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Children’s play: 
IIII, 

MCCXVI, 

1234567891, 

21234567891, 

Ackermann(21234567891), 

, 

2, 

…

Ackermann's function

A(m, 0) = 2 + m

A(m, 1) = 2 ( m

A(m, 2) = 2m

A(m, 3) = a stack of m 2's

...

Ackermann(n) = A(n, n)

Definition of A(m, n)

A(m, 0) = 2 + m

A(0, 1) = 0

A(0, n + 2) = 1

A(m + 1, n + 1) = A(A(m, n + 1), n)

Kelley – Morse theory of classes [1955]

Countable first-order language 

Infinitely many variables 

 a, A, b, B, …, x, X, …, abxfy, ,,,
 (for all), 
 (implication), 
false 

= (equality symbol), 
membership symbol), 
IsSet (a unary relation symbol). 

All other symbols are treated as finite abbreviations.

   abbreviates      false

true   abbreviates   false

  (   abbreviates   ()  (
 & (  abbreviates  (  ()

  (  abbreviates  (  () & ((  )

x []   abbreviates    x []
Bounded quantifiers

x  Y []  abbreviates  x [(x  Y)  ]

x  Y []  abbreviates x [(x  Y) & ]

Classes A, …, Z, … and sets a, …, z, …
Each set is a class but not necessarily vice versa.

Intention. Sets are “small”, classes are not.

IsSet(x)  Y [x  Y]

A set is “small” enough to be a member of a class.

Axioms

0. All axioms and rules of predicate calculus with =

(i) Propositional axioms:

  ((  )

[  ((  ()]  [(  () (  ()]

((  false)  false)  
(ii) Equality axioms
(x = y) (x)  (y)]

x = x
x = y  y = x

x = y & y = z  x = z

(iii) Quantification axioms
(c)  x [(x)]

(iv) Rules of Inference

MP: From  and   ( infer (
Gen: From (x) infer x [(x)]

where x has no free occurrences in the set of premises.

1. Extensionality axiom
x [x  A  x  B] → A = B

2. Existence (a.k.a. Separation) axiom
Zx [x  Z  IsSet(x) & ] 

for every formula  without free occurrences of Z.

Notation: Z = {x: }

Example. The universal class V

x  V  IsSet(x) & true 

V = {x: true}

Fact: IsSet(V)

3. Union axiom
IsSet(x) → IsSet(a)

where  A = {x: y  A [x  y]}

Fact: V = V

4. Pair axiom
IsSet(a) & IsSet(b) → IsSet({a, b})

where {a, b} = {x: x = a  x = b}

Notation: {a} = {a, a}

Note: {V} does not exist.

5. Power set axiom
IsSet(a) → IsSet(P(a))

where P(a) = {x: x  a} and 
    x  a  y  x [y  a]

Fact. IsSet(a) & x  a → IsSet(x)

Note: P(V) does not exist. 

Also, for any set x, P(x)  x [Zermelo]

6. Empty set axiom
IsSet(0)

where 0 = {x: false}

7. Infinity axiom
i [IsSet(i) & Infinite(i)]

where Infinite(i)  0  i & x  i  [x  {x}  i]

and A  B = {x: x  A  x  B}

Notation: ω = {i: Infinite(i)}

where A = {x: y  A [x  y]}

Fact. IsSet(A)

Fact. IsSet (ω)

Notation: <a, b> = {{a}, {a, b}} [Kuratowski]

Fact. IsSet(a) & IsSet(b) → IsSet(<a, b>)

Notation: A × B = {<a, b>: a  A & b  B}

Fact. V × V  V

Note. <V, V> does not exist.

Notation: 

Func(F)  F  V × V & 
x,y,z [<x, y>  F & <x, z>  F → y = z]

Dm(F) = {x: y [<x, y>  F]}

Rg(F) = {y: x [<x, y>  F]}

FA = {<x, y>: <x, y>  F & x  A}

8. Replacement axiom
F [Func(F) → a [IsSet(a)  IsSet(Rg(Fa))]

9. Axiom of Choice

X F [Func(F) & Dm(F) = X \ {0} & 
y  Dm(f) [F(y)  y]]

10. Regularity axiom
A  0 m [m  A & m  A = 0]

where A  B = {x: x  A & x  B}

Fact: X [X  X]

Example: IsSet({x: x  x})

Fact. V = {x: x  x}

Induction

Class A is transitive iff A   A.

Class A is connected iff  
x, y  A [x  y  x = y  y  x].

Example. 0 is transitive and connected.

Example. ω and all its elements (natural numbers) are transitive and connected.

Definition of ordinal numbers [von Neumann]

Class X is an ordinal number (in short: an ordinal) iff X is transitive and connected.

On = {x: x is an ordinal}

Fact. On is an ordinal

Fact. IsSet(On)

Fact. X is an ordinal iff X = On or X  On

Relation  is a well-ordering on On:

Every non-empty subset A of On contains its minimal element.

Notation: inf A (or min A)

Notation:

   iff    

 <  iff    

Successor ordinal

 + 1 =   {}

Example. 3 + 1 = 3  {3} = {0, 1, 2}  {3} = {0, 1, 2, 3} = 4.

Predecessor of a successor ordinal  is .

Example 
4 = {0, {0}, {0, 1}, {0, 1, 2}} = {0, 1, 2} = 3.

Fact.   {}=  for all successor ordinals .
Limit ordinal
Any ordinal that satisfies  = 

Lim = {  On:  = }

Fact. Every ordinal is either a successor ordinal or a limit ordinal.

Fact. 0, ω, and On are limit ordinals.

Fact. Every limit ordinal  has a unique representation:

 =  + n

where  is a limit ordinal and n  ω.

Hence ω + 1, ω + 2, …, ω + ω (= ω(2), … ω(ω, …

(Transfinite) induction principle:

  On [  A    A]  On  A

   [  A    A]    A

Example: Consider A the set of all ordinals ( ) that possess property .

Theorem (of inductive definitions)

For every G: V  V there exists exactly one 

F: On  V that satisfies the following recurrence relation:

F() = G(F), for all  On.

Example. [Russell]

There exists exactly one function R: On  V that satisfies the following conditions:

R(0) = 0

R( + 1) = P(R())

R() = {R():  < } for   Lim.

Fact. V = {R():   On}

Cardinal numbers

Classes A and B are equinumerous iff

F [Func(F) & Dm(F) = A & Rg(F) = B & F is 1-1]

Definition. Cardinality (or cardinal number) of class A is the least ordinal that is equinumerous with A.

Notation: |A|

Cn is the class of all cardinals that are sets (all except On, that is).

Example: αCn [α = |α|]

Fact. Cn  On, so Cn is well-ordered.

Note. Cn is not an ordinal (is not a transitive class). Therefore, Cn is not a cardinal.

Successor cardinal: the smallest cardinal larger than the one in question.

Notation: α+

Example: ω+ is the smallest uncountable cardinal.

Limit cardinal [Hausdorf 1908]: one that is not of the form α+.

Fact. All proper classes are equinumerous with On.

In particular, |V| = On.

Also, |On| = On and |Cn| = On

Alephs – well ordering of all infinite cardinals that are sets

א0 = ω

א  + 1 = א+

א = sup{א:  < } for   Lim.

Fact. א are limit cardinals.

Fact: α is a limit cardinal iff β < α  β+ < α

Beths – a well ordering of infinite power sets

Definition

2|x| = |P(x)| (> |x|   [Cantor 1873])

ב0  =  א0

ב+1 = 2 ב 

ב = sup{ ב:  < } for   Lim

where for any A  On, sup A is the smallest ordinal larger than all elements of A.

Both functions, א and ב, have arbitrarily large fixed points, that is,

On Cn [ >  & א = ]

and

On Cn [ >  & ב = ]

Continuum Hypothesis [Cantor]

ב1 א  =1

Relative consistency proved by Gödel [1940] and relative independence by Cohen [1963]

Generalized Continuum Hypothesis

On [ב = א]

Alternate version:

On [ א+1 = 2א]

Relative consistency proved by Gödel [1940] and relative strong independence (failure for arbitrarily large cardinals) by Easton.

Fact. ZF + GHC proves AC [Sierpinski]

Cofinality

cf() = inf{|A|: A   & sup A = }

Fact. On [cf()  ||]

Example. A subset A of  contains arbitrarily large numbers iff A is infinite. Therefore, cf() = 

Also, Cn [cf(α+) = α+].

A cardinal α with cf(α) = α is called a regular cardinal.

It is called a singular cardinal iff cf(α) < α.

Fact. For each infinite cofinality there exist arbitrarily large singular cardinals of that cofinality.

Weakly inaccessible cardinals [Hausdorf 1911]

Any uncountable א that is regular, where   Lim

(If β < א then β+ < א)

In particular, א = .

Strongly inaccessible cardinals [Sierpinski 1929]

Any uncountable ב that is regular, where   Lim

(If β < ב  then 2β < ב) 

In particular,  ב =  

Hyper-inaccessible cardinals [Kunnen]

 is (weakly/strongly) hyper-inaccessible iff  is regular and a limit of (weak/strong) inaccessibles.

Hyper-hyper-inaccessibles

…

Compact cardinals [Tarski]

Mahlo cardinals [Mahlo]

Woodin cardinals [Woodin]

Etc.
If ZFC is consistent then ZFC can prove neither existence nor non-existence of any of these numbers.

R() ╞ ZFC for the least (weakly/strongly) (hyper)n-inaccessible 

Zermelo – Fraenkel set theory with Axiom of Choice

Same language as KM, except IsSet.

Sets only, no proper classes.

Separation Axiom

azc [x  z  x  a & ] 

for every formula  without free occurrences of z.

Other axioms (identical or similar as in KM):

extensionality, union, power set, infinity, regularity, choice.

There is no On in ZFC, but there is a formula with one free variable x equivalent to:

 x  On

If ZFC is consistent then KM is stronger than ZFC.

KM proves consistency of ZFC, while ZFC does not (unless ZFC is inconsistent).

<V, > ╞  ZFC

Absoluteness

A property  is absolute iff 
If (c) holds in a standard submodel <M, > of ZFC for an element c then it also holds in <V, >.
Formulas with bounded quantifiers express absolute properties.
x  On is absolute

In particular,

OnM = OnM
x  Cn is not absolute.

In particular, 
CnM  CnM
von Neumann – Bernays – Gödel class theory 

Just like KM class theory, except that the Existence (a.k.a. Separation) Axiom scheme has a weaker (than in KM) form:

Zx [x  Z  IsSet(x) & ] 

for every formula (x) with all bounded quantifiers (ranging over sets only) and without free occurrences of Z.

NBG is a conservative extension of ZFC.

It cannot prove consistency of ZFC, unless ZFC is inconsistent.

NBG is finitely axiomatizable while ZFC is not, unless ZFC is inconsistent [Montague 1957].

A rain on this parade

Theorem [Skolem 1920, Löwenheim 1915]

If a first-order theory T in a countable language has a model then T has a countable model.

Proof by analysis of the proof of completeness theorem for first-order logic in a version using Lindenbaum algebra [ca 1935] and Tarski’s [1930] lemma [Rasiowa, Sikorski 1950].

Paradox [Skolem]

If ZF (ZFC, KM, NBG) is consistent then it has a countable model N.

There are only countably many sets in N, each of them having only countably many elements. In particular, every set of the form P(x) in N is countable.

So much for REALLY big numbers!

(It doesn’t seem that we can define them.)

There is a fish called goofang. It is like sunfish except that it is much bigger.

[Barwise, Admissible Sets and Structures].

