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The following notes contain answers to questions raised during the colloquium at Math Department, CSUDH, January 29, 2007. They use some basic facts that do not go beyond high school trigonometry (except, perhaps, for calculating that tiling with n identical hexagons fits best a hexagon if n = 3k2 – 3k + 1, for some k, and that 6n2 equilateral triangles tile a hexagon, which requires some high school combinatorics). I skipped most of elementary calculations but left some hints [in square brackets] to make it clear where did the resulting expressions and numbers come from. All facts stated below have been probably known for decades (some, perhaps, for centuries), but you may find them entertaining enough to present them in class for your students. 

Contrary to intuitive guess, area tiled with n unit (say, square inch) hexagons has larger perimeter than the same area optimally tiled with n unit triangles, for infinitely many n. This is a consequence of simple fact that a hexagon may be tiled by equilateral triangles but not by two or more hexagons.

Also, the smallest ratio of perimeter to square root of area for n > 1 hexagons is achieved when n = 7 – quite a counter-intuitive result as one can expect that the ratio will decrease if the larger number of unit hexagons are allowed.

Here is the problem that was investigated (according to my recollection) at the colloquium.

Problem. Given n identical plane tiling polygons (unit triangles, unit squares, or unit hexagons), what arrangement yields the minimum perimeter of an area tiled by these polygons.

We will call any tiling that has such minimal perimeter an optimal tiling.

One could try to abstract from parameter n in the above problem by asking what arrangement yields the minimal ratio of the perimeter to the tiled area enclosed in it, but that would not work as that ratio converges to 0 when n diverges to infinity. 

Here we will use intuitively obvious measure of “minimality” of such ratio:

Definition. Let P be the perimeter of a plane figure A with area S. The relative minimality of P with respect to S is defined as:

R(A) = ½ P( S)-½

(which is equal to the ratio of P to the circumference of a circle with area S).

Quite obviously, figure A optimally tiled with n identical polygons will have the minimal value of R(A), and vice versa. So the solution of the perimeter of an optimal tiling may be calculated from such minimal R(A) by multiplying it by 2( S)-½. Therefore, we will content ourselves with calculating R(A) for different tilings.

Of course, if  is a circle then R() = 1, and this clearly is the minimal value that function R may assume for any figure A.

If  is an equilateral triangle then R() = 3¾-½  1.286.

If  is a square then R() = 2-½  1.128.

If  is a hexagon then R() = 2½3¼-½  1.050.

Now, let’s compute ratios R for optimal tilings with n identical plane tiling polygons.

Case n = 2

 R(2) = (4/3)2-½R() [perimeter P increased 4/3 times (from 3a to 4a) while the area S increased 2 times] = 21½3-¼-½    1.213.

R(2) =  (3/2)2-½R() [perimeter P increased 3/2 times (from 4b to 6b) …] = 2-½3-½  1.197.  

R(2) = (5/3)2-½R() [… P increased … from 6c to 10c …] = 3-¾5-½  1.238.

So, hexagon is the loser in case of 2 tiles and square is the winner.

Case n = 3

R(3) = (5/3)3-½R() =  [… the area S increased 2 times] 3-¾5-½ [same as R(2)!]  1.238.

R(3) =  23-½R() = 3-½4-½  1.303.

R(3) = 23-½R() = 21½3-¼-½  1.213.

Hexagon is the winner (but not even close to its score for n = 1) and square is the loser.

Case n = 4

R(4) =   R() [because 4 equilateral triangles tile an equilateral triangle] = 3¾-½  1.286.

R(4) =  R()  [because 4 squares tile a square] = 2-½  1.128.

R(4) = (7/3)4-½R() =  …  1.225.

Hexagon lost, again, square won.

Case n = 6

R(6) =   R() [because 6 equilateral triangles tile a hexagon!] = 2½3¼-½  1.050.

R(6) = (5/2)6-½R() = 2-½3-½5-½  1.152.

R(6) = 36-½R() =  3¾-½   1.286 (that’s the same as R()!)

Hexagon lost badly (as badly as did triangle for n = 1), triangle won. They just reversed their scores they had for n = 1.

Case n = 7

R(7) =   77-½R() = 7½3¼-½  1.096.

R(7) = (6/2)7-½R() = 6∙7-½-½  1.279.

R(7) = 37-½R()   1.191 (see below).

Hexagon lost to triangle, even though it reached its optimal ratio for n > 1! (See below.)

Case n = 6k2

R(n) =   R() [because 6k2 equilateral triangles tile a hexagon!] = 2½3¼-½  1.050.

For all other values of n (not 6k2, that is), R(n)  R(). 

Case n = k2

R(n) =  R()  [because k2 squares tile a square] = 2-½  1.128.

For all other values of n (not k2, that is), R(n)   R(), because the perimeter P of the optimal tiling is either  4i – 2 while its area is less than or equal to i(i – 1), or 4i while its area is less than i2, where i is the smallest integer such that i2   n. It follows that R(n)  (1 – i-1)-1R(), which converges to R() as i diverges to infinity.

Case n = 3k2 – 3k + 1, k  1

(In this case, the optimal tiling with 3k2 – 3k + 1 s fills a larger hexagon.)

R(n) = (2k - 1)(3k2 – 3k + 1)-½R() [the perimeter P increased 2k - 1 times as k unit hexagons are aligned along each side of the larger hexagon, contributing a total of 2k - 1 edges per side, while the area S increased 3k2 – 3k + 1 times], which converges to 

23-½R()  = 21½3-¼-½ [same as R(3), which seems rather counter-intuitive as one could expect that for some larger n, R(n) would be smaller than R(3)]  1.213 as n diverges to infinity. 

The coefficient 23-½ reflects the fact that the best-fit tiling of a larger hexagon H with n smaller hexagons (in the case of n = 3k2 – 3k + 1) has a zigzag perimeter that is roughly 23-½ times longer than the “straight line” perimeter of H, thus making the ratio R(n) approximately equal to 23-½R() (but slightly less than it because the smaller hexagons do not cover the entire area of H; however, the ratio of that non-covered area to the area of H converges to 0 as the size of H diverges to infinity). 

The minimal value of R(n) in this case (remember, n ≥ 7) is:

(2k - 1)(3k2 – 3k + 1)-½R() = 37-½R() [k  = 2 (so, n = 7) minimizes R(n), quite a counter-intuitive fact as one could expect that R(n)  is strictly decreasing with the growth of k, while, in fact, it is a strictly increasing function for k > 1]  1.191.

For example, for k = 2 (n = 7), R(n) = (2k - 1)(3k2 – 3k + 1)-½R() = 37-½R()  1.191,

for k = 3 (n = 19), R(n) = (2k - 1)(3k2 – 3k + 1)-½R() = 519-½R()  1.204,

for k = 4 (n = 37), R(n) = (2k - 1)(3k2 – 3k + 1)-½R() = 737-½R()  1.208,

for k = 5 (n = 61), R(n) = (2k - 1)(3k2 – 3k + 1)-½R() = 961-½R()   1.210, 

for k = 6 (n = 91), R(n) = (2k - 1)(3k2 – 3k + 1)-½R() = 1191-½R()   1.211, and

for k = 10 (n = 271), R(n) = (2k - 1)(3k2 – 3k + 1)-½R() = 19271-½R()   1.212.

For all other values of n  1 (not 3k2 – 3k + 1, that is), R(n)  37-½R()  1.191 (1.212?). 

So, equilateral triangle beats hexagon infinitely many times (for infinitely many values of n, that is), even for n = 7 which is the most optimal case for n > 1 hexagons!

If there are any errors here, please let me know at Suchenek@csudh.edu.

