 222, 224, 231, 225, 226, 227,
930, 228, 229, 232, 246, 233, 234, 235, 238, 236, 237, 239, 245, 240, 241, 242,
944, 243, 250, 499, 251, 252, 253, 256, 254, 255, 257, 264, 258, 259, 260, 263,
261, 262, 265, 280, 266, 267, 268, 271, 269, 270, 272, 279, 273, 274, 275, 278,
976, 277, 281, 311, 282, 283, 284, 287, 285, 286, 288, 295, 289, 290, 291, 294,
9292, 293, 296, 310, 297, 298, 299, 302, 300, 301, 303, 309, 304, 305, 306, 308,
307, 312, 373, 313, 314, 315, 318, 316, 317, 319, 326, 320, 321, 322, 325, 323,
394, 327, 341, 328, 329, 330, 333, 331, 332, 334, 340, 335, 336, 337, 339, 338,
342, 372, 343, 344, 345, 348, 346, 347, 349, 356, 350, 351, 352, 355, 353, 354,
357, 371, 358, 359, 360, 363, 361, 362, 364, 370, 365, 366, 367, 369, 368, 374,
498, 375, 376, 377, 380, 378, 379, 381, 388, 382, 383, 384, 387, 385, 386, 389,
404, 390, 391, 392, 395, 393, 394, 396, 403, 397, 398, 399, 402, 400, 401, 405,
435, 406, 407, 408, 411, 409, 410, 412, 419, 413, 414, 415, 418, 416, 417, 420,
434, 421, 429, 423, 426, 424, 425, 427, 433, 428, 429, 430, 432, 431, 436, 497,
437, 438, 439, 442, 440, 441, 443, 450, 444, 445, 446, 449, 447, 448, 451, 465,
452, 453, 454, 457, 455, 456, 458, 464, 459, 460, 461, 463, 462, 466, 496, 467,
468, 469, 472, 470, 471, 473, 480, 474, 475, 476, 479, 477, 478, 481, 495, 482,
483, 484, 487, 485, 486, 488, 494, 489, 490, 491, 493, 492.

It took my MergeSort 3,989 comps to sort it. Of course,

500[1g 5007 — 2165001 11 = 4,500 — 512 + 1 = 3,989.
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